KUNTHAVAI NAACCHIYAAR GOVERNMENT ARTS COLLEGE FOR WOMEN An Autonomous College Affiliated to Bharathidasan University

Re-Accredited by NAAC with 'B' Grade Thanjavur – 613 007, Tamil Nadu, India.

CBCS & OBE Scheme of Instruction and Syllabus for B.Sc., Chemistry

(I to VI Semester)

Effective from 2023 – 2024 and onwards

DEPARTMENT OF CHEMISTRY

KUNTHAVAI NAACCHIYAAR GOVERNMENT ARTS COLLEGE FOR WOMEN

An Autonomous College Affiliated to Bharathidasan University

Re-Accredited by NAAC with 'B' Grade Thanjavur – 613 007, Tamil Nadu, India.

KUNTHAVAI NAACCHIYAAR GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF CHEMISTRY I. VISION

- 1. To impart higher education to women.
- 2. To transform and empower the women students through education by enhancing the qualities of competence, confidence and excellence.

II. MISSION

- 1. To educate the students from the rural area qualitatively.
- 2. To create social awareness.
- 3. To enable rational thinking and social responsibility.
- 4. To empower the students to face the challenges and hurdles in their upcoming life.

III. PROGRAM OUTCOME (PO)

After successful completion of the three year degree program, a student should be able to

PO 1: Acquire communicative skills, Scientific attitude and aptitude in learning

chemistry.

- **PO 2**: Equip students as current industrial need.
- **PO 3 :**Involve in deeper learning of principles and reactions of Inorganic, Organic and Physical chemistry
- **PO 4**: Use modern techniques, decent equipment's and chemistry software.
- **PO 5**:Get employability, Entrepreneurial skills to find out the jobs and start the own industry respectively.
- **PO 6**:Understand the role of chemistry in everyday life.
- **PO 7**: Equip students with different types of problem solving related to academic and industrial domain.
- **PO 8 :**Employ critical thinking and the scientific knowledge to design carry out, record and analyse the result of chemical reactions.

- **PO 9 :** Design and conduct the experiments as well as analyse the inorganic and Organic compounds.
- **PO10:** Create an awareness of the impact of chemistry on the environment, society and development outside of the scientific community.

Programme Structure

B.Sc Chemistry Course CBSE Structure with OBE

G						t	_	Ma	rks			
Sem	Part	Course	Existing Code	Title of the Paper	Inst. Hrs.	Credit	Exam Hrs.	Int.	Ext.	Total		
	Ι	LC 1	23K1T1	Tamil – I	6	3	3	25	75	100		
	II	ELC 1	23K1E1	English – I	6	3	3	25	75	100		
		CC 1	23K1CH01	General Chemistry – I	5	5	3	25	75	100		
		CC 2(P)	23K1CH02P	Chemistry Practical - I (Volumetric Analysis)	3	3	3	25	75	100		
Ι	III		23K1CH/P/CSEC M1:1/23K1B/CH ECZ1:1	Algebra and Calculus/ Elective Zoology I	1	4		25	75	100		
			EC 1	23K1CH/P/CSEC M1:2/23K1B/CH ECZ1:2	Numerical Methods with Applications/ Radiation Biology	4	4	3	25	75	100	
		EC2		Differential equations and Laplace Transforms/ Elective Zoology Lab	2	-	-	-	-	-		
	IV	SEC – 1	23K1CHSEC1	Role of Chemistry in daily life	2	2	3	25	75	100		
	ĨV		23K1CHFC	Basic Chemistry	2	2	3	25	75	100		
			Tot	tal	30	22				700		
	Ι	LC 2	23K2T2	Tamil – II	6	3	3	25	75	100		
	II	ELC 2	23K2E2	English – II	6	3	3	25	75	100		
		CC 3	23K2CH03	General Chemistry – II	5	5	3	25	75	100		
II				CC4(P)	23K2CH04P	Organic Analysis and Preparation of Organic Compounds	3	3	3	25	75	100
	III	EC 2	23K2CH/P/CSEC M2:1/23K2CH/P/ CSECM2:2/23K2 B/CHECZ2P	Differential Equation and Laplace Transforms/Number Theory/ Elective Zoology Lab	2	2	3	25	75	100		

(for the candidates admitted 2023-24)

	EC 3		23K2CH/P/CSEC M3:1/23K2B/CH ECZ3:1	Discrete Mathematics/ Elective Zoology II	4	2	2	25	75	100
		EC 3	23K2CH/P/CSEC M3:2/23K2B/CH ECZ3:2	Mathematical Statistics/ Agricultural Entomology	4	3	3	25	75	100
	IV	SEC-2	23K2CHSEC2	Dairy Chemistry	2	2	3	25	75	100
	1 V	SEC-3	23K2CHSEC3	Cosmetic and personal grooming	2	2	3	25	75	100
	Total					23				800
	Ι	LC 3	23K3T3	Tamil – III	6	3	3	25	75	100
	II	ELC 3	23K3E3	English – III	6	3	3	25	75	100
		CC 5	23K3CH05	General Chemistry – III	5	5	3	25	75	100
		CC 6(P)	23K3CH06P	Qualitative Inorganic Analysis	3	3	3	25	75	100
	III	EC 4	23K3CHECP4:1	Allied Physics– I	- 4	4	3	25	75	100
		7.05	23K3CHECP4:2	Applied Physics – I						
III		EC5		Allied Physics Practical	2	-	-	-	-	-
111	IV	SEC-4	23K3CHSEC4	Entrepreneurial Skills in Chemistry	1	1	3	25	75	100
		SEC-5 23K3CHSEC5 Agro Chemistry			2	2	3	25	75	100
				EVS	1	-				
		ECC1	23K3CHECC1:1	Food Chemistry (Self Study)		3	3			100
			23K3CHECC1:2	MOOC		5	5			100
		ECC2	23K3CHECC2	Hydrochemistry (Add on Course)	-	4				
			Tot		30	21				700
	Ι	LC 4	23K4T4	Tamil – IV	6	3	3	25	75	100
	II	ELC 4	23K4E4	English – IV	6	3	3	25	75	100
		CC 7	23K4CH07	General Chemistry – IV	4	4	3	25	75	100
	III	CC 8(P)	23K4CH08P	Physical Chemistry Practical	3	3	3	25	75	100
IV		EC5	23K4CHECP5P	Allied physics practical	2	2	3	25	75	100
		EC 6	23K4CHECP6:1	Allied Physics – II	- 4	3	3	25	75	100
			23K4CHECP6:2 23K4CHSEC6	Applied Physics - II Instrumental methods of Chemical						
	IV	SEC – 6	23K4CHSEC0	Analysis	2	2	3	25	75	100
	1 V	SEC - 7	23K4CHSEC7	Forensic Science	2	2	3	25	75	100
			232K4EVS	EVS	1	2	3	25	75	100
		ECC3	23K4CHECC3:1	Pollution Control and its Measures (Self Study)	_	3	3			100
			23K4CHECC3:2	MOOC	1					
			Tot	al	30	24				900
		CC 9	23K5CH09	Organic Chemistry – I	6	5	3	25	75	100
		CC 10	23K5CH10	Inorganic Chemistry – I	6	5	3	25	75	100
	III	CC 11	23K5CH11	Physical Chemistry – I	6	5	3	25	75	100
		CC12(P)	23K5CH12P	Gravimetric analysis Practical	6	4	3	25	75	100
v		EC7	23K5CHECCH7:1	Analytical Chemistry	4	3	3	25	75	100

			23K5CHECCH7:2	Bio Chemistry						
	23K5VE		23K5VE	Value Education	2	2	3	25	75	100
			23K5I	Summer Internship/Industrial Training	-	2				
	Total				30	26				600
		CC 13	23K6CH13	Organic Chemistry – II	7 6		3	25	75	100
		CC 14	23K6CH14	Inorganic Chemistry – II	7	6	3	25	75	100
		CC15	23K6CH15	Physical Chemistry – II	7	6	6	25	75	100
VI			23K6CHECCH8: 1	Molecular Spectroscopy	- 7	3	3	25	75	100
		EC8	23K6CHECCH8: 2	Polymer Science		5	5	23	75	100
	v	SEC -8	23K6CHSEC8	Industrial Application of Chemistry	2	2	3	25	75	100
			23K6EA	Extension Activity	-	1				
	Total					24				500
			Grand	Total	180	140				4200

Q

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM I	CC1	GENERAL CHEMISTRY – I	23K1CH01	Ins.Hrs.5	Credit:5

· · · · · · · · · · · · · · · · · · ·	
Objective of	The course aims at giving an overall view of the
the Course	• various atomic models and atomic structure
	• wave particle duality of matter
	• periodic table, periodicity in properties and its application in
	explaining the chemical behaviour
	• nature of chemical bonding, and fundamental concepts of organic
	chemistry
	• mathematical expression of a gas and know the Maxwell distribution
	of molecular velocities.
Course Outline	UNIT I
	Atomic structure and Periodic trends
	History of atom (J.J.Thomson, Rutherford); Moseley's Experiment and Atomic number, Atomic Spectra; Black-Body Radiation and Planck's quantum theory - Bohr's model of atom;The Franck-Hertz Experiment; Interpretation of H- spectrum; Photoelectric effect, Compton effect; Dual nature of Matter- De- Broglie wavelength-Davisson and Germer experiment Heisenberg's Uncertainty Principle; Electronic Configuration of Atoms and ions- Hund's rule, Pauli'exclusion principle and Aufbau principle;
	Modern Periodic Table Cause of periodicity; Features of the periodic table; classification of elements - Periodic trends for atomic size- Atomic radii, Ionic, crystal and Covalent radii; ionization energy, electron affinity, electronegativity- electronegativity scales, applications of electronegativity.
	UNIT-II: Structure and bonding – I
	Ionic bond
	Lewis dot structure of ionic compounds; properties of ionic compounds;
	Energy involved in ionic compounds; Born Haber cycle – lattice
	energies, Madelung constant; relative effect of lattice energy and
	solvation energy; Ion polarization – polarising power and polarizability;
	Fajans' rules - effects of polarisation on properties of compounds;
	problems involving the core concepts.
	Covalent radii; ionization energy, electron affinity, electronegativity- electronegativity scales, applications of electronegativity. UNIT-II: Structure and bonding – I Ionic bond Lewis dot structure of ionic compounds; properties of ionic compounds; Energy involved in ionic compounds; Born Haber cycle – lattice energies, Madelung constant; relative effect of lattice energy and solvation energy; Ion polarization – polarising power and polarizability; Fajans' rules - effects of polarisation on properties of compounds;

Covalent bond : Shapes of orbitals, overlap of orbitals $-\sigma$ and Π bonds; directed valency - hybridization; VSEPR theory - shapes of molecules of the type AB ₂ , AB ₃ , AB ₄ , AB ₅ , AB ₆ and AB ₇ Partial ionic character of covalent bond-dipole moment, application to molecules of the type A ₂ , AB, AB ₂ , AB ₃ , AB ₄ ; percentage ionic character-numerical problems based on calculation of percentage ionic character.
UNIT-III: Structure and bonding – II
VB theory – application to hydrogen molecule; concept of resonance - resonance structures of some inorganic species – CO_2 , NO_2 , $CO_3^{2^2}$, $NO_3^{-2^2}$; limitations of VBT; MO theory - bonding, antibonding and nonbonding orbitals, bond order; MO diagrams of H ₂ , C ₂ , O ₂ , O ₂ ⁺ , O ²⁻ , N ₂ , NO, HF, CO;magnetic characteristics, comparison of VB and MO theories.
Coordinate bond : Definition, Formation of BF_3 , NH_3 , NH_4^+ , H_3O^+ properties.
Metallic bond -electron sea model, VB model; Band theory-mechanism of conduction in solids; conductors, insulator, semiconductor – types, applications of semiconductors
Weak Chemical Forces - Vander Waals forces, ion-dipole forces, dipole- dipole interactions, induced dipole interactions, Instantaneous dipole- induced dipole interactions. Repulsive forces; Hydrogen bonding – Types, special properties of water, ice, stability of DNA; Effects of chemical force, melting and boilingpoints.
UNIT-IV: Basic concepts in Organic Chemistry and Electronic effects
Types of bond cleavage – heterolytic and homolytic; arrow pushing in organic reactions; reagents and substrates; types of reagents - electrophiles, nucleophiles, free radicals; reaction intermediates – carbanions, carbocations, carbenes, arynes and nitrynes. Inductive effect - reactivity of alkyl halides, acidity of halo acids, basicity of amines; inductomeric and electromeric effects.
Resonance – resonance energy, conditions for resonance - acidity of phenols, basicity of aromatic amines, stability of carbonium ions, carbanions and free radicals, reactivity of vinyl chloride, dipole moment

	of vinyl chloride andnitrobenzene, bond lengths; steric inhibition to resonance. Hyperconjugation - stability of alkenes, bond length, orienting effect of methyl group, dipole moment of aldehydes and nitromethane Types of organic reactions-addition, substitution, elimination and rearrangements UNIT- V Gaseous State: Postulates of kinetic theory of gases, kinetic gas equation – derivation of Boyle's law, Charle's law and Avogadro's law from it, deviation from ideal behaviour, PV-P isotherms of real gases, relationship between critical constants and Vander Waals constants, the law of corresponding states, reduced equation of state, the value of `R` in different units. Maxwell's distribution of molecular velocities – average velocity, most probable velocity and root mean square velocity – collision diameter, collision number, collision frequency and mean free path.
Recommended Text Reference Books	 Madan, R. D. and Sathya Prakash, Modern Inorganic Chemistry, 2nded.; S.Chand and Company: New Delhi, 2003. Rao, C.N. R. University General Chemistry, Macmillan Publication: NewDelhi, 2000. Puri, B. R. and Sharma, L. R. Principles of Physical Chemistry, 38thed.;Vishal Publishing Company: Jalandhar, 2002. Bruce, P. Y. and PrasadK. J. R. Essential Organic Chemistry, PearsonEducation: New Delhi, 2008. Dash UN, Dharmarha OP, Soni P.L. Textbook of Physical Chemistry, Sultan Chand & Sons: New Delhi,2016 Maron, S. H. and Prutton C. P. Principles of Physical Chemistry,4thed.; The Macmillan Company: Newyork,1972. Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS William Heinemann: London,1991. Gurudeep Raj, Advanced Inorganic Chemistry, 10th ed.; Oxford UniversityPress:New York, 2014. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity,

Website	1. <u>https://onlinecourses.nptel.ac.in</u>
and e-	2. http://www.mikeblaber.org/oldwine/chm1045/notes_m.htm
learning source	 3. http://www.ias.ac.in/initiat/sci_ed/resources/chemistry/Inorganic.html 4. https://swayam.gov.in/course/64-atomic-structure-and-chemical- bonding
	5. https://www.chemtube3d.com/

On completion of the course the students should be able to

- **CO1:** explain the atomic structure, wave particle duality of matter, periodic properties bonding, and properties of compounds.
- **CO2:** types of bonds, reaction intermediates electronic effects in organic compounds, types of reagents.
- **CO3:** apply the theories of atomic structure, bonding, to calculate energy of a spectral transition, Δx , Δp electronegativity, percentage ionic character and bond order.
- **CO4:** evaluate the relationship existing between electronic configuration, bonding, geometry of molecules and reactions; structure reactivity and electronic effects
- **CO5:** construct MO diagrams, predict trends in periodic properties, assess the properties of elements, and explain hybridization in molecules, nature of H bonding and organic reaction mechanisms.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	Μ	S	S	S	Μ	S	S	Μ	Μ	М
CO3	S	S	S	Μ	S	S	S	Μ	S	М
CO4	S	S	S	S	S	S	S	Μ	Μ	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

23.820

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	CC2	CHEMISTRY PRACTICAL	23K1CH02P	Ins.Hrs.	Credit:
Ι	(P)	– I (VOLUMETRIC		3	3
		ANALYSIS)			

Objective of	The course sime at giving an everall view of the						
the Course	 The course aims at giving an overall view of the Prepare standard solutions 						
the Course	Prepare standard solutionsUnderstand the principles of Acidimetry, Alkalimetry,						
	Permanganametry, Dichrometry, Iodometry, Iodimetry and complexometric titrations using EDTA						
	 Analyze volumetric data systematically and estimate the amount 						
	of inorganic substance in a given solution.						
	 Comprehends the advanced Titrimetric techniques. 						
	 Apply the techniques in Titrimetric analysis. 						
Course Outline	A double titration involving the making-up of solution to be estimated						
	and the preparation of a primary standard (10% of the marks to be						
	awarded for writing the procedure)						
	 Acidimetry & Alkalimetry: a) Strong Acid Vs Weak Base 						
	b) Weak Acid Vs Strong Base.						
	2. Redox Titrations:						
	a) Permanganimetry:						
	i. Estimation of Ferrous Ion						
	ii. Estimation of Oxalic Acid						
	iii. Estimation of Calcium						
	b) Dichrometry:						
	i. Estimation of Ferrous Ion						
	3. Iodometry & Iodimetry:						
	a) Estimation of Copper						
	b) Estimation of Potassium Dichromate						
	c) Estimation of Arseneous Oxide						
	4. Complexometric Titrations Using EDTA						
	a) Estimation of Magnesium						
	b) Estimation of Calcium						
	c) Determination of Hardness of water.						
	LLER OF EXAMINATION						

Reference	1. Practical chemistry by A.O. Thomas scientific book centre,
Books	cinnarore, 2003.
	2. Basic principles of practical chemistry, V. Venkateswaran, R.
	Veeraswamy, A.R. Kuladaivelu, S. Chand & Sons, New Delhi 2 nd
	edition,2004.
	3. Jeffery.G.H, Bassett J, mentham. J, Denney R.C(1989) Vogel's
	text book of quantitative chemical analysis, John wiley and sons.

On completion of the course the students should be able to

- **CO1:** Prepare standard solutions
- **CO2:** Understand the principles of Acidimetry, Alkalimetry, Permanganametry, Dichrometry, Iodometry, Iodimetry and complexometric titrations using EDTA.
- **CO3:** Analyze volumetric data systematically and estimate the amount of inorganic substance in a given solution.
- **CO4:** Comprehends the advanced Titrimetric techniques.
- **CO5:** Apply the techniques in Titrimetric analysis.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	Μ	S	S	Μ	Μ	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 513 007, TN.

SEM I	SEC	ROLE OF CHEMISTRY IN	23K1CHSEC1	Ins.Hrs.	Credit:
	1	DAILY LIFE		2	2

Objective of	This course aims at providing an overall view of the								
Objective of	 importance of Chemistry in everyday life 								
the Course									
	chemistry of building materials and food								
	chemistry of Drugs and pharmaceuticals								
Course Outline	UNIT-I								
	General survey of chemicals used in everyday life. Air - components and								
	their importance; photosynthetic reaction, air pollution, green - house								
	effect and the impact on our life style. Water - Sources of water, qualities								
	water pollution Unit-II								
	Building materials - cement, ceramics, glass and refractories - definition,								
	composition and application only. Plastics - polythene, PVC, bakelite,								
	polyesters, melamine-formaldehyde resins -preparation and uses only.								
	poryesters, metanine-formationyde resins -preparation and uses only.								
	UNIT-III								
	Food and Nutrition - Carbohydrates, Proteins, Fats - definition and their								
	importance as food constituents – balanced diet – Calories minerals and vitamins (sources and their physiological importance). Cosmetics – tooth								
	paste, face powder, soaps and detergents, shampoos, nail polish, perfumes								
	- general formulation and preparations - possible hazards of cosmetic use.								
	UNIT-IV								
	Chemicals in food production – fertilizers - need, natural sources; urea,								
	NPK fertilizers and super phosphate. Fuel – classification - solid, liquid								
	and gaseous; nuclear fuel examples and uses.								
	UNIT-V								
	Pharmaceutical drugs - analgesics and antipyretics - paracetamol and								
	aspirin. Colour chemicals - pigments and dyes - examples and								
	applications. Explosives - classification and examples.								
Recommended	1. Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishing								
Text	house, 2010.								
	2. A textbook of pharmaceutical chemistry by Jayashree Ghosh, S Chand								
	publishing, 2012.								

	3.S. Vaithyanathan, Text book of Ancillary Chemistry; Priya										
	Publications, Karur, 2006.										
	4. B. K, Sharma, Industrial Chemistry; GOEL publishing house, Meerut,										
	sixteenth edition, 2014.Introduction to forensic chemistry, Kelly M.										
	Elkins, CRC Press Taylor & Francis Group, 2019.										
	5. Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S.										
	Chand & Co.Publishers, second edition, 2006.										
Reference	1.Randolph. Norris Shreve, Chemical Process Industries, McGraw-										
Books	Hill, Texas, fourthedition, 1977.										
	2.W.A.Poucher,JosephA.Brink,Jr.Perfumes,Cosmetics and										
	Soaps,Springer,2000.										
	3.A.K.De,EnvironmentalChemistry,NewAge										
	InternationalPublicCo.,1990.										

On completion of the course the students should be able to

- **CO1:** learn about the chemicals used in everyday life as well as air pollution and waterpollution.
- **CO2:** get knowledge on building materials cement, ceramics, glass and plastics, polythene, PVC bakelite, polyesters,
- **CO3:** acquire information about Food and Nutrition. Carbohydrates, Proteins, Fats Alsohave an awareness about Cosmetics Tooth pastes, face powder, soaps and detergents.
- **CO4:** discuss about the fertilizers like urea, NPK fertilizers and super phosphate. Fuel classification solid, liquid and gaseous; nuclear fuel examples and uses
- **CO5:** have an idea about the pharmaceutical drugs analgesics and antipyretics like paracetamol and aspirin and also about pigments and dyes and its applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23.8200

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAYUR - 813 007, TN.

SEM I	FC	BASIC CHEMISTRY	23K1CHFC	Ins.Hrs.2	Credit:2

Objective of	The course sime at siving on everall view of the						
the Course	The course aims at giving an overall view of the						
the Course	Atomic Structure						
	Chemical Bonding						
	Organic Reactions						
	Naming the Organic Compounds						
	Environmental Chemistry						
Course Outline	UNIT – I						
	Atomic Structure : Rutherford atomic model – Bohr theory of						
	hydrogen atom – Dalton atomic model – de- Broglie's equation –						
	Heisenberg's uncertainty principle – quantum numbers – Pauli's						
	exclusion principle – orbits and orbitals. UNIT – II						
	Chemical Bonding: Types of bonds – ionic, covalent, coordinate bond						
	- concept of hybridization – hybridization involving s, p and d orbital-						
	valance bond theory- VSEPER theory – molecular orbital theory – basic						
	concept of resonance.						
	UNIT – III						
	Organic Reactions : Homolytic and Heterolytic bond fissions- types of reagents – electrphiles and nucleophiles – types of organic reactions, addition, elimination, substitution, rearrangement, oxidation, reduction, polymerization – Inductive, mesomeric, hyperconjugation and steric effect.						
	UNIT – IV						
	Naming the Organic Compounds : IUPAC Namonclature of organic compounds. E-Z Nomenclature – Elementary idea of cis-trans isomerism.						
	Concentration Units : Molarity, Normality, Mole fraction, formality,						
	percentage molality and parts per million – primary standard and						
	secondary standard solutions.						
	UNIT – V						
	Environmental Chemistry : Air, water and soil pollution chemical						
	reactions in atmosphere smog, major atmospheric pollutants, acid rain,						
	ozone and its reactions. Effect of depletion of ozone layer – greenhouse						
	effect and global warming – pollution due to industrial waste – strategy						
	for control of environmental pollutions						

Reference	1. Madan, R. D. and Sathya Prakash, Modern Inorganic Chemistry,							
Books	2 nd ed.; S.Chand and Company: New Delhi, 2003.							
	2. Environmental Chemistry, A.K. De, 5 th Edn., New Age International							
	Publisher, 2005.							
	3. Environmental Chemistry, B.K. Sharma, 11 th Edn., Krishna							
	Prakashan Media Limited, 2007.							
	4. Puri, B. R. and Sharma, L. R. Principles of Physical Chemistry, 38 th ed.; Vishal Publishing Company: Jalandhar, 2002.							

On completion of the course the students should be able to

CO1: know the various theory of atomic structure

- **CO2:** understand the types of chemical bonding and molecular orbital theory.
- **CO3:** classify the basic concepts and types of organic reactions.
- **CO4:** naming the organic compounds by IUPAC nomenclature and know the concentrations units.
- **CO5:** aware the types of pollutions and strategies for control of environmental pollution.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	Μ	М
CO3	S	S	S	Μ	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	Μ	S	S	S	S	S	М	М	S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course					
of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAYUR - 813 007, TN.

SEM	CC 3	GENERAL CHEMISTRY – II	23K2CH03	Ins.Hrs.5	Credit:5
II					

Objective of	This course aims at providing an overall view of the
the Course	• properties of s and p-block elements
	chemistry of hydrocarbons
	 compounds of main block elements and hydrocarbons
	• applications of acids and bases
	• chemistry of acids, bases and ionic equilibrium
	• concept involved in liquids, solids and liquid crystals
Course Outline	Unit-I
	Chemistry of s - Block Elements Hydrogen: Position of hydrogen in the periodic table. Alkali metals: Comparative study of the elements with respect to oxides, hydroxides, halides, carbonates and bicarbonates. Diagonal relationship of Li with Mg. Preparation, properties and uses of NaOH, Na ₂ CO ₃ , KBr, KClO ₃ alkaline earth metals. Anomalous behaviour of Be.
	Chemistry of p- Block Elements (Group 13 & 14) preparation and structure of diborane and borazine. Chemistry of borax. Extraction of Al and its uses. Alloys of Al. comparison of carbon with silicon. Carbon-di-sulphide – Preparation, properties, structure and uses. Percarbonates, per monocarbonates and per dicarbonates.
	UNIT-II Hydrocarbon Chemistry-I Petroproducts: Fractional distillation of petroleum; cracking, isomerisation, alkylation, reforming and uses
	Alkenes-Nomenclature, general methods of preparation – Mechanism of β - elimination reactions – E1 and E2 mechanism - factors influencing – stereochemistry – orientation – Hofmann and Saytzeff rules. Reactions of alkenes – addition reactions – mechanisms – Markownikoff's rule, Kharasch effect, oxidation reactions – hydroxylation, oxidative degradation, epoxidation, ozonolysis; polymerization.
	Alkadienes Nomenclature - classification – isolated, conjugated and cumulated dienes; stability of conjugated dienes; mechanism of electrophilic addition to conjugated dienes - 1, 2 and 1, 4 additions; free radical addition to

<u>г</u>	
	conjugated dienes– Diels–Alder reactions – polymerisation – polybutadiene, polyisoprene (natural rubber), vulcanisation, polychloroprene.
	Alkynes Nomenclature; general methods of preparation, properties and reactions; acidic nature of terminal alkynes and acetylene, polymerisation and isomerisation.
	Cycloalkanes: Nomenclature, Relative stability of cycloalkanes, Bayer's strain theory and its limitations. Conformational analysis of cyclohexane, mono and di substituted cyclohexanes. Geometrical isomerism in cyclohexanes.
	UNIT-III Hydrocarbon Chemistry - II Benzene: Source, structure of benzene, stability of benzene ring, molecular orbital picture of benzene, aromaticity, Huckel's (4n+2) rule and its applications. Electrophilic substitution reactions - General mechanism of aromatic electrophilic substitution - nitration, sulphonation, halogenation, Friedel-Craft's alkylation and acylation. Mono substituted and disubstituted benzene - Effect of substituent – orientation and reactivity. Polynuclear Aromatic hydrocarbons : Naphthalene – nomenclature, Haworth synthesis; physical properties, reactions – electrophilic substitution reaction, nitration, sulphonation, halogenation, Friedel – Crafts acylation & alkylation, preferential substitution at α - position – reduction, oxidation – uses. Anthracene – synthesis by Elbs reaction, Diels – Alder reaction and Haworth
	synthesis; physical properties; reactions - Diels-Alder reaction, preferential substitution at C-9 and C-10; uses.
	UNIT-IV
	Acids, bases and Ionic equilibria Concepts of Acids and Bases - Arrhenius concept, Bronsted-Lowry concept,
	Lewis concept; Relative strengths of acids, bases and dissociation constant; dissociation of poly basic acids, ionic product of water, pH scale, pH of solutions; Degree of dissociation, common ion effect, factors affecting degree of dissociation; acid base indicators, theory of acid base indicators –
	action of phenolphthalein and methyl orange, titration curves - use of acid base indicators; Buffer solutions – types, mechanism of buffer action in acid and basic
	buffer, Henderson-Hasselbalch equation; Salt hydrolysis - salts of weak acids and strong bases, weak bases and strong

	aside wealt aside and wealt becase budgelying constant desma of											
	acids, weak acids and weak bases - hydrolysis constant, degree of											
	hydrolysis and relation between hydrolysis constant and degree of											
	hydrolysis; Solubility product - determination and applications; numerical											
	problems involving the core concepts.											
	UNIT – V											
	Liquid State- Intermolecular forces-Dipole-dipole attraction, London forces,											
	Hydrogen bonding-nature, tyes and effects on properties. Structural differences between solids, liquids and gases.											
	between solids, liquids and gases.											
	Solid state- Definition of space lattice, unit cell, laws of crystallography, symmetry elements in crystals, X-ray diffraction by crystals – derivation of Bragg equation, methods of crystal structure analysis – Laue's method and											
	powder method, determination of crystal structure of NaCl, KCl, ZnS and											
	CsCl.											
	Liquid crystals – classification, structure, properties and applications.											
Recommended	1. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2 nd ed,											
Text	S.Chand and Company, New Delhi.											
	2. Sathya Prakash, Tuli G D, Basu S K and Madan R D, (2003),											
	Advanced Inorganic Chemistry, 17th ed., S.Chand and Company, New											
	Delhi.											
	3. Bahl B S, Arul Bhal, (2003), Advanced Organic Chemistry, 3 rd ed.,											
	S.Chand and Company, New Delhi.											
	4. Tewari K S, Mehrothra S N and Vishnoi N K, (1998), Text book of											
	Organic Chemistry, 2 nd ed., Vikas Publishing House, New Delhi.											
	5. Puri B R, Sharma L R, (2002), Principles of Physical Chemistry,											
	38 th ed., Vishal Publishing Company, Jalandhar.											
Reference	1. Maron S H and Prutton C P, (1972), Principles of Physical Chemistry,											
Books	4 th											
DUURS	ed., The Macmillan Company, Newyork.											
	2. Barrow G M, (1992), Physical Chemistry, 5 th ed., Tata McGraw Hill, NewDelhi.											
	3. Lee J D, (1991), Concise Inorganic Chemistry, 4 th ed., ELBS William											
	Heinemann, London.											
	4. Huheey J E, (1993), Inorganic Chemistry: Principles of Structure and											
	Reactivity, 4 th ed., Addison Wesley Publishing Company, India.											
	5. Gurudeep Raj, (2001), Advanced Inorganic Chemistry Vol – I, 26 th											
	ed., Goel Publishing House, Meerut.											
	 Agarwal O P, (1995), Reactions and Reagents in Organic Chemistry, 8thed., Goel Publishing House, Meerut. 											

Website	https://onlinecourses.nptel.ac.inhttp://cactus.dixie.edu/smblack/chem1010/lec
ande-	ture_notes/4B.html
learning	http://www.auburn.edu/~deruija/pdareson.pdfhttps://swayam.gov.in/course/64
source	-atomic-structure-and-chemical-bonding
	MOOC components
	http://nptel.ac.in/courses/104101090/
	Lecture 1: Classification of elements and periodic properties
	http://nptel.ac.in/courses/104101090/

On completion of the course the students should be able to

- **CO1:** explain the concept of acids, bases and ionic equilibria; periodic properties of s and pblock elements, preparation and properties of aliphatic and aromatic hydrocarbons
- **CO2:** discuss the periodic properties of sand p- block elements, reactions of aliphatic and aromatic hydrocarbons and strength of acids
- **CO3:** classify hydrocarbons, types of reactions, acids and bases, examine the properties s and p-block elements, reaction mechanisms of aliphatic and aromatic hydrocarbons
- **CO4:** explain theories of acids, bases and indicators, buffer action and important compounds of s-block elements
- **CO5:** assess the application of hard and soft acids indicators, buffers, compounds of s and p- block elements and hydrocarbons

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	М	S	S	S	Μ	S	S	Μ	Μ	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	Μ	S

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

523.6203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAYUR - 813 007, TN.

		ORGANIC ANALYSIS AND			
SEM II	CC 4	PREPARATION OF	23K2CH04P	Ins.Hrs.	Credit:
		ORGANIC COMPOUNDS		3	3

Objective of	This course aims at providing knowledge on
the Course	 laboratory safety
	 handling glass wares
	analysis of organic compounds
Course Outline	preparation of organic compounds Unit L Qualitative Organic Analysis
Course Outline	Unit I Qualitative Organic Analysis Proliminary examination detection of special elements nitrogen sulphur
	Preliminary examination, detection of special elements - nitrogen, sulphur and halogens
	Aromatic and aliphatic nature, Test for saturation and unsaturation,
	identification of functional groups using solubility tests
	Confirmation of functional groups
	• monocarboxylic acid, dicarboxylic acid
	• monohydric phenol, polyhydric phenol
	• aldehyde, ketone, ester
	• carbohydrate (reducing and non-reducing sugars)
	• primary, secondary, tertiary amine
	• monoamide, diamide, thioamide
	• anilide, nitro compound
	• Preparation of derivatives for functional groups
	UNIT II Preparation of Organic Compounds
	i. Nitration - picric acid from Phenol
	ii. Halogenation - p-bromo acetanilide from acetanilide
	iii. Oxidation - benzoic acid from Benzaldehyde
	iv. Microwave assisted reactions in water:
	v. Methyl benzoate to Benzoic acid
	vi. Salicylic acid from Methyl Salicylate
	vii. Rearrangement - Benzil to Benzilic Acid
	viii. Hydrolysis of benzamide to Benzoic Acid
Recommended	1. Venkateswaran, V.; Veeraswamy, R.; Kulandaivelu, A.R. <i>Basic</i>
Text	Principles of Practical Chemistry, 2nd ed.; Sultan Chand: New Delhi,
	2012.
	2. Manna, A.K. Practical Organic Chemistry, Books and Allied:

India, 2018.
3. Gurtu, J. N; Kapoor, R. Advanced Experimental Chemistry
(Organic), Sultan Chand: New Delhi, 1987.
4. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.R. Vogel's
Textbook of Practical Organic Chemistry, 5 th ed.; Pearson: India, 1989.

On completion of the course the students should be able to

CO1: observe the physical state, odour, colour and solubility of the given organic compound.

- **CO2:** identify the presence of special elements and functional group in an unknown organic compound performing a systematic analysis.
- **CO3:** compare mono and dicarboxylic acids, primary, secondary and tertiary amines, mono and diamides, mono and polyhydric phenols, aldehyde and ketone, reducing and non- reducing sugars and explain the reactions behind it.

CO4: exhibit a solid derivative with respect to the identified functional group.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	Μ	Μ	М

CO-PO Mapping

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23.8203 IOD of Chemistry, havai Naachiyaar Government ollege for Women (Autonomous) HANJAVUR - 813 007, TN.

SEM	SEC	DAIRY CHEMISTRY	23K2CHSEC2	Ins.Hrs.2	Credit:2
II	2				

Ohio stime of	This course aims at providing an overall view of the						
Objective of the Course	 chemistry of milk and milk products 						
the Course	processing of milk						
Course Outline	 preservation and formation of milk products. UNIT – I 						
Course Outline	Composition of Milk						
	Milk-definition-general composition of milk- constituents of milk - lipids,						
	proteins, carbohydrates, vitamins and minerals - physical properties of milk -						
	colour, odour, acidity, specific gravity, viscosity and conductivity -Factors						
	affecting the composition of milk - adulterants, preservatives with						
	neutralizer-						
	examples and their detection- estimation of fat, acidity and total solids in milk.						
	UNIT – II						
	Processing of Milk						
	Microbiology of milk - destruction of micro - organisms in milk, physico –						
	chemical changes taking place in milk due to processing - boiling,						
	pasteurization – types of pasteurization -Bottle, Batch and HTST (High						
	Temperature Short Time) – Vacuum pasteurization – Ultra High Temperature Pasteurization.						
	UNIT – III						
	Major Milk Products						
	Cream - definition - composition - chemistry of creaming process -						
	gravitational and centrifugal methods of separation of cream - estimation						
	of fat in cream. Butter - definition -composition - theory of churning – desi						
	butter - salted butter, estimation of acidity and moisture content in butter.						
	Ghee - major constituents - common adulterants added to ghee and their						
	detection - rancidity- definition - prevention - antioxidants and synergists -						
	natural and synthetic.						
	UNIT – IV Special Milk						
	Standardised milk - definition - merits - reconstituted milk - definition - flow						
	diagram of manufacture - Homogenised milk - flavoured milk - vitaminised						
	milk - toned milk - Incitation milk - Vegetable toned milk - humanized milk -						
	condensed milk - definition, composition and nutritive value.						
	TER OF EXAMINATION						

	UNIT – V							
	Fermented and other Milk Products							
	Fermented milk products – fermentation of milk - definition, conditions,							
	cultured milk - definition of culture - example, conditions - cultured							
	cream, butter milk - Bulgarious milk -acidophilous milk - Yoheer							
	Indigeneous products- khoa and chhena definition - Ice cream -definition-							
	percentage composition-types-ingredients-manufacture of ice-cream,							
	stabilizers -emulsifiersandtheirrole-milkpowder-definition-							
	needformakingmilkpowder- dryingprocess-types of drying.							
Recommended	1. K. Bagavathi Sundari, Applied Chemistry, MJP Publishers, first							
Text	edition, 2006.							
	2. K. S. Rangappa and K.T. Acharya, Indian Dairy Products, Asia							
	PublishingHouse New Delhi, 1974.							
	3. Text book of dairy chemistry, M.P. Mathur, D. Datta Roy, P. Dinakar,							
	IndianCouncil of Agricultural Research, 1 st edition, 2008.							
	4. A Text book of dairy chemistry, Saurav Singh, Daya Publishing house,							
	1 stedition,2013.							
	5. Text book of dairy chemistry, P. L. Choudhary, Bio-Green book							
	publishers, 2021.							
Reference	1. Robert Jenness and S. Patom, Principles of Dairy Chemistry, S.Wiley,							
Books	New York, 2005.							
	2. F.P.Wond, Fundamentals of Dairy Chemistry, Springer, Singapore, 2006.							
	3. Sukumar De, Outlines of Dairy Technology, Oxford University Press,							
	NewDelhi, 1980.							
	4. P.F.Fox and P.L.H. Mcsweeney, Dairy Chemistry and							
	Biochemistry, Springer, Second edition, 2016.							
	5. Dairy chemistry and biochemistry, P. F. Fox, T. Uniacke-Lowe, P.L.H.							
	McSweeney, J.A. OMahony, Springer, Second edition, 2015.							

On completion of the course the students should be able to

- **CO 1:** understand about general composition of milk constituents and its physical properties.
- **CO 2:** acquire knowledge about pasteurization of Milk and various types of pasteurization -Bottle, Batch and HTST Ultra High Temperature Pasteurization.
- **CO 3:** learn about Cream and Butter their composition and how to estimate fat in cream and Ghee
- CO 4: explain about Homogenized milk, flavoured milk, vitaminised milk and toned milk.
- **CO 5:** have an idea about how to make milk powder and its drying process types of dryingprocess

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	Μ	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

2 5 AUG 2023

23.620

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	SEC	COSMETICS AND	23K2CHSEC3	Ins.Hrs.	Credit:
II	3	PERSONAL GROOMING		2	2

	This course aims at familiarizing the students with					
Objective of	 formulations of various types of cosmetics and their significance 					
the Course	 hair, skin and dental care 					
	makeup preparations and personal grooming					
Course Outline	Unit I Skin care					
	Nutrition of the skin, skin care and cleansing of the skin; face powder –					
	ingredients; creams and lotions – cleansing, moisturizing all purpose, shaving					
	and sunscreen (formulation only); Gels – formulation and advantages;					
	astringent and skin tonics – key ingredients, skin lightness, depilatories.					
	Unit II Hair care					
	Shampoos – types – powder, cream, liquid, gel – ingredients; conditioner –					
	types – ingredients					
	Dental care					
	Tooth pastes – ingredients – mouth wash					
	Unit III Make up					
	Base _ foundation _ types _ ingredients: linstick eveliner mascara eve					
	Base – foundation – types – ingredients; lipstick, eyeliner, mascara, eye shadow, concealers, rouge					
	Unit IV Perfumes					
	Classification - Natural – plant origin – parts of the plant used, chief					
	constituents; animal origin – amber gries from whale, civetone from civet					
	cat, musk from musk deer; synthetic – classification emphasizing					
	characteristics –					
	esters – alcohols – aldehydes – ketones					
	Unit V Beauty treatments					
	Facials - types – advantages – disadvantages; face masks – types; bleach					
	-types – advantages – disadvantages; shaping the brows; eyelash tinting;					
	perming					
	– types; hair colouring and dyeing ; permanent waving – hair straightening;					
	wax types – waxing; pedicure, manicure - advantages – disadvantages					
Recommended	1. Thankamma Jacob, (1997) Foods, drugs and cometics – A consumer					
Text	guide, Macmillan publication, London.					
Reference						
Books	1. Wilkinson J B E and Moore R J, (1997) Harry's cosmeticology, 7 th ed.,					
DOORD	Chemical Publishers, London.					
	2. George Howard, (1987) Principles and practice of perfumes and					

	cosmetics, Stanley Therones, Chettenham
Website	
ande-	1. http://www.khake.com/page75.html
learning	2. Net.foxsm/list/284
source	

completion of the course the students should be able to

- **CO1:** know about the composition of various cosmetic products
- CO2 understand chemical aspects and applications of hair care and dental care and skincare products.
- CO3 understand chemical aspects and applications of perfumes and skin care products.
- CO4 to understand the methods of beauty treatments their advantages and disadvantage
- CO5 understand the hazards of cosmetic products.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	CC5	GENERAL CHEMISTRY – III	23K3CH05	Ins.Hrs.5	Credit:5
III					

Objective of	This course aims to provide a comprehensive knowledge on
the Course	Compounds of Nitrogen and Halogen family elements.
	• fundamentals of nuclear chemistry and nuclear waste management.
	• applications of nuclear energy
	 basic chemistry of halo-organic compounds, phenol and other
	aromatic alcohols.
	• preparation and properties of phenols and alcohols.
	 Colligative properties of solutions.
Course Outline	UNIT – I
course outline	Nitrogen Family – Comparative study of Nitrogen family elements and their
	compounds - hydrides, halides, oxides and oxy acids. Chemistry of hydrazine
	- hydrazoic acid, hydroxyl amine and sodium bismuthate.
	Halogen Family - comparative study of halogens and their compounds,
	structures of oxides and oxyacids of halogens, estimation of available chlorine in bleaching powder, Interhalogen compounds- preparation, properties structure
	and uses. Pseudo halogens – preparation, properties and uses. Chemistry of
	Astatine.
	UNIT-II
	Nuclear Chemistry
	Natural radioactivity - α , β and γ rays; half-life period; Fajan–Soddy group displacement law; Geiger–Nattal rule; isotopes, isobars, isotones, mirror
	nuclei, iso diaphers; nuclear isomerism; radioactive decay series; magic numbers; units – Curie, Rutherford, Roentgen; nuclear stability - neutron-proton ratio; binding energy; packing fraction; mass defect. Simple calculations involving mass defect and B.E., decay constant and t1/2 and
	radioactive series.
	Isotopes – uses – tracers – determination of age of rocks by radiocarbon dating. (Problems to be worked out)
	Nuclear energy; nuclear fission and fusion – major nuclear reactors in India; radiation hazards, disposal of radioactive waste and safety measures.
	UNIT-III
	Halogen derivatives Aliphatic
	halogen derivatives
	Nomenclature and classes of alkyl halides – isomerism, physical properties,

Chemical reactions. Nucleophilic substitution reactions – SN1, SN2 and SNi mechanisms with stereochemical aspects and effect of solvent.
Di, Tri & Tetra Halogen derivatives: Nomenclature, classification, preparation, properties and applications.
Aromatic halogen compounds Nomenclature, preparation, properties and uses Mechanism of nucleophilic aromatic substitution – benzyne intermediate.
Aryl alkyl halides Nomenclature, benzyl chloride – preparation – preparation properties and uses
Alcohols: Nomenclature, classification, preparation, properties, use; conversions – ascent and descent of series; test for hydroxyl groups. Oxidation of diols by periodic acid and lead tetraacetate.
UNIT-IV
Phenols Nomenalatural alogaification Dranaration from diagonium calta aumana
Nomenclature; classification, Preparation from diazonium salts, cumene, Dow's process, Raching process; properties – acidic character and effect of
substitution on acidity. Reactions – Fries, claisen rearrangement, Electrophilic
substitution reactions, Reimer - Teimen, Kolbe, Schmidt, Gatermann
synthesis, Libermann, nitro reaction, phthalein reaction.
Resorcinol, quinol, picric acid – preparation, properties and uses.
Aromatic alcohols
Nomenclature, benzyl alcohol – methods of preparation – hydrolysis, reduction of benzaldehyde, Cannizzaro reaction, Grignard synthesis, physical
properties, reactions – reaction with sodium, phosphorus pentachloride,
thionyl chloride, acetic anhydride, hydrogen iodide, oxidation – substitution
on the benzene nucleus, uses.
 Thiols: Nomenclature, structure, preparation and properties.
UNIT –V Dilute Solutions-
Colligative properties – Dilute solutions- colligative properties, Raoult' law,
relative lowering of vapour pressure, molecular weight determination, Osmosis,
law of osmotic pressure and its measurements, determination of molecular
weight from osmotic pressure.
Elevation of boiling point and depression of freezing point, Derivation of
relation between molecular weight and elevation in boiling point and depression
in freezing point. Experimental methods for determining various colligative properties. Abnormal molar mass, degree of dissociation and association of solutes.
 •

Recommended	1. B.R. Puri, L.R. Sharma, M.S. Pathania; Principles of Physical					
Text	Chemistry, 46 th edition, Vishal Publishing, 2020.					
	2. B.R. Puri, L.R. Sharma and K.C. Kalia, Principles of Inorganic					
	Chemistry, Milestone Publishers and Distributors, New Delhi, thirtieth					
	edition, 2009.					
	3. 4. P.L. Soni and Mohan Katyal, Textbook of Inorganic Chemistry,					
	SultanChand & amp; Sons, twentieth edition, 2006.					
	4. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal					
	Publishing, fourth reprint, 2003.					
	5. S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic					
	Chemistry, Macmillan India Ltd., third edition, 1994.					
Reference	. T. W. Graham Solomons, Organic Chemistry, John Wiley & amp; Sons,					
Books	fifth edition, 1992.					
	2. A. Carey Francis, Organic Chemistry, Tata McGraw-Hill Education					
	Pvt., Ltd., New Delhi, seventh edition, 2009.					
	3. I. L. Finar, <i>Organic Chemistry</i> , Wesley Longman Ltd, England, sixth edition, 1996.					
	4. P. L. Soni, and H. M.Chawla - Text Book of Organic Chemistry, New					
	Delhi, Sultan Chand & Sons, twenty ninth edition, 2007.					
	5. J.D. Lee, <i>Concise Inorganic Chemistry</i> , Blackwell Science, fifth edition, 2005.					

On completion of the course the students should be able to

CO1: explain the kinetic properties of gases by using mathematical concepts.

- **CO2:** describe the physical properties of liquid and solids; identify various types of crystals with respect to its packing and apply the XRD method for crystal structure determinations.
- **CO3:** investigate the radioactivity, nuclear energy and it's production, also the nuclear waste management.
- **CO4:** write the nomenclature, physical & chemical properties and basic mechanisms of halo organic compounds and alcohols.
- **CO5:** investigate the named organic reactions related to phenol; explain the preparation and properties of aromatic alcohol including thiol.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 513 007, TN.

SEM	CC6	QUALITATIVE INORGANIC	23K3CH06P	Ins.Hrs.	Credit:
III	(P)	ANALYSIS		3	3

Objective of						
Objective of	• To develop the skill on systematic analysis of simple inorganic salts and					
the Course	mixture of salts.					
Course Outline	Semi - Micro Qualitative Analysis					
	1. Analysis of simple acid radicals: Carbonate, sulphide, sulphate, thiosulphite, chloride, bromide, iodide, nitrate					
	2. Analysis of interfering acid radicals: Fluoride, oxalate, borate, phosphate, arsenate, arsenite.					
	3. Elimination of interfering acid radicals and Identifying the group of basic radicals					
	4. Analysis of basic radicals (group wise): Lead, copper, bismuth, cadmium, tin, antimony, iron, aluminium, arsenic, zinc,manganese, nickel, cobalt, calcium, strontium, barium, magnesium, ammonium					
	5. Analysis of a mixture - I to VIII containing two cations and two anions (of which one is interfering type)					
Recommended						
Text	V. Venkateswaran, R. Veeraswamy and A. R. Kulandivelu, Basic					
	Principles of Practical Chemistry, Sultan Chand & Sons, New Delhi, second edition, 1997.					
Website ande-	https://www.vlab.co.in/broad-area-chemical-sciences					
learning source						

On successful completion of the course the students should be able to

CO 1: acquire knowledge on the systematic analysis of Mixture of salts.

CO 2: identify the cations and anions in the unknown substance.

CO 3: identify the cations and anions in the soil and water and to test the quality of water.

CO4: assess the role of common ion effect and solubility product

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М

CO-PO Mapping

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	EC	ELECTIVE CHEMISTRY - I	23K3PECCH4:1	Ins.Hrs.	Credit:
III	3			4	3

Objectives of thecourseThis course aims at providing knowledge on• basics of atomic orbitals, chemical bonds, hybridization and fundamentals of organic chemistry
s ousles of atomic ofortals, enemiear conds, nyonaliation and
fundamentals of organic chemistry
 nuclear chemistry and industrial chemistry
• importance of speciality drugs and
 separation and purification techniques.
Provide fundamentals of phytochemistry
UNIT-I
Chemical Bonding and Nuclear Chemistry
Chemical Bonding: Molecular Orbital Theory-bonding, antibonding and
non-bonding orbitals. M. O diagrams for Hydrogen, Helium, Nitrogen;
discussion of bond order and magnetic properties.
Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotones
and Isomers-Differences between chemical reactions and nuclear
reactions- group displacement law. Nuclear binding energy - mass defect -
calculations. Nuclear fission and nuclear fusion - differences – Stellar
energy. Applications of radioisotopes – carbon dating, rock dating and
medicinal applications.
UNIT – II
Fundamental Concepts in Organic Chemistry
Hybridization: Orbital overlap hybridization and geometry of CH_4 , C_2H_4
C_2H_2 and C_6H_6 . Polar effects: Inductive effect and consequences
on Ka and K_b of organic acids and bases, electromeric, mesomeric, hyper
conjugation and steric-examples and explanation.
Reaction mechanisms: Types of reactions- aromaticity-aromatic
electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation.
Heterocyclic compounds: Preparation, properties of pyrrole and pyridine.
pyridine.

	UNIT – III									
	Drugs and Speciality Chemicals									
	Definition, structure and uses: Antibioticsviz., Penicillin,									
	Chloramphenicol and Streptomycin; Anaesthetics viz., Chloroform and									
	ether; Antipyretics viz., aspirin, paracetamol and ibuprofen; Artificial									
	Sweeteners viz., saccharin, Aspartame and cyclamate; Organic Halogen									
	compounds viz., Freon, Teflon. UNIT –IV									
	Analytical Chemistry									
	Introduction qualitative and quantitative analysis. Principles of volumetric analysis. Separation and purification techniques: extraction, distillation and crystallization. Chromatography: principle and application of column, paper and thin layer chromatography.									
	UNIT – V									
	Photochemistry									
	Grothus - Drapper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen -chloride reaction. Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis (definition with examples).									
Recommended	1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mount									
Text	publishing house, Chennai, first edition, 2009.									
	 S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006. 									
	3. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand									
	Company, New Delhi, twenty third edition, 2012.									
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan									
	Chand & sons, New Delhi, twenty ninth edition, 2007.									
Reference Books	1. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand									
	Company, New Delhi, twenty third edition, 2012.									
	2. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan									
	Chand & sons, New Delhi, twenty ninth edition, 2007.									
	3. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry;									

- **CO 1:** write the IUPAC name for complex, different theories to explain the bonding in coordination compounds and water technology.
- **CO 2:** explain the preparation and property of carbohydrate.
- CO 3: enlighten the biological role of transition metals, amino acids and nucleic acids.
- **CO 4:** apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuel cells.
- **CO 5:** outline the various type of photochemical process.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	М	S	S	S	М	S	S	Μ	М	М
CO3	S	S	S	Μ	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	Μ	М	М
CO5	S	М	S	S	S	S	S	Μ	М	S

CO- PO Mapping

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

23.820

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous) THANJAVUR - 613 007, TN.

SEM		CHEMISTRY FOR	23K3PECCH4:2	Ins.Hrs.4	Credit:
III	EC3	BIOLOGICAL AND			3
		PHYSICAL SCIENCES – I			

Objectives of	This course aims at providing knowledge on
thecourse	
thecourse	Nanomaterials
	Carbohydrates and proteins
	Fossil fuels and fuel gases
	Solid state
	Electrochemistry
	UNIT I Nanomaterials
	Introduction of nanomaterials – definition, synthesis – Top down and Bottom up approaches – synthesis of carbon nanotubes, fullerenes, gold and silver nanoparticles.
	Characterization nanomaterials – electron microscopy techniques – scanning electron microscopy and transmission electron microscopy
	UNIT II
	Carbohydrates: Classification- Glucose and Fructose- preparation and properties-elucidation of structure of glucose. Sucrose- manufacture, properties and structure (elucidation of structure not required). Starch and Cellulose- properties and uses only.
	Proteins:
	Proteins- classification based on physical properties andbiological functions- properties of proteins (Isoelectric point, Denaturation of Protein) - structure
	of proteins- primary and secondary structures (elementary treatmentonly).
	UNIT III
	Fossil Fuels and Fuel gases
	Fossil Fuels, Varieties of Coal, Petroleum – origin of Petroleum – Refining
	Chemistry of Cracking - Petroleum Refineries in India.
	Fuel gases - natural gas, water gas, semi water gas, carburetted water gas,
	producer gas, LPG and oil gas-composition, manufacture(elementary idea) and uses.

	UNIT IV Solid State : Typical crystal lattices- elements of symmetry- unit cell- types of cubic unit cells- Weiss and Miller indices- number of crystal units per unit cell- Avogadro number calculation- structure of NaCl crystal- Bragg equation.
	UNIT V Electrochemistry : Types of electrical conductors- conductance- specific and equivalent conductance- their determination- effect of dilution on conductance- weak and strong electrolytes- Ostwald's dilution law- Kohlrausch law- application of the law (determination of λ_{∞} of weak electrolytes, solubility of sparingly soluble salts)- conductometric titrations- acid-base titrations- (SA Vs SB, SA Vs WB, WA Vs SB & WA Vs WB).
Reference Books	 Nano; The essentials; understanding nano science and nano technology, T. Pradeep, McGraw – Hill Professional publishing, New delhi, 2008 Text Book of Organic Chemistry, P.L.Soni & H.M.Chawla, Sultan Chand. Principles of Physical Chemistry, B.R.Puri & L.R.Sharma, Shoban Lal Nagin Chand & Co.

- **CO 1:** know the different type of approaches in synthesizing nanomaterials and its characterization.
- **CO 2:** describe the structure and function of bio-molecules like carbohydrates, amino acids and proteins.
- **CO 3:** understand the fossil fuels, various types of fuels, manufacture and uses of fuels.
- **CO 4:** learn the basic concepts of solid state chemistry.
- **CO 5:** acquire the knowledge in the concepts of electrical conductance, conductors, strong and weak electrolytes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	Μ	М	S

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to POs	5.0	5.0	5.0	5.0	5.0

23.8203 >

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	SEC	ENTREPRENEURIAL	23K3CHSEC4	Ins.Hrs.1	Credit:1
III	4	SKILL			

	The course aims at providing training to						
Objective of the	 develop entrepreneur skills in students 						
Course							
	 to provide hands on experience to prepare and develop products develop start ups 						
Course Outline							
	UNIT –I						
	Food Chemistry						
	Food adulteration-contamination of food items with clay stones, water						
	andtoxicchemicals -Common adulterants.						
	Food additives, Natural and synthetic anti-oxidants, glazing agents						
	(hazardous effect), food colourants, Preservatives, leavening agents,						
	Baking powder and baking soda, yeast, MSG, vinegar.						
	Dyes						
	Classification – Natural, synthetic dyes and their characteristics – basic						
	methods and principles of dyeing						
	UNIT II						
	Hands on Experience (Students can choose any four)						
	Detection of adulterants in food items like coffee, tea, pepper, chilli powder, turmeric powder, butter, ghee, milk, honey etc., by simple techniques. Preparation of Jam, squash and Jelly, Gulkand, cottage cheese.						
	Preparation of products like candles, soap, detergents, cleaning powder, shampoos, pain balm, tooth paste/powde rand disinfectants in small scale.						
	Extraction of oils from spices and flowers. Testing of water samples						
	using testing kit.						
	Dyeing – cotton fabrics with natural and synthetic dyes						
	Printing – tie and dye, batik.						
Recommended	1. George S & Muralidharan V, (2007) Fibre to Finished Fabric – A						
Text	Simple Approach, Publication Division, University of Madras,						
	Chennai.						
	2. Appaswamy G P, A Handbook on Printing and Dyeing of Textiles.						
Reference	Shyam Jha, Rapid detection of food adulterants and contaminants						
Books	(Theory and Practice), Elsevier, e Book ISBN 9087128004289, 1 st Edition, 2015						
1							

On completion of the course the students should be able to

CO 1: identify adulterated food items by doing simple chemical tests.

CO 2: prepare cleaning products and become entrepreneurs

CO 3: educate others about adulteration and motivate them to become entrepreneurs.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М

CO-PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
Weightage	6	6	6	6	6
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to POs	5.0	5.0	5.0	5.0	5.0

23.6203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM III	SEC 5	AGRO	23K3CHSEC5	Ins.Hrs.2	Credit:2
		CHEMISTRY			

	This source sime to providing the students
Objective of	This course aims to providing the students
the Course	Soil formation
	• knowledge about the various types of pesticides and their toxicity.
	• to understand the accumulation of pesticides in in the form of residues
	and its analysis.
	• knowledge on choice of alternate and eco-friendly pesticides.
Course Outline	UNIT-I
	Soil formation – factors influencing soil formation, Soil forming
	processes. Definition of soil.
	Soil Physical properties – Soil texture and structure – Bulk density, particle
	density, Porespace, soil air, soil temperature, soil water, soil consistence -
	significance of Physical properties to plant growth.
	Fertilizers
	Fertilizers- mixed fertilizers - role in plant life – methods of applying solid
	fertilizers and liquid fertilizers- economic value of fertilized crop.
	Nitrogenous, phosphatic and potash fertilizers. Urea, Super phosphate, Bone
	meal and potassium nitrate.
	Unit II Destinides and desting and institution of the second second
	Pesticides residues: Introduction- application of agrochemicals,
	dissemination pathways of pesticides, causes of pesticide residues, remedies.
	Pesticides residues in atmosphere- entry into atmosphere, action of
	pesticides, effects on environments. Pesticides residues in water
	- entry into water systems, action and effect in aquatic environment.
	Pesticides residues in soil. entry into soil, absorption, retention and transport
	in soil, effects on microorganism, soil condition and fertility, decomposition
	and degradation by climatic factors and microorganism.
	Pesticide Residues effect and analysis: Effects of pesticides residue on
	human life, birds and animals- routes for exposure to pesticides, action of
	pesticides on living system. Analysis of pesticides residues- sample
	preparation, extraction of pesticides residues (soil, water and
	vegetables/fruits) simple methods and schemes of analysis, multi-residue
	analysis.

	Unit III
	Biopesticides: Pheromones, attractants, repellents – Introduction, types and application (8- Dodecen-1-ol, 10-cis-12-hexadecadienoic, Trimedlure, Cuelure, methyl eugenol, N,N- Diethyl-m-toluamide, Dimethyl phthalate, Icaridin). Baits- Metaldehyde, Iron (II) phosphate,
	Indoxacarb, Zinc Phosphide, Bromadiolone.
Recommended	2. Handa SK. Principles of pesticide chemistry. Agrobios (India); 2012.
Text	3. Matolcsy G, Nádasy M, Andriska V. Pesticide chemistry. Elsevier; 1989.
	4. J. Miyamoto and P. C. Kearney Pesticide Chemistry Human Welfare and
	the Environment vol. IV Pesticide Residue and Formulation Chemistry,
	Pergamon press, 1985.
	5. R. Cremlyn: Pesticides, John Wiley.
	5. The nature and properties of soils, Brady N.C., Eurasia Publishing House,
	(P) Ltd. 9 th Ed. 1984.
	6. Text book of soil science, Biswas, T.D. and Mukherjee S.K. 1987
	7. Soil fertility and fertilizers, Tisdale S.L., Nelson W.L., and Beaton J.D.
	Macmillan Publishing Company, NewYork, 1990.
	6. 8. <i>Commercial</i>
	fertilizers, Colling G.H., McGraw Hill Publishing Co., New York, 1955.
Reference	1. Roy N. K., Chemistry of Pesticides. CBS Publisher & Distributors P Ltd;
Books	1st Ed. (2010).
	2. Nollet L.M., Rathore H.S., Handbook of pesticides: methods of pesticide
	residues analysis. CRC press; 2016.
	3. Ellerbrock R.H., Pesticide Residues: Significance, Management and
	Analysis, 2005
Website	
ande-	1. http://www.khake.com/page75.html
learning	2. Net.foxsm/list/284
source	
L	

On completion of the course the students should be able to

- **CO 1:** learn about the soil forming process their physical properties, structure and its significance.
- CO 2: explain the preparation and property of pesticides
- CO 3: investigate the pesticide residues, prevention and care
- CO 4: demonstrate the extraction and analytical methods of pesticide residues
- CO 5: make awareness to the public on bio-pesticides .

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to	5.0	5.0	5.0	5.0	5.0
POs					

23.6200

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	ECC	FOOD CHEMISTRY	23K3CHECC1:1	Ins.Hrs	Credit:3
III	1				

	This course sime to providing the students
Objective of	This course aims to providing the students
the Course	• Types of food
	Food adulteration and poisons
	Food additives and preservation
Course Outline	UNIT-I
	Food groups and nutritive values of Foods- cereals and millets- pulses, nuts and oilseeds, vegetables- Fruits, Milk and milk products, eggs, meat, fish and other animal foods, fats and oils, sugar and carbohydrate foods, spices. Nutritional classification of foods. Planning of balanced diets.
	Nutritive value of some food products.
	Recommended dietary allowances (RDA) calories, proteins, fat, calcium,
	Phosphorous, iron, vitamin A, Thiamine, Riboflavin, Nicotinic acid, folic acid, Vitamin B12 Vitamin D. Fortification of foods food and its function
	Vitamin B12, Vitamin D, Fortification of foods, food and its function. Deficiency diseases, Anaemia caused by dietary deficiencies, suggestion for a
	healthy diet (RDA).
	UNIT II Sources of water for the body, Mineral elements & Trace elements. Cooking and Diet - Methods of Cooking, effect of cooking (on vegetable foods, on animal foods) and heat processing on the nutritive values of foods. Food spoilage – Preservation and Hygiene, Microbiological food spoilage- Preservation and Nutritive Value- Food Poisoning- Food Hygiene. Food additives and contaminants - Classes of food additives, Risks and benefits of additives.
	UNIT III
	Therapeutic Nutrition and Diets - Needs for Modification of Diets in different diseases, peptic ulcer, Diarrhoea, Constipation, Diseases of liver- Jaundice, chronic renal failure, hyper & hypo tension-Diabetes Mellitus. Nutrition during pregnancy and lactation. Nutrition during infancy. Nutrition for children and teenagers. Nutrition in Later Maturity.

	UNIT IV
	Obesity – Occurrence, Complications due to obesity, Treatment, Prevention. Diet and Dental Health. Under nutrition and Malnutrition- causes, signs of under & malnutrition, Nutritional requirements. Milk and Milk Products - The Constituents of Milk, Physical properties of milk, Stability of milk- Denaturation & fermentation- Market Milk Pasteurization, Sterilization, Standardization, homogenization, toning, condensing and drying processes- nutritive values of dairy products (Cheese, ice cream, yoghurt, butter milk, whey water)
	UNIT VFood adulteration and detection -Definition of adulterated food, Food standards, Common food adulterants, contamination of foods with harmful Micro- Organisms, Chemical contaminants, detection of adulteration.Beverages - Coffee, Tea, Cocoa, Carbonated Non - alcoholic beverages, fruit beverages & miscellaneous beverages Fermented Foods - Fermented foods, Therapeutic value Food Standards.
Reference Books	 Fundamentals of Normal Nutrition, Corinne H. Robinson, Macmillan Publishing Co., Inc. New York. Milk and Milk products, Clarence Henry Eckles, Willes Barnes combs, Harold Macy, Tata McGraw Hill Publishing Company Ltd., New Delhi. Food Science and Experimental Foods, M. Swaminathan, Ganesh and Company, Madras. Food Science- A Chemical Approach, Brian A Fox, Allen G Cameron, Hodder and Stoughton. London Sydney, Auckland Toronto. Food and Nutrition Vol. II- Applied Aspects, M. Swaminathan, D.Sc, F.N.A II edition BAPCO.

On completion of the course the students should be able to

- **CO 1** To learn about food groups and nutritive values of foods, nutritional classification of foods, balanced diets and its dietary deficiencies..
- **CO 2:** To understand sources of water, minerals and trace elements. Methods and cooking, food spoilage, preservative and hygiene, food additives and its contaminants.
- **CO 3:** To study the therapeutic nutrition and diets in pregnancy and lactation, infancy, children and teenagers, later maturity.
- **CO 4:** To illustrate the occurrence and complications of obesity, diet and dental health, causes and signs of under and mal nutrition, milk and milk products such as physical properties, denaturation, fermentation and its process.
- **CO 5:** To analyse the food adulteration and detection in beverages,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	М	S	S	М	М	М
CO3	S	S	S	Μ	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	Μ	М
CO5	S	М	S	S	S	S	S	М	Μ	S

CO-PO Mapping

СО /РО		PSO1	PSO2	PSO3	PSO 4	PSO5
CO1		3	3	3	3	3
CO2		3	3	3	3	3
CO3		3	3	3	3	3
CO4		3	3	3	3	3
CO5		3	3	3	3	3
Weightage		15	15	15	15	15
Weighted percentage Course Contribution Pos	of to	3.0	3.0	3.0	3.0	3.0

23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	ECC	HYDROCHEMISTRY	23K3CHECC2	Ins.Hrs	Credit:4
III	2				

Course Outline	UNIT-I
	Introduction Sources of water- Surface sources and ground sources. Hydrology-
	precipitation, rain and snowfall water and runoff water. Water as universal solvent- classification of water- Soft water and hard
	water. Water pollution- Causes for water pollution (Natural and
	Anthropogenic processes). Effects of water pollution- prevention of pollution and water pollution control (Brief treatment Only).
	UNIT-II
	Water Quality Parameters:
	Physical parameters- Characteristics of water depending on source-
	colour, taste, odour, turbidity, Total Dissolved Solids (TDS) and Electrical conductivity.
	Chemical parameters- pH, Total Alkalinity, Total Hardness- permissible quantities and tests for sodium, potassium, chloride, chlorine, fluoride, calcium, maganesium, iron, manganese, ammonia, nitrite, nitrate, phosphate and sulphate. Biological Parameters- Bacteria, Algae, Fungi and Protozoa.
	UNIT-III
	Quality of water:
	Water quality Standards- WHO- standard of water quality for domestic
	and industrial purposes. Ground water quality and Surface water quality- Significance and
	Health effects of water quality.
	Impurities in water- suspended impurities, colloidal impurities and dissolved impurities. Water contaminants- organic, inorganic, microbiological and biological contaminants.

	UNIT-IV
	Water Demand and Treatment of water:
	Domestic water demand- Chemical and industrial demand- Factors
	affecting the water demand.
	Disadvantages of Hard water- indomestic use- in industrial use and in
	boilers, Removal of colour, odour and taste, reverse osmosis process
	and desalination of sea water. Disinfecting water- by boiling, by UV
	ray, with Iodine and Bromine, with ozone, by excess lime, by
	potassium permanganate and by chlorine.
	UNIT-V
	Water Analysis
	Physical test- Nephelometric Method of measurement of turbidity and
	tests for colour, taste and odour. Chemical test- COD and BOD.
	Biological test- Total count of Bacteria- Membrane Filter Technique-
	E.Coli test- MPN and Gram stain technique.
	Infectious Diseases: Water borne diseases- By Bacterial organisms, Bacteriophage andby Protozoa. Water washed diseases, water-based
	diseases, water-related diseases and preventive measures.
Reference	1. <i>Water pollution</i> , Tripathi A.K, Pandey S.N, Ashish Publishing
Books	
	House, New Delhi (1990).
	2. Water Pollution, Goel P.K, New Age International Private
	Limited, New Delhi (1997).
	3. Environmental Chemistry, Kudesia V.P, Pragati Prakashan
	Publication, Meerut, First Edition (2000)
	4. Pollution Convervation and Forestry, Siddiqui K.A, Kitab Mahal
	Publication, Allahabad, Second Edition (2002).
	5. <i>Environmental Chemistry</i> , De A.K, New Age International
	Private Ltd, New Delhi, Fourth Edition (2000).
	6. <i>Water supply and Sanitary Engineering</i> , Birdie G.S, Birdie J.S,
	Dhanpat Rai Publishing Company, New Delhi.
	 Chemtech I, Venkateswarlu & Co., S. Chand and Company Ltd.
	7. Chemiech 1, Venkaleswaru & Co., 5. Chand and Company Edd.

On completion of the course the students should be able to

CO1: to study the source of water.

CO2: to learn about physical parameters and chemical parameter.

CO3: to analysis quality of water and impurities in water.

CO4: to understand in detail about water demand and treatment of water.

CO5: to know the infective diseases

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	Μ	S	S	М	М	Μ
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO – PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to	5.0	5.0	5.0	5.0	5.0
Pos					

23.8200

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	CC 7	GENERAL CHEMISTRY – IV	23K4CH07	Ins.Hrs.4	Credit:4
IV					

Objective of	This course aims to provide a comprehensive knowledge on							
the Course	• transition elements with reference to periodic properties and group							
	study of transition metals.							
	• the organic chemistry of ethers, aldehydes and ketones							
	• the organic chemistry of carboxylic acids							
	• wave particle duality of matter							
	• thermodynamic concepts on chemical processes and applied aspects.							
Course Outline	UNIT I							
	General Characteristics of d-block elements							
	Transition Elements- Electronic configuration - General periodic trend							
	variable valency, oxidation states, stability of oxidation states, colour,							
	magnetic properties, catalytic properties and tendency to form complexes.							
	Comparative study of transition elements and non transition elements –							
	comparison of II and III transition series with I transition series. Group							
	study of Titanium, Vanadium, Chromium, Manganese, Iron, Cobalt, Nickel							
	and Zinc groups UNIT II							
	Ethers, Thio ethers and Epoxides							
	Nomenclature, isomerism, general methods of preparations, reactions involving cleavage of C-O linkages, alkyl group and ethereal oxygen. Zeisel's method of estimation of methoxy group.							
	Reactions of epoxides with alcohols, ammonia derivatives and LiAH4							
	Thioethers - nomenclature, structure, preparation, properties and uses.							
	Aldehydes and Ketones							
	Nomenclatue, structure and reactivity of aliphatic and aromatic aldehydes and ketones; general methods of preparation and physical properties. Nucleophilic addition reactions, base catalysed reactions with mechanism- Aldol, Cannizzaro's reaction, Perkin reaction, Benzoin condensation, Haloform reaction, Knoevenagel reaction. Oxidation of aldehydes. Baeyer - Villiger oxidation of ketones. Reduction: Clemmensen reduction, Wolf -							
	Kishner reduction, Meerwein – Pondorf Verley reduction, reduction with LiAlH4 and NaBH4.							
	Addition reactions of unsaturated carbonyl compounds: Michael addition.							

UNIT III
Carboxylic Acids : Nomenclature, structure, preparation and reactions of aliphatic and aromatic monocarboxylic acids. Physical properties, acidic nature, effect of substituent on acidic strength. HVZ reaction, Claisen ester condensation, Bouveault Blanc reduction, decarboxylation, Hunsdieckerreaction.Formic acid-reducing property. Reactions of dicarboxylic acids, hydroxy acids and unsaturated acids.
Carboxylic acid Derivatives: Preparations of aliphatic and aromatic acid chlorides, esters, amides and anhydrides. Nucleophilic substitution reaction at the acyl carbon of acyl halide, anhydride, ester, amide. Schottan-Baumann reaction. Claisen condensation, Dieckmann and Reformatsky reactions, Hofmann bromamide degradation and Curtius rearrangement.
Active methylene compounds: Keto – enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate
Halogen substituted acids – nomenclature; preparation by direct halogenation, iodination from unsaturated acids, alkyl malonic acids
Hydroxy acids – nomenclature; preparation from halo, amino, aldehydic and ketonic acids, ethylene glycol, aldol acetaldehyde; reactions – action of heat on , α , β and γ hydroxy acids.
UNIT IV
Elementary Quantum Mechanics - Wave particle dualism Heisenberg's uncertainty principle -wave character of electrons-Davisson and Germer experiment; Schrodinger wave equation for a particle wave-physical interpretation of Ψ and Ψ^2 . Operators, eigen function and eigen value. Postulates of Quantum Mechanics – application: Particle in one dimensional
box – solution of Shrodinger's wave equation.
Magnetic Properties of matter: Diamagnetism, Paramagnetism, ferro and anti-ferro magnetism-Curie Temperature (Determination not necessary)

	UNIT V
	Thermodynamics I Terminology – Intensive, extensive variables, state, path functions; isolated, closed and open systems; isothermal, adiabatic, isobaric, isochoric, cyclic, reversible and irreversible processes; First law of thermodynamics – Concept and significance of heat (q), work (w), internal energy (E), enthalpy (H); calculations of q, w, E and H for reversible, irreversible expansion of ideal and real gases under isothermal and adiabatic conditions; relation between heat capacities (Cp & Cv); Joule Thomson effect- inversion temperature.
	Thermochemistry - heats of reactions, standard states; types of heats of reactions and their applications; effect of temperature (Kirchhoff's equations) and pressure on enthalpy of reactions; Hess's law and its applications; determination of bond energy; Measurement of heat of reaction – determination of calorific value of food and fuels Zeroth law of thermodynamics-Absolute Temperature scale.
Recommended	1. B.R. Puri and L.R. Sharma, Principles of Physical Chemistry, Shoban
Text	 Lal Nagin Chand and Co., thirty three edition, 1992. K. L. Kapoor, A Textbook of Physical chemistry, (volume-2 and 3), Macmillan, India Ltd, thirdedition, 2009. P.L. Soni and Mohan Katyal, Textbook of Inorganic Chemistry, Sultan Chand & Sons, twentieth edition, 2006. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing, fourth reprint, 2003. S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan India Ltd., third edition, 1994.
Reference	1. Maron, S. H. and Prutton C. P. <i>Principles of Physical Chemistry</i> ,4 th ed.; The Macmillan Company: Newyork 1972
Books	 The Macmillan Company: Newyork,1972. Gurudeep Raj, <i>Advanced Inorganic Chemistry</i>, 26thed.; Goel Publishing House: Meerut, 2001. Elements of physical chemistry, Samuel Glasstone, David Lewis, London Macmillan & Co Ltd., Atkins, P.W. & Paula, J. <i>Physical Chemistry</i>, 10th ed.; Oxford University Press:New York, 2014. Huheey, J. E. <i>Inorganic Chemistry: Principles of Structure and Reactivity</i>, 4th ed; Addison Wesley Publishing Company: India,1993.

completion of the course the students should be able to

- **CO1:** explain the terms and processes in thermodynamics; discuss the various laws of thermodynamics and thermo chemical calculations.
- **CO2:** discuss the second law of thermodynamics and its application to heat engine; discuss third law and its application on heat capacity measurement.
- **CO3:** investigate the chemistry of transition elements with respect to various periodic properties and group wise discussions.
- **CO4:** discuss the fundamental organic chemistry of ethers, epoxides and carbonyl compounds including named organic reactions.
- **CO5:** discuss the chemistry and named reactions related to carboxylic acids and their derivatives; discuss chemistry of active methylene compounds, halogen substituted acids and hydroxyl acids.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	М	S	S	S	Μ	S	S	Μ	Μ	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

СО /РО	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

325-6203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	CC 8	PHYSICAL CHEMISTRY	23K4CH08P	Ins.Hrs.3	Credit:3
IV		PRACTICAL			

Objective of	The course aims at providing an understanding of								
Objective of									
the Course	• the laboratory experiments in order to understand the concepts of physical changes in chemistry								
	 physical changes in chemistry the rates of chemical reactions 								
	the rates of chemical reactions								
Course Outline	1. Kinetics: Determination of rate constant of acid catalyzed hydrolysis of								
	an ester.								
	2. Phase equilibria:								
	a) Construction of phase diagram of a simple eutectic system								
	b) Determination of Critical Solution Temperature of phenol-water								
	system								
	3. Transition Temperature: Determination of transition temperature of a								
	salt hydrate by thermometric method								
	4. Rast's Method:								
	a) Determination of K_f of a solvent by Rast's macro method								
	b) Determination of molecular weight of a solute by Rast's macro								
	method								
	5. Conductivity Measurements:								
	a) Conductometric titration of a strong acid Vs a strong base								
	b) Estimation of Fe^{2+} ion by potentiometric method.								
	c, <u>Louisadon of re</u> fon of potentionicale include.								
Reference	1. Basic principles of practical chemistry, V. Venkateswaran, R.								
Books	Veeraswamy, A.R. Kuladaivelu, S. Chand & Sons, New Delhi 2 nd								
DUUKS	edition,2004.								
	CUIII011,2004.								

On completion of the course the students should be able to CO1: describe the principles and methodology for the practical work

CO2: explain the procedure, data and methodology for the practical work.

CO3: apply the principles of electrochemistry, kinetics for carrying out the practical work.

CO4: demonstrate laboratory skills for safe handling of the equipment and chemicals

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23.8203 6

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	EC 5	VOLUMETRIC AND	23K4PEC	Ins.Hrs.3	Credit:3
IV		ORGANIC ANALYSIS	CH5P		
		PRACTICAL			

	The course sime at providing an understanding of					
Objective of	The course aims at providing an understanding of					
the Course	• Understand the principles of Acidimetry, Alkalimetry,					
	Permanganametry and Iodometry.					
	• Analyze volumetric data systematically and estimate the amount of					
	inorganic substance in a given solution					
	.Comprehends the advanced Titrimetric techniques.					
	 Apply the techniques in Titrimetric analysis. 					
	• Analyse the organic compounds for the purpose of finding functional					
	group.					
Course Outline	I.VOLUMETRIC ANALYSIS					
	1. Acidimetry and Alkalimetry					
	a. Strong acid versus strong base					
	b. Weak acid versus strong base					
	c. Determination of hardness of water					
	2. Permanganimetry					
	a. Estimation of ferrous sulphate using $KMnO_4$					
	b. Estimation of Oxalic acid using KMnO ₄					
	3. Iodometry					
	a. Estimation of copper using thiosulphate					
	b. Estimation of $K_2Cr_2O_7$ using thiosulphate					
	c. Estimation of $KMnO_4$ using thiosulphate					
	II. ORGANIC ANALYSIS					
	A study of reactions of the following organic compounds					
	1. Carbohydrate 2.Amide 3.Aldehyde 4.Ketone					
	5. Acid 6.Amine 7.Phenol					
	The students may be trained to perform the specific reactions like –					
	Test for element (nitrogen only), Aliphatic or aromatic. Saturated or					
	Unsaturated and functional group present and record their observation					
	as and when they proceed.					
Reference	1.Practical chemistry by A.O. Thomas scientific book centre, cinnarore, 2003.					
	2.Basic principles of practical chemistry, V. Venkateswaran, R. Veeraswamy,					
Books	A.R. Kuladaivelu, S. Chand & Sons, New Delhi 2 nd edition,2004.					
	A.N. Kulaualvelu, S. Challu & Solis, INEW Dellill 2 Euluoli, 2004.					

- CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.
- CO 2: design, carry out, record and interpret the results of volumetric titration.
- CO 3: apply their skill in the analysis of water/hardness.
- CO4: analyze the chemical constituents in allied chemical products

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of					
Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	EC 6	ELECTIVE CHEMISTRY - II	23K4PEC	Ins.Hrs.4	Credit:4
IV			СН6:1		

	This course sime to provide knowledge on
Objective of the	This course aims to provide knowledge on
Course	 nomenclature of coordination compounds and carbohydrates.
	Industrial Chemistry
	Amino Acids and Essential elements of biosystem
	 understand the concepts of kinetics and catalysis provide fundamentals of electrochemistry
Course Outline	UNIT I
	Co-ordination Chemistry and Water Technology
	Co-ordination Chemistry: Definition of terms - IUPAC Nomenclature
	- Werner'stheory - EAN rule - Pauling's theory – Postulates - Applications to [Ni(CO)4], [Ni(CN)4] ²⁻ ,[Co(CN)6] ³⁻ Chelation - Biological role of Hemoglobin and Chlorophyll (elementary idea) - Applications in qualitative and quantitative analysis. Water Technology: Hardness of water, determination of hardness of water using EDTA method, zeolite method-Purification techniques – BOD and COD.
	UNIT – II
	Industrial Chemistry
	Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required).Silicones: Synthesis, properties and uses of silicones.Fertilizers: Urea, ammonium sulphate, potassium nitrate NPK fertilizer,
	superphosphate, triple superphosphate.
	Unit III
	Carbohydrates
	Classification, preparation and properties of glucose and fructose.
	Discussion of open chain ring structures of glucose and fructose. Glucose-fructose interconversion. Preparation and properties
	of sucrose, starch and cellulose.

	UNIT IV Amino Acids and Essential elements of biosystem			
	Classification - preparation and properties of alanine, preparation of dipeptides using Bergmann method - Proteins- classification – structure - Colour reactions – Biological functions – nucleosides -nucleotides – RNA and DNA – structure. Essentials of trace metals in biological system-Na, Cu, K, Zn, Fe, Mg.			
	UNIT V Electrochemistry			
	Galvanic cells - Standard hydrogen electrode - calomel electrode - standard electrode potentials -electrochemical series. Strong and weak electrolytes - ionic product of water -pH, pKa, pKb. Conductometric titrations - pH determination by colorimetric method – buffer solutions and its biological applications - electroplating - Nickel and chrome plating – Types of cells -fuel cells-corrosion and its prevention.			
Recommended	1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mount			
Text	publishing house, Chennai, first edition, 2009.			
	 S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006. 			
	3. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand			
	Company, New Delhi, twenty third edition, 2012.			
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.			

Reference	1. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand
Books	and Company, New Delhi, twenty third edition, 2012.
	2. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry;
	Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
	P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry;
	Sultan Chand and Company, New Delhi, twentieth edition, 2007.
	4. B.R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical
	Chemistry; Vishal Publishing Co., New Delhi, forty seventh
	edition, 2018.
	5. B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.
1	

- **CO 1:** write the IUPAC name for complex, different theories to explain the bonding incoordination compounds and water technology.
- CO 2: evaluate the effiencies and uses of various fuels and fertilizers.
- **CO 3: :** explain the preparation and property of carbohydrate.
- **CO 4:** enlighten the biological role of transition metals, amino acids and nucleic acids.
- **CO 5:** apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuel cells.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to	5.0	5.0	5.0	5.0	5.0
POs					

23.6203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	EC 6	CHEMISTRY FOR	23K4PEC	Ins.Hrs.4	Credit:4
IV		PHYSICAL AND	СН6:2		
		BIOLOGICAL SCIENCES - II			

	This course aims to provide knowledge on
Objective of the	1 0
Course	Nuclear Chemistry
	Molecular Orbital Theory
	Polar Effects and Isomerism
	 Photo Chemistry, Chemical Kinetics and Catalysis
	Synthetic Polymers, Pharmaceuticals and Fertilizers
Course Outline	UNIT –I Nuclear Chemistry
	Composition of the nucleus- nuclear forces- mass defect- binding energy-
	nuclear stability.
	Natural Radioactivity- comparison of properties of α , β and γ rays- Soddy's
	group displacement law- law of radioactive disintegration- disintegration constant- half-life period- radioactive series.
	Nuclear fission and fusion- definition - chain reaction- energy released
	during fission and fusion- stellar energy- principles of atom bomb and
	hydrogen bomb (elementary treatment only)- comparison of fission and
	fusion.
	UNIT- II Molecular Orbital Theory Important basic concepts of Molecular Orbital Theory – LCAO – bonding and anti-bonding molecular orbitals – bond order- application of Molecular Orbital theory to H ₂ , He ₂ , Li ₂ , Be ₂ , N ₂ , O ₂ , NO and CO molecules.
	UNIT- III Polar Effects and Isomerism Inductive effect- relative strengths of aliphatic mono carboxylic acids- aliphatic amines- electromeric effect- mesomeric effect and resonance- conditions for resonance- consequences of resonance- basic property of aniline and acidic property of phenol. Optical isomerism- cause of optical isomerism- examples- Recemic mixtures- diastereo isomers- (lactic acid and tartaric acid). Geometrical isomerism- examples- (maleic and fumaric acids only in detail).

	 UNIT- IV Photo Chemistry, Chemical Kinetics and Catalysis Laws of photo chemistry- Lambert- Beer's law- Grothus- Draper law- Einstein's law- quantum yield- definition- comparison between thermal and photo chemical reactions- photosensitization- photosynthesis- chemiluminescence. Definition of order and Molecularity of First, second, third and zero order reactions (Derivation not necessary). Catalysis Homogeneous and heterogeneous catalysis and industrial application – Enzyme catalysis examples and applications. 						
Reference Books	 UNIT- V Synthetic Polymers, Pharmaceuticals and Fertilizers Preparation and uses of Teflon, alkyd and epoxy resins, polyester and bakelite. Sulpha drugs- sulpha pyridine, sulpha thiazole and sulpha diazine-preparation, therapeutic uses - Antibiotics- penicillin G and chloromycetin - uses only. Fertilizers: Nitrogenous, phosphate and potash fertilizers. Urea, Super phosphate, Bone meal and potassium nitrate. 1. Text Book of Inorganic Chemistry, P.L.Soni, Mohan Katyal, Sultan Chand. 2. Text Book of Organic Chemistry, P.L.Soni & H.M.Chawla, Sultan Chand. 3. Principles of Physical Chemistry, B.R.Puri & L.R.Sharma, Shoban Lal Nagin Chand & Co. 						

- **CO 1:** understand the composition of nucleus, types of nuclear reactions and decay reactions.
- **CO 2:** acquire knowledge in the basic concepts of Molecular orbital theory.
- CO 3: know the basic concepts of electronic effects and isomerism of molecules.
- **CO 4:** Discuss the basic concepts of photochemical reaction, uses of catalyst in industry and interpret the chemical reaction rates.
- CO 5: acquire knowledge of polymers in various fields and understand the uses of an antibiotics and Fertilizers.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to	5.0	5.0	5.0	5.0	5.0
POs					

Jus 23. 8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	SEC	INSTRUMENTAL METHODS	23K4CHSEC6	Ins.Hrs.2	Credit:2
IV	6	OF CHEMICAL ANALYSIS			

Objective of the	The course aims at providing an overall view of the							
Course	• operation and troubleshooting of chemical instruments							
Course	• fundamentals of analytical techniques and							
	its application in the characterization of compounds							
	 theory of chromatographic separation and 							
Course Outline	UNIT-I							
Course Outline	Qualitative and Quantitative Aspects of Analysis							
	S.I Units, Distinction between Mass and Weight. Moles, Millimoles,							
	Milli equivalence, Molality, Molarity, Normality, Percentage by Weight							
	and Volume, ppm, ppb. Density and Specific Gravity of Liquids.							
	Stoichiometry Calculations							
	Sampling, evaluation of analytical data, Errors – Types of Errors,							
	Accuracy, Precision, Minimization of Errors. Significant Figures.							
	Methods of Expressing Precision: Mean, Median, Average Deviation,							
	Standard Deviation, Coefficient of Variation, Confidence Limits, Q- test,							
	F-test, T-test. The Least Square Method for Deriving Calibration plots.							
	UNIT II							
	Atomic Absorption Spectroscopy: Basic principles of instrumentation							
	(choice of source, monochromator, detector, choice of flame and Burner							
	designs. Techniques of atomization and sample introduction; Method of							
	background correction, sources of chemical interferences and their							
	method of removal. Techniques for the quantitative estimation of trace							
	level of metal ions from water samples.							
	UNIT III							
	Electroanalytical methods							
	Classification of electroanalytical methods, basic principle of pH metric,							
	Polarography, Stropping Voltametry and Amperometric techniques,							
	diffusion current, Half way potentials, Construction and characterization of							
	DME – Coulometry –principles – applications.							
L	Diffe Coulomony principles applications.							

	UNIT –IV								
	Solvent extraction : Classification, principle and efficiency of the technique.								
	Mechanism of extraction : extraction by solvation and chelation, Technique of extraction, batch, continuous and counter current extractions, Qualitative and quantitative aspects of solvent extraction. Extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and non-aqueous media.								
	Chromatography : Classification, principle and efficiency of the technique, Mechanism of separation, adsorption, partition and ion-exchange, development of chromatograms : frontal, elution and displacement methods.								
	UNIT V								
	Conductometer – conductometric titration – types – potentiometer-types of potentiometric titrations – cyclic voltammetry – instrumentation and its								
	application. Adsorption of oxalic acid on charcoal by oxalic acid as freundlich adsorption isotherm verification and its applications.								
Recommended	1. Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev.								
Text	by G.H. Jeffery and others) 5th Ed., The English Language Book								
	Society of Longman.								
	2. R. Gopalan, P. S. Subramanian and K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand, New Delhi, 2007								
	3. Skoog, Holler and Crouch, Principles of Instrumental Analysis,								
	Cengage Learning, 6th Indian Reprint (2017).								
	4. R. Speyer, Thermal Analysis of Materials, CRC Press, 1993.								
	R.A. Day and A.L. Underwood, Quantitative Analysis, 6thedn.,								
	Prentice Hall of India Private Ltd., New Delhi, 1993								

Reference	1. D. A. Skoog, D. M. West and F. J. Holler, Analytical Chemistry: An								
Books	Introduction, 5thedn., Saunders college publishing, Philadelphia, 1998.								
	 Dash U N, Analytical Chemistry; Theory and Practice, Sultan Chand and sons Educational Publishers, New Delhi, 2011. Christian, Gary D; Analytical Chemistry, 6th Ed., John Wiley & Sons, New York, 2004. Mikes, O. & Chalmes, R.A. Laboratory Handbook of Chromatographic & Allied Methods, Elles Harwood Ltd. London G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, sixth edition Pearson 								
XX7 1 * 4	Education, 2000								
Website	1. http://www.epa.gov/rpdweb00/docs/marlap/402-b-04-001b-14-								
ande-	final.pdf								
learning	2. http://eric.ed.gov/?id=EJ386287								
source	 http://www.sjsu.edu/faculty/watkins/diamag.htm http://www.britannica.com/EBchecked/topic/108875/separation- and-purification 								
	5. http://www.chemistry.co.nz/stoichiometry.htm								

On completion of the course the students should be able to

- **CO1:** handle the analytical data.
- **CO2:** know the theory and instrumentation techniques of atomic adsorption spectroscopy.
- CO3: examine the electroanalytical methods , polarography and coulometry.

CO4: learn separation techniques like chromatography.

CO5: knoe theory and titrations of conductometric, potentiometric and cyclic voltammetry.,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	Μ	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	Μ	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to	5.0	5.0	5.0	5.0	5.0
Pos					

23.6203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	SEC	FORENSIC SCIENCE	23K4CHSEC7	Ins.Hrs.2	Credit:2
IV	7				

Objective of the	This course aims at giving an overall view of
Course	• crime detection through analytical instruments
course	• forgery and its detection
	 medical aspects involved
Course Outline	UNIT I
	Poisons
	Poisons - types and classification - diagnosis of poisons in the living and the dead -clinical symptoms - postmortem appearances. Heavy metal contamination (Hg, Pb, Cd) of sea foods - use of neutron activation analysis in detecting arsenic in human hair. Treatment in cases of poisoning – use of antidotes for common poisons.
	Unit-II
	Crime Detection Accidental explosion during manufacture of matches and fireworks (as in Sivakasi). Human bombs - possible explosives (gelatin sticks and RDX) - metal detector devices andother security measures for VVIP-composition of bullets and detecting powder burns.
	UNIT-III
	Forgery and Counterfeiting
	Documents - different types of forged signatures - simulated and traced
	forgeries -inherent signs of forgery methods - writing deliberately modified
	- uses of ultraviolet rays -comparison of type written letters – checking silver line water mark in currency notes – alloy analysis using AAS to detect counterfeit coins – detection of gold purity in 22 carat ornaments – detecting gold plated jewels -authenticity of diamond.
	UNIT-IV Treaks and Treass
	Tracks and Traces Tracks and traces - small tracks and police dogs - foot prints - costing of
	foot prints -residue prints, walking pattern or tyre marks – miscellaneous
	traces and tracks – glass fracture - tool marks - paints - fibres - Analysis of
	biological substances - blood, semen, saliva, urine and hair - Cranial
	analysis (head and teeth) DNA Finger printing for tissue identification in
	dismembered bodies - detecting steroid consumption in athletes and
	racehorses.
	TEROFEXAMINAT

	UNIT-V						
	Medical Aspects						
	Aids - causes and prevention - misuse of scheduled drugs - burns and their						
	treatment by plastic surgery. Metabolite analysis using mass spectrum - Gas						
	chromatography-Arson -natural fires and arson - burning characteristics and chemistry of combustible materials -nature of combustion. Ballistics -						
	classification - internal and terminal ballistics - small arms -laboratory						
	examination of barrel washing and detection of powder residue by chemical						
	tests.						
Recommended	1. SA Iqbal, M Liviu, Textbook of forensic chemistry, Discovery						
Text	publishing house private limited, 2011.						
	2. Kelly M. Elkins, Introduction to Forensic Chemistry, CRC						
	Press, Taylor & Francis Group, 2019.						
	3. Javed I. Khan, Thomas J. Kennedy, Donnell R. Christian, Jr.,						
	Basic principles of Forensic chemistry, Humana Press, first edition,						
	2012.						
	4. Bapuly AK, (2006) Forensic Science – Its application in crime						
	investigation, Paras Medical Publisher, Hyderabad.						
	5. Sharma B.R., (2006) Scientific Criminal Investigation, Universal Law						
	Publishing Co. Pvt. Ltd, New Delhi.						
Reference	1. Richard Saferst in and Criminalistics-An Introduction to Forensic						
Books	Science (College Version), Sopfestein, Printice hall, eighth edition,2003						
	2. Suzanne Bell, Forensic Chemistry, Pearson, second international						
	edition, 2014.						
	3. Jay Siegel, Forensic chemistry: Fundamentals and applications,						
	Wiley-Blackwell, first edition, 2015.						
	4. Max M. Houck & Jay A. Segal, (2006) Fundamentals of Forensic						
	Science, Elsevier Academic press.						
	5. Henry C. Lee, Timothy Palmbach, Marilyn T. Miller, (2006) Henry Lee's Crime Scene Book Elsevier Academic press.						
Website							
ande-	1. http://www.library.ucsb.edu/ist/03-spring/internet.html						
learning	2. http://www.wonder howto.com/topic/forensic-science/						
source							

On completion of the course the students should be able to

- **CO 1:** learn about the Poisons types and classification of poisons in the living and the deadorganisms and also get information about Postmortem.
- **CO 2:** get awareness on Human bombs, possible explosives (gelatin sticks and RDX) and metal defector devices and other security measures for VVIP composition of bullets and detecting powder burns
- CO 3: detect the forgery documents, different types of forged signatures
- **CO4:** have an idea about how to tracks and trace using police dogs, foot prints identification and gain the knowledge in analyzing biological substances blood, semen, saliva, urine and hair DNA Finger printing for tissue identification in dismembered bodies
- **CO 5:** get the awareness on Aids causes and prevention and also have an exposure on handling fire explodes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	М	S	S	S	Μ	S	S	Μ	Μ	М
CO3	S	S	S	Μ	S	S	S	Μ	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation betwee

23.8200

SEM	ECC	POLLUTION CONTROL AND	23K4CHE	Ins.Hrs	Credit:3
IV	3	ITS MEASURES	CC3:1		

Course Outline	Unit - I Air Pollution Major regions of the atmosphere – composition of air – specific air pollutants and their effects – CO, CO ₂ , SO ₂ , SO ₃ , NO and NO ₂ – ozone depletion – acid rain – photochemical smog and degradation of metals present in industrial water.
	Unit – II Water Pollution Criteria for potable water – major water pollutants – organic, inorganic, heavy metals – (As, Cr, Fe, Pb, Cd, Hg) oil spills – sources –effects.
	 Unit – III Soil and Pesticide Pollution Sources, effects of various oil pollutants – pesticides – classification. Toxicity of DDT, BHC, malathion, parathion, carbamates. Alternative sources for pesticides, types of soil pollution.
	Unit – IV Noise and Nuclear Pollution Noise pollution – sources and effects – nuclear pollution – genetic and somatic effects – nuclear disasters and major accidents.
	Unit – V Analysis and Control methods Sampling of air and water pollutants – analysis of DO, BOD, COD, and TOC in water- Analysis of CO by GC, NO by chemiluminescence and CO ₂ by spectrometry. Treatment of water for domestic and industrial purpose – primary, secondary and tertiary treatment methods.
Reference Books	 Environmental Chemistry, A.K. De, 5thEdn., New Age International Publisher, 2005. Environmental Chemistry, B.K. Sharma, 11thEdn., Krishna Prakashan Media Limited, 2007.

On completion of the course the students should be able to

CO 1: to know the manufacturing process of cements and its materials.

CO 2: learn the applications of ceramics and its product.

CO 3: examine the refractories and its applications.

CO4: illustrate the adhesive types of items.

CO 5: understand the abrasives, pulp and paper materials.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	Μ	М
CO5	S	М	S	S	S	S	S	М	М	S

CO – PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23.820

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	CC	ORGANIC CHEMISTRY - I	23K5CH09	Ins.Hrs.6	Credit:5
V	9				

Objective of	This course aims to provide an understanding of						
the Course	 stereoisomerism in chirals and geometric isomerism in olefins, 						
	conformations of ethane and butane						
	• preparation and properties of aromatic and aliphatic nitro						
	compounds and amines						
	• preparation of different dyes, food colour and additives						
	• preparation and properties of five membered heterocycles like						
	pyrrole, furan and thiophene						
	• preparation and properties of six membered heterocycles like						
	pyridine, quinoline and isoquinoline.						
Course Outline	UNITI						
	Stereochemistry						
	Fischer Projection, Newmann and Sawhorse Projection formulae and their						
	interconversions;						
	Geometrical isomerism:cis-trans, syn-anti isomerism, E/Z notations.						
	Optical Isomerism: Optical activity, specific rotation, asymmetry,						
	enantiomers, distereoisomers, meso structures - molecules with one and two						
	chiral centres, racemisation- methods of racemisation; resolution- methods						
	of resolution. C.I.P rules. R and S notations for one and two chirality						
	(stereogenic) centres.						
	Molecules with no asymmetric carbon atoms – allenes and biphenyls.						
	Conformational analysis of ethane and butane.						

UNIT II
Chemistry of Nitrogen Compounds – I Nitroalkanes
Nomenclature, isomerism, preparation from alkyl halides, halo acids, alkanes; physical properties; reactions – reduction, halogenations, Grignard reagent, Pseudo acid character. Nitro - aci nitro tautomerism.
Aromatic nitro tautomerism. Aromatic nitro compounds Nomenclature, preparation – nitration, from diazonium salts, physical properties; reactions - reduction of nitrobenzene in different medium, Electrophilic substitution reactions, TNT. Amines: Aliphatic amines Nomenclature, isomerism, preparation – Hofmanns' degradation reaction,
Gabriel's phthalimide synthesis, Curtius Schmidt rearrangement.
 Physical properties, reactions – alkylation, acylation, carbylaminereaction, Mannich reaction, oxidation, basicity of amines.
UNIT III Chemistry of Nitrogen Compounds – II
Aromatic amines – Nomenclature, preparation – from nitro compounds, Hofmann's method; Schmidt reaction, properties - basic nature, ortho effect; reactions – alkylation, acylation, carbylamine reaction, reaction with nitrous acid, aldehydes, oxidation, Electrophilic substitution reactions, diazotization and coupling reactions; sulphanilic acid - zwitter ion formation.
Distinction between primary, secondary and tertiary amines - aliphatic and aromatic.
Diazonium compounds
Diazomethane, Benzene diazonium chloride - preparations and synthetic applications.
Dyes Theory of colour and constitution; classification based onstructure and application; preparation –Martius yellow, aniline yellow, methyl orange, alizarin, indigo, malachite green. Industry oriented content
Dyes Industry, Food colour and additives

	UNIT IV
	Heterocyclic compounds Nomenclature and classification. General characteristics - aromatic character and reactivity. Five-membered heterocyclic compounds
	Pyrrole – preparation - from succinimide, Paal Knorr synthesis; reactions – reduction, basic character, acidic character, electrophilic substitution reactions, ring opening.
	Furan – preparation from mucic acid and pentosan; reactions – hydrogenation, reaction with oxygen, Diels Alder reactions, formation of thiophene and pyrrole; Electrophilic substitution reaction.
	Thiophene synthesis - from acetylene; reactions –reduction; oxidation; electrophilic substitution reactions.
Recommended Text	 UNIT V Six-membered heterocyclic compounds Pyridine – synthesis - from acetylene, Physical properties; reactions - basic character, oxidation, reduction, electrophilic substitution reactions; nucleophilic substitution- uses Condensed ring systems Quinoline – preparation - Skraup synthesis and Friedlander's synthesis; reactions – basic nature, reduction, oxidation; electrophilic substitutions; nucleophilic substitutions – Chichibabin reaction Isoquinoline – preparation by the Bischler – Napieralski reaction, reduction, oxidation; electrophilic substitution. 1.M.K. Jain, S.C.Sharma, Modern Organic Chemistry, Vishal Publishing, fourth reprint, 2009.
	2.S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic
	Chemistry, Macmillan India Ltd., third edition, 2009.
	3. ArunBahl and B.S. Bahl, Advanced organic chemistry, New Delhi,
	S.Chand& Company Pvt. Ltd., Multicolour edition, 2012.
	4.P. L.Soni and H. M. Chawla, Text Book of Organic Chemistry,
	Sultan Chand & Sons, New Delhi, twenty ninth edition, 2007.
	5.C.N.Pillai, Text Book of Organic Chemistry, Universities Press (India) Private Ltd., 2009.

Reference	1.R. T. Morrison and R. N. Boyd, Organic Chemistry, Pearson
Books	Education, Asia, sixth edition, 2012.
	2.T.W.Graham Solomons, Organic Chemistry, John Wiley & Sons, eleventh edition, 2012.3.A. Carey Francis, Organic Chemistry, Tata McGraw-Hill EducationPvt.
	Ltd., New Delhi, seventh edition,2009.
	4.I. L. Finar, Organic Chemistry, Vol. (1& 2), England, Wesley
	Longman Ltd, sixth edition, 2006.
	5.J. A. Joule, and G. F. Smith, Heterocyclic Chemistry, Wiley, Fifth Edition, 2010.
Website	1. www.epgpathshala.nic.in
ande-	2.www.nptel.ac.in
learning	3. http://swayam.gov.in
source	4. Virtual Textbook of Organic Chemistry

On completion of the course the students should be able to

- **CO1:** assign RS notations to chirals and EZ notations to olefins and explain conformations of ethane and butane.
- **CO2:** explain preparation and properties of aromatic and aliphatic nitro compounds and amines
- CO3: explain colour and constitution of dyes and food additives
- **CO4:** discuss preparation and properties of five membered heterocycles like pyrrole, furanand thiophene
- **CO5:** discuss preparation and properties of six membered heterocycles like pyridine, quinoline and isoquinoline

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	Μ	Μ	S

CO- PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	5.0	5.0	5.0	5.0	5.0

325.6203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM V	CC 10	INORGANIC CHEMISTRY - I	23K5CH10	Ins.Hrs.6	Credit:5
v	10				

Objective of	The course aims to provide knowledge on						
Objective of	 nomenclature, isomerism and theory of coordination 						
the Course	compounds, and chelate complexes						
	 crystal field theory, magnetic properties, stability of complexes and 						
	Jahn Teller effect						
	• preparation and properties of metal carbonyls						
	Lanthanoids and actinoids						
	preparation and properties of inorganic polymers						
Course Outline	UNIT I Co-ordination Chemistry - I						
	IUPAC Nomenclature of coordination compounds, Isomerism in						
	coordination compounds.						
	Werner's coordination theory – effective atomic number –interpretation of						
	geometry and magnetic properties by Pauling's theory – geometry of co-						
	ordination compounds with co-ordination number						
	4 &6.						
	Chelates – types of ligands forming chelates – stability of chelates,						
	applications of chelates in qualitative and quantitative analysis–application						
	of DMG and oxine in gravimetric analysis –estimation of hardness of						
	water using EDTA, metal ion indicators.						
	Role of metal chelates in living systems – haemoglobin and chlorophyll						
	Co-ordination Chemistry - II						
	Crystal field theory –Crystal field splitting of energy levels in octahedral						
	and tetrahedral complexes, Crystal field stabilization energy (CFSE),						
	spectrochemical series - calculation of CFSE in octahedral and tetrahedral						
	complexes - factors influencing the magnitude of crystal field splitting,						
	crystal field effect on ionic radii, lattice energies, heats of ligation with water						
	as a ligand (heat of hydration), interpretation of magnetic properties, spectra						
	of $[Ti(H2O)6]^{3+}$ - Jahn – Teller effect. Stability of complexes in aqueous						
	solution, stability constants- factors affecting the stability of a complex ion,						
	thermodynamic and kinetic						
	stability (elementary idea). Comparison of VBT and CFT.						

	Organometallic compounds
	Metal Carbonyls
	Mono and polynuclear carbonyls, General methods of preparation of
	carbonyls – general properties of binary carbonyls – bonding in carbonyls –
	structure and bonding in carbonyls of Ni, Fe, Cr, Co, Mn, Ru and Os. EAN
	rule as applied to metal carbonyls.
	Ferrocene-Methods of preparation, physical and chemical properties
	UNIT IV
	Inner transition elements (Lanthanoids and Actinoids)
	General characteristics of f-block elements - Comparative account of
	lanthanoids and actinoids - Occurrence, Oxidation states, Magnetic
	properties, Colour and spectra - Lanthanoids and Actinoids, Separation by
	ion-Exchange and Solvent extraction methods - Lanthanoids contraction-
	Chemistry of thorium and Uranium-Occurrence, Ores, Extraction, properties
	and uses - Preparation, Properties and uses of ceric ammonium sulphate,
	thorium dioxide and uranyl acetate.
	UNIT V Inorganic polymers
	General properties – classification of inorganic polymers based on element
	in the backbone (Si, S, B and P) - preparation and properties of silicones
	(polydimethylsiloxane and polymethylhydrosiloxane) phosphorous based
	polymer (polyphosphazines and polyphophonitrilic chloride), sulphur based
	polymer (polysulfide and polymeric sulphur nitride), boron based polymers
	(borazine polymers) – industrial applications of inorganic polymers.
Recommended	1. Puri B R, Sharma L R, Kalia K C (2011), Principles of Inorganic
Text	
Ιεχι	Chemistry, 31 th Edition, Milestone Publishers & Distributors, Delhi.
	2. Satya Prakash, Tuli G. D., Basu S. K., Madan R. D. (2009), Advanced Inorganic Chemistry, 18 th Edition, S. Chand & Co., New
	Delhi
	3. Lee J D, (1991), Concise Inorganic Chemistry, 4 th Edition, ELBS
	William Heinemann, London.
	4. W V Malik, G D Tuli, R D Madan, (2000), Selected Topics inInorganic
	Chemistry, S. Chand and Company Ltd.
	5. A. K. De, Text book of Inorganic Chemistry, Wiley East Ltd, seventh
	edition, 1992.

Reference Books	 Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nd ed., S.Chand and Company, New Delhi. Gopalan R, (2009) <u>Inorganic Chemistry for Undergraduates</u>, IstEdition, University Press (India) Private Limited, Hyderabad Sivasankar B, (2013) <u>Inorganic Chemistry</u>. Ist Edition, Pearson, Chennai Alan G. Sharp (1992), <u>Inorganic Chemistry</u>, 3rd Edition, Addition- Wesley, England
Website ande- learning source	 5. Peter Atkins, Tina Overton, Jonathan Rourke and Mark Weller, Inorganic Chemistry, Oxford University Press, sixth edition, 2014. 1.www.epgpathshala.nic.in 2. www.nptel.ac.in 3. http:/swayam.gov.in

On completion of the course the students should be able to

CO1: explain isomerism, Werner's Theory and stability of chelate complexes

- **CO2:** discuss crystal field theory, magnetic properties and spectral properties of complexes.
- CO3: explain preparation and properties of metal carbonyls

CO4: give a comparative account of the characteristics of lanthanoids and actinoids

CO5: explain properties and uses of inorganic polymers of silicon, sulphur, boron and Phosphorous

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	Μ	S	S	S	S	S	М	М	S

CO – PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Level of Correlation between PSO's and CO'

23.6203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	CC	PHYSICAL CHEMISTRY - I	23K5CH11	Ins.Hrs.6	Credit:5
V	11				

	The course sime at providing an overall view of
Objective of	The course aims at providing an overall view of Cibbs free energy, Helmheltz free energy, Ellinghem's diagram and
the Course	• Gibbs free energy, Helmholtz free energy, Ellingham's diagram and
	partial molar properties
	Thermochemical calculations
	• chemical kinetics and different types of chemical reactions
	 adsorption, homogeneous and heterogeneous catalysis
	photochemistry, fluorescence and phosphorescence
Course Outline	Unit I
	Thermodynamics II
	Second Law of thermodynamics - Limitations of first law, spontaneity and randomness; Carnot's cycle; Concept of entropy, entropy change for reversible and irreversible processes, entropy of mixing, calculation of entropy changes of an ideal gas and a van der Waals gas with changes in temperature, volume and pressure, entropy and disorder.
	Free energy and work functions - Need for free energy functions, Gibbs free energy, Helmholtz free energy - their variation with temperature, pressure and volume, criteria for spontaneity; Gibbs-Helmholtz equation – derivations and applications; Maxwell relationships, thermodynamic equations of state; Thermodynamics of mixing of ideal gases, Ellingham Diagram-application.
	Third law of thermodynamics - Nernst heat theorem; Applications of third law - evaluation of absolute entropies from heat capacity measurements, exceptions to third law.
	UNIT –II
	Thermodynamics - III: Equilibrium constants and free energy change,
	Thermodynamic Derivation of Law of Mass Action-Thermodynamic
	interpretation of Le-Chatelier's principle (concentration, temperature, pressure
	and addition of inert gases).
	Equilibrium between different phases- System of variable composition- Partial
	molar quantities -Chemical Potential of component in an ideal mixture -
	Gibbs-Duhem equation - Variation of chemical potential with T, P and X
	(mole fraction)
	Clapeyron equation and Clausius - Clapeyron equation – Application.

UNIT III Chemical Kinetics
Rate of reaction - Average and instantaneous rates, factors influencing rate
of reaction - molecularity of a reaction - rate equation - order of reaction.
order and molecularity of simple and complex reactions, Rate laws - Rate
constants – derivation of rate constants and characteristics for zero, first
order, second and third order (equal initial concentration)
– Derivation of time for half change with examples. Methods of
determination of order of Volumetry, manometry and polarimetry.
Effect of temperature on reaction rate – temperature coefficient - concept of
activation energy - Arrhenius equation. Theories of reaction rates – Collision
theory – derivation of rate constant of bimolecular gaseous reaction – Failure
of collision theory. Lindemann's theory of unimolecular reaction. Theory of
absolute reaction rates – Derivation of rate constant for a bimolecular
reaction – significance of entropy and free energy of activation.
Comparison of collision theory and ARRT.
Complex reactions – reversible and parallel reactions (no derivation and only
examples)
kinetics of consecutive reactions – steady state approximation.
UNIT IV
Adsorption – Chemical and physical adsorption and their general
characteristics- distinction between them Different types of isotherms -
Freundlich and Langmuir. Adsorption isotherms and their limitations – BET
theory, kinetics of enzyme catalysed reaction -Michaelis- Menten and
Briggs- Haldene equation – Lineweaver- Burk plot – inhibition – reversible –
competitive, noncompetitive and uncompetitive (no derivation of rate
equations)
Catalysis – general characteristics of catalytic reactions, auto catalysis
enzyme catalysis. Heterogenous catalysis
 Adsorption – Chemical and physical adsorption and their general characteristics- distinction between them Different types of isotherms – Freundlich and Langmuir. Adsorption isotherms and their limitations – BET theory, kinetics of enzyme catalysed reaction –Michaelis- Menten and Briggs- Haldene equation – Lineweaver- Burk plot – inhibition – reversible – competitive, noncompetitive and uncompetitive (no derivation of rate equations) Catalysis – general characteristics of catalytic reactions, auto catalysis, promoters, negative catalysis, poisoning of a catalyst – theories of homogenous and heterogeneous catalysis – Kinetics of Acid – base and

	UNIT V						
	Photochemistry						
	Laws of photo chemistry – Lambert – Beer, Grotthus – Draper and Stark – Einstein. Quantum efficiency. Photochemical reactions – rate law – Kinetics of H2-Cl2, H2-Br2 and H2-I2 reactions, comparison between thermal and photochemical reactions.						
	Fluorescence – applications including fluorimetry – sensitised fluorescence, phosphorescence – applications - chemiluminescence and photosensitisation – examples Chemistry of Vision – 11 cis retinal – vitamin A as a precursor - colour perception of vision						
Recommended	1. B.R. Puri and L.R. Sharma, Principles of Physical Chemistry, Shoban						
Text	Lal Nagin Chand and Co., forty eighth edition, 2021.						
	2. Peter Atkins, and Julio de Paula, James Keeler, Physical Chemistry,						
	Oxford University press, International eleventhedition, 2018.						
	3. ArunBahl, B.S. Bahl, G. D. Tuli Essentials of physical						
	chemistry, 28 th edition 2019, S, Chand & Co.						
	4. S. K. Dogra and S. Dogra, Physical Chemistry through Problems:						
	New Age International, fourth edition, 1996.						
	5. J. Rajaram and J.C. Kuriacose, Thermodynamics, ShobanLalNagin Chand and CO., 1986.						
Reference	1. J. Rajaram and J.C. Kuriacose, Chemical Thermodynamics,						
Books	Pearson, 1 st edition, 2013.						
	 Keith J. Laidler, Chemical kinetics, third edition, Pearson, 2003. P. W. Atkins, and Julio de Paula, Physical Chemistry, Oxford 						
	University press, seventh edition, 2002.						
	4. K. L. Kapoor, A Textbook of Physical Chemistry, Macmillan, India Ltd, third edition, 2009.						
	5. B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, Shobanlal Nagin Chand and Co. Jalendhar, forty first, edition, 2001						
Website	1. <u>https://nptel.ac.in</u>						
ande-	 https://swayam.gov.in www.epgpathshala.nic.in 						
learning							
source							

On completion of the course the students should be able to

- **CO1:** explain Gibbs and Helmholtz free energy functions, partial molar quantities and Ellinghams
- **CO2:** apply the concepts of chemical kinetics to predict the rate of the reaction and order of the reaction, demonstrate the effect of temperature on reaction rate, and the significance of free energy and entropy of activation.
- **CO3:** compare chemical and physical adsorption, Freundlich and Langmuir adsorption isotherms, and differentiate between homogenous and heterogeneous catalysis.
- **CO4:** demonstrate the types and characteristics of colloids, preparation of sols and emulsions, and determine the molecular weights of macromolecules.
- **CO5:** utilize the concepts of photochemistry in fluorescence, phosphorescence, chemiluminescence and color perception of vision.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	Μ
CO2	М	S	S	S	М	S	S	Μ	М	Μ
CO3	S	S	S	Μ	S	S	S	Μ	S	Μ
CO4	S	S	S	S	S	S	S	М	М	Μ
CO5	S	М	S	S	S	S	S	М	М	S

CO – PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	5.0	5.0	5.0	5.0	5.0

23.820

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	CC	GRAVIMETRIC ANALYSIS	23K5CH12P	Ins.Hrs.6	Credit:4
V	12P				

Objective of the Course	 This course aims to provide an understanding of Demonstrate the principles of inorganic quantitative estimation methods. Plan, excute and experiment to prepare metal complexes and
Course Outline	gravimetrically analyse certain metal complexes. Gravimetric Analysis:
	 Determination of percentage of water of hydration in Barium Chloride Estimation of Barium as Barium Sulphate Estimation of Sulphate as Barium Sulphate Estimation of Barium as Barium Chromate Estimation of Lead as Lead Chromate
	 Estimation of Lead as Lead Chromate Estimation of Calcium as Calcium Oxalate Monohydrate. Estimation of Lead as Lead Sulphate
Reference Books	 Basic principles of practical chemistry, V. Venkateswaran, R. Veeraswamy, A.R. Kuladaivelu, S. Chand & Sons, New Delhi 2nd edition,2004.

all 23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAYUR - 813 007, TN.

SEM	EC7	ANALYTICAL	23K5CHECCH7:1	Ins.Hrs.4	Credit:3
V		CHEMISTRY			

Objective of	After successful completion of the course, the students will be able to						
the Course	 .Error analysis 						
the Course	•						
	Separation and Purification techniques						
	Analytical Electrochemistry						
	Colorimetric analysis						
Course Outline	UNIT – I						
	Error analysis						
	Errors in chemical Analysis, classification of errors - Determinate errors,						
	Instrumental errors, personal errors, constant errors and proportional errors-						
	Correction of determinate errors and random errors- Precision, accuracy and						
	Rejection of data questioned- Significant figures, mean deviation and standard						
	deviation- Curve fitting- Method of least squares.						
	Laboratory Hygiene						
	Storage and handling of corrosive-flammable, explosive, toxic, carcinogenic						
	and poisonous chemicals.						
	Simple First-Aid Procedures						
	Acid in eye, alkali in eye, acid burns, alkali burns, bromine burns, poisoning,						
	inhalation of gases, cut by glasses and heat burns.						
	UNIT II						
	Separation and Purification techniques						
	Principles of separation by precipitation and solvent extraction.						
	Chromatography						
	Principles involved in adsorption, partition and ion exchange, paper, thin layer,						
	column, gas liquid chromatography. Electrophoresis - Applications.						
	Analytical Electrochemistry						
	Redox potential – Measurement and application.Interpretation of chemical						
	behaviour, Electrolytic separations, principles of						
	electrodeposition. Electrogravimetry - estimation of Cu and Ag.						
	Electro analytical Techniques: coulometry – coulometric titration – different						
	types of coulometer: Principle and application.						
	Polarography						
	Principles – residual current, migration current, diffusion current- Half wave						
	Potential- Concentration polarisation- Instrumentation- Determination of Cd						
	by direct comparison method- Amperometric titrations.						

	Thermoanalytical and Radiometric Methods							
	Principles involved in thermogravimetric analysis and differential thermal							
	analysis. Instrumentation. Characteristics of TGA curves of Calcium oxalate							
	monohydrate & Copper sulphate penta hydrate and DTA curves of Calcium							
	acetate monohydrate.							
	Radiometric titration – types, complex formation and precipitation formation –							
	activation analysis – absolute and comparative methods and applications							
	Colorimetric analysis							
	Laws of colorimetry, Nessler's and photo electric colorimetric method,							
	Instrumentation, operation and applications, Estimation of Ni, Cu and Fe.							
	Principles and applications of atomic adsorption, Flame emission,							
	Nephlometry & Turbidometry analysis .							
Reference	1. R. Gopalan, P.S. Subramanian and K. Rengarajan, Elements of							
Books	AnalyticalChemistry, Sultan Chand & Sons, New Delhi (1995)							
	2. B.K. Sharma, Instrumental Methods of Chemical Analysis, Goel							
	Publishing House, Meerut (1999)							
	3. S.M. Khoptar, Basic concepts of Analytical Chemistry, New Age							
	International (P) Limited, New Delhi (1998)							
	4. A.I. Vogel, Text Book of Quantitative Inorganic Analysis, Longmass							
	(1984)							
	5. D.A. Skoog & D.M.West, Fundamentals of Analytical Chemistry,							
	W.B.							
	Saunders, New York, (1982)							
	6. Gurdeep Chatwal, Sham Anand, Instrumental Methods of Chemical							
	Analysis,							
	Himalaya Publishing House, Mumbai (1998)							
	7. Instrumental methods of analysis Milard merit.							

On completion of the course the students should be able to

CO1: Learn chemistry of different types of errors, precision and accuracy, laboratory hygiene and first aid procedure.

CO2: Know the process of separation, purification and chromatography techniques.

CO3: Interpret the importance of electro analytical techniques in analysis of chemical compounds and solutions

CO4. Analyse the various types of thermal methods of analysis including TGA, DTA and Radiometric Methods.

CO5: Explain the principles and methods of colorimetric, nephlometry and turbidometry analysis.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	Μ	Μ	М
CO5	S	Μ	S	S	S	S	S	Μ	Μ	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	5.0	5.0	5.0	5.0	5.0

23.820

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	MBE	BIO CHEMISTRY	23K5CHECCH7:2	Ins.Hrs.4	Credit:3
V					

Objective of	The course aims at providing knowledge on							
the Course	• relationship between biochemistry and medicine, composition of							
	blood							
	• structure and properties of amino acids, peptides, enzyme,							
	vitamins and proteins							
	 biological functions of proteins, enzymes, vitamins and hormones biochemistry of nucleic acids and lipids metabolism of lipids 							
Course Outline	• metabolism of lipids UNIT I							
	Logic of Living Organisms							
	Relationship of Biochemistry and Medicine							
	Blood - Composition of Blood, Blood Coagulation – Mechanism.							
	Hemophilia and Sickle Cell Anaemia							
	Maintenance of pH of Blood – Bicarbonate Buffer, Acidosis, Alkalosis.							
	Peptides and Proteins							
	Amino acids – nomenclature, classification – essential and Non-							
	Amino acids – nomenclature, classification – essential and Non- essential; Synthesis - Gabriel Phthalimide, Strecker; properties – zwitter							
	ion and isoelectric point, electrophoresis and reactions.							
	Peptides – peptide bond – nomenclature – synthesis of simple peptides –							
	solution and solid phase. Determination of structure of peptides, N-							
	terminal analysis – Sanger's & Edmann method; C terminal analysis - Enzymic method.							
	Proteins – classification based on composition, functions and structure;							
	properties and reactions - colloidal nature, coagulation, hydrolysis,							
	oxidation, denaturation, renaturation; colour tests for proteins; structure							
	of proteins – primary, secondary, tertiary and quaternary.							
	Metabolism of Amino acids – general aspects of metabolism (a brief							
	outline); urea cycle.							

UNIT III Enzymes and Vitamins Nomenclature and classification, characteristics, factors influencing enzyme activity – mechanism of enzyme action – Lock and key hypothesis, Koshland's induced fit model. Proenzymes, antienzymes, coenzymes and isoenzymes; allosteric enzyme
regulation. Vitamins as coenzymes – functions of TPP, lipoic acid, NAD, NADP, FMN, FAD, pyridoxal phosphate, CoA, folic acid, biotin, cyanocobalamin.
 UNIT IV Amino acids Components of nucleic acids - nitrogenous bases and pentose sugars, structure of nucleosides and nucleotides, DNA- structure & functions; RNA –types– structure - functions; biosynthesis of proteins Hormones Adrenalin and thyroxine — chemistry, structure and functions (No structure elucidation).
 UNIT V Lipids Occurrence, biological significance of fats, classification of lipids. Simple lipids – Oils and fats, chemical composition, properties, reactions – hydrolysis, hydrogenation, trans-esterification, saponification, rancidity; analysis of oils and fats – saponification number, iodine number, acid value, R.M. value. Distinction between animal and vegetable fats. Compound lipids – Lipoproteins - VLDL, LDL, HDL, chylomicrons – biological significance. Cholesterol – occurrence, structure, test, physiological activity. Metabolism of lipids: β-oxidation of fatty acids.

	1. Bahl, B. S.; Bhal, A. Advanced Organic Chemistry, 3 rd ed.; S.								
Recommended	Chand:								
Text	Delhi, 2003.								
ГСАС	2. Jain, M.K.; Sharma, S.C. Modern Organic Chemistry, Vishal								
	Publications: New Delhi, 2017.								
	3. Shanmugam, A. Fundamentals of Biochemistry for Medical								
	Students, 6 th ed.; Published by the author, 1999.								
	4. Veerakumari, L. <i>Biochemistry</i> , 1 st ed.; MJP Publications: Chennai								
	2004.								
	5. Jain, J. L.; <i>Fundamentals of Biochemistry</i> , 2 nd ed.; S.Chand: New Delhi, 1983.								
Reference	1. Conn, E. E.; Stumpf, P. K. Outline of Biochemistry, 5th ed.; Wiley								
Books	Eastern: New Delhi, 2002.								
	2. West, E. S.; Todd, W. R.; Mason, H. S.; Van Bruggen, J. T. Text Bookof								
	Biochemistry, 4 th ed.; Macmillan: New York, 1970.								
	3. Lehninger, A. L. Principles of Biochemistry, 2 nd ed.; CBS Publisher: Delhi, 1993.								
	 Rastogi, S. C. <i>Biochemistry</i>, 2nd ed.; Tata McGraw-Hill: New Delhi, 2003. 								
	5. Chatterjea, M. N.; Shinde, R. <i>Textbook of Medical Biochemistry</i> , 5 th ed.; Jaypee Brothers: New Delhi, 2002								
Website	1. http://library.med.utah.edu/NetBiochem/nucacids.html								
ande-	2. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/E/EnzymeKine								
learning	tics.html								
source	3.https://swayam.gov.in/courses/4384-biochemistry Biochemistry 4.https://onlinecourses.nptel.ac.in/noc19_cy07/preview Experimental Biochemistry								

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

- **CO1:** explain molecular logic of living organisms, composition of blood and blood coagulation
- **CO2:** explain synthesis and properties of amino acids, determination of structure of peptides and proteins
- CO3: explain factors influencing enzyme activity and vitamins as coenzymes
- CO4: explain RNA and DNA structure and functions

CO5: explain biological significance of simple and compound lipids

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO – PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of					
Course Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

23.620

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM V	VE	VALUE EDUCATION	23K5VE	Ins.Hrs.2	Credit:2

CO	STATEMENT					
	After successful completion of the course, the students will be able to					
1	Know the value education by various religions.	K1				
2	Learn and practice social value and responsibilities.	K2				
3	Understand and start applying the essential steps to become good	K2				
	leaders.					
4	Analyse the personal value, mind culture value personal health.	K4				
5	Collecting news details about value education and to encourage writing	K6				
	skills highlight moral value.					
$\mathbf{K1} - \mathbf{Re}$	K1 – Remember; K2 - Understand; K3 – Apply; K4 – Analyse; K5 – Evaluate;					
K6 – C1	reate					

UNIT - I

1. Introduction: Definition of Value Education – Need for Value Education – Teachings of values by various religions like Hinduism, Buddhism, Christianity, Jainism, Islam etc.

UNIT - II

2 Living & Social Values

- 2.1 Living Values: Peace, respect, co-operation, freedom, happiness, honesty, humility, love, responsibility, simplicity, tolerance, optimism and positive thinking
- 2.2 Social values: Love and Compassion, Sharing and Generosity, Politeness and Courtesy, Gratitude, Duty and Responsibilities towards Society, Tolerance and Unity.

UNIT - III

- 3.1 **Role of Visionaries and Leaders in Social Reforms**: Rajaram Mohan Roy, Mahatma Gandhi, Swami Vivekananda, EVR Periyar, Mother Therasa.
- 3.2 Value Crisis: Religious Fundamentalism and Terrorism Corruption in Society–

commerce without Ethics – Education without Character – Wealth without efforts

3.3 Time Management

UNIT - IV

- 4. **Yoga**: Teaching yoga Manavalakkalai- by Qualified Yoga Teachers The aim is to acquire Physical Health Mental Acuteness- Strength of Life Forces and Wisdom to achieve a holistic way of life- to take up and get involved in Social Welfare Activities to learn their commitment to society.
- UNIT V
- 5.1 **Human Rights** : Child Labour Womens Rights Bonded Labour Problems of Refuges.
- 5.2 **Role of State Public service Commission:**Constitution provisions and formationmethods of recruitment – rules and notification, syllabi for different exams – written and oral – placement.

References

- 1. Radhakrinshnaan, "Religion and Culture" (1968), Orient paperbacks, New delhi.
- Das,M.S.&Guptha,V.K.(1995),"Social Values among Youth Adults: A Changing Scenario", New Delhi.
- 3. Venkataiah. M(ed.), (1998), "value Education New Delhi, A PH Publishing Corporation.
- 4. Sharma.O.P.,(1997),"value Education in Action" New Delhi, University Book House.
- 5. Chakraborti, Mohit.,(1997)"value Education:Changing Perspectives", New Delhi,kanishka Publishers, Distributors.
- 6. C.S.Devnoth(1996) "Adipodai manitha urimaigal" Narmadha Publishers. D.Kulanthaiyaya "Evai manitha urimaigal " Narmadha Publishers.

23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	CC13	ORGANIC CHEMISTRY - II	23K6CH13	Ins.Hrs.7	Credit:6
VI					

Objective of	This course aims at providing knowledge on						
the Course	• classification, isolation and discussing the properties of alkaloids						
	and terpenes						
	• preparation and properties of saccharides						
	 biomolecules 						
	 different molecular rearrangement 						
	 preparation and properties of organometallic compounds 						
Course Outline							
	UNIT I Alkaloids						
	Classification, isolation, general properties- Hofmann Exhaustive						
	Methylation; Structure elucidation – Coniine, piperine, nicotine.						
	Terpenes: Classification, Isoprene rule, isolation and structural elucidation						
	of Citral, alpha terpineol, Menthol, Geraniol and Camphor. UNIT II						
	Carbohydrates						
	Definition and Classification of Carbohydrates with examples.Relative configuration of sugars. Determination of configuration (Fischer's Proof). Definition of enantiomers, diastereomers, epimers and anomers with suitable examples.						
	Monosaccharides – configuration – D and L hexoses – aldohexoses and						
	ketohexoses.						
	Glucose, Fructose – Occurrence, preparation, properties, reactions, structural elucidation, uses.						
	Interconversions of sugar series – ascending, descending, aldose toketose						
	and ketose to aldose.						
	Disaccharides – sucrose, lactose, maltose - preparation, properties and uses						
	(no structural elucidation).						
	Polysaccharides – Source, constituents and biological importance of						
	homopolysaccharides- starch and cellulose, heteropolysaccharides –						
	hyaluronic acid, heparin.						

	UNIT III Malaanlarii maariin						
	Molecular rearrangements: Molecular Rearrangement: Type of rearrangements, Mechanism for						
	Benzidine, Favorskii, Clasien, Fries, Hofmann, Curtius, Schmidt and						
	Beckmann, Pinacol-pinacolone rearrangement						
	UNIT IV						
	Special reagents in Organic synthesis						
	AIBN, 9BBN, BINAP/BINOL, BOC, DABCO, DCC, DIBAL, DMAP,						
	NBS/NCS, NMP, PCC, TBHP, TEMPO						
	Organometallic compounds in Organic Synthesis						
	Preparation, Properties and applications:						
	Preparation, Properties and applications: Grignard Reagents, Organo Lithium Compounds, Ziegler – Natta, Wilkinson, Metal Carbonyl, Zeiss's Salt						
	UNIT V						
	Green Chemistry: Principles, chemistry behind each principle and						
	applications in chemical synthesis. Green reaction media – green solvents, green reagents and catalysts; tools used like microwave and ultra-sound in						
	chemical synthesis.						
	1. M.K.Jain, S. C.Sharma, Modern Organic Chemistry, VishalPublishing,						
Recommended	4 th reprint,2009.						
Text	2. S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic						
	Chemistry, Macmillan IndiaLtd., 3 rd edition,2009						
	3. Arun Bahl and B.S. Bahl, Advanced organic chemistry, NewDelhi,						
	S.Chand& Company Pvt. Ltd., Multicolour edition,2012.						
	4. P. L.Soni and H. M. Chawla, Text Book of Organic Chemistry,						
	Sultan Chand & Sons, New Delhi, 29 th edition, 2007.						
	5. C Bandyopadhya; An Insight into Green Chemistry; Published on 2020						
Reference	1. R. T. Morrison and R. N. Boyd, Organic Chemistry, PearsonEducation,						
Books	Asia,6 th edition, 2012.						
	2. T.W.Graham Solomons, Organic Chemistry, John Wiley & Sons, 11 th						
	edition, 2012. 3. A. Carey Francis, Organic Chemistry, Tata McGraw-Hill						
	Education Pvt. Ltd., New Delhi,7 th edition,2009.						
	4. I. L. Finar, Organic Chemistry, Vol. (1& 2), England, WesleyLongman						
	Ltd, 6 th edition, 2006.						
	5. J. A. Joule, and G. F. Smith, Heterocyclic Chemistry, Wiley, 5 th						
	Edition, 2010.						

Website	1. www.epgpathshala.nic.in
ande- learning	2. www.nptel.ac.in
source	3http:/swayam.gov.in
	4. Virtual Textbook of Organic Chemistry
	5. https://vlab.amrita.edu/

On completion of the course the students should be able to

CO1: explain isolation and properties of alkaloids and terpenes

- CO2: explain preparation and reactions of mono and disachharides
- **CO3:** classify biomolecules and natural products based on their structure, properties, reactions and uses.

CO4: explain molecular rearrangements like benzidine, Hoffmann etc.,

CO5: preparation and properties of organolithium compounds

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	Μ	S	S	М	Μ	М
CO3	S	S	S	Μ	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	Μ	Μ
CO5	S	М	S	S	S	S	S	М	Μ	S

CO- PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to	5.0	5.0	5.0	5.0	5.0
Pos					

32.6203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	CC14	INORGANIC CHEMISTRY – II	23K6CH14	Ins.Hrs.	Credit:4
VI				6	

Objective of	
the Course	The course aims to provide knowledge on
	• tracer elements and their role in the biological system.
	• iron transport and storage
	• metallo enzymes, oxygen transport.
	silicates and their applicationsindustrial applications of refractories, alloys, paints and pigments
Course Outline	UNIT I
	Bioinorganic Chemistry
	Essential and trace elements: Role of Na+, K+, Mg2+, Ca2+, Fe3+, Cu2+
	and Zn^{2+} in biological systems. Effect of excess intake (Toxicity) of Metal ions – trace elements - As, Cd, Pb, Hg.
	UNIT II
	Metal ion transport and storage
	Iron – storage, transport - Transferrin and Ferretin; Iron-porphyrins –
	myoglobin, haemoglobin – oxygen transport - Bohr effect;
	Sodium/potassium pump, calcium pump; transport and storage - copper and zinc.
	UNIT III
	Metallo enzymes
	Isomerase and synthetases, structure of cyanocobalamin (Vitamin B12), nature of Co-C bond; Metalloenzymes - functions of carboxy peptidase A, zinc metalloenzyme – mechanism and uses, Zn-Cu enzyme - structure and
	function, carbonic anhydrase, Vitamin B-12 as transferase and isomerase - Iron-sulphur proteins - 2Fe-2S – rubredoxin, 4Fe-2S – ferridoxin, Iron
	sulphur cluster enzymes. Invivo and Invitro nitrogen fixation – biological functions of nitrogenase and
	molybdo enzymes. UNIT IV
	Silicates
	Introduction – general properties of silicates, structure – types of silicates – ortho silicates(zircon), pyrosilicates (thortveitite), chain silicates(pyroxenes), ring silicates(beryl), sheet silicates(talc, mica, asbestos), silicates having three dimensional structure (feldspars, zeolites, ultramarines)
	Industrial Applications of Inorganic Compounds Refractories, pyrochemical, explosives. Alloys, Paints and pigments -
	remactories, pyrochemical, explosives. micys, rames and pigments -

	maninements of a good nainty alogaification constituents of naints
	requirements of a good paint; classification, constituents of paints –
	pigments, vehicles, thinners, driers, extenders, anti-knocking agents, anti-
	skinning agents, plasticizers, binders-application; varnishes- oils, spirit;
	enamels.
	Nanocomposite Hydrogels: synthesis, characterization and uses.
	Industrial visits and internship mandatory.
	1. Puri B R, Sharma L R, Kalia K Č (2011), Principles of Inorganic Chemistry, 31 th ed., Milestone Publishers & Distributors, Delhi
Recommended	2. Satya Prakash, Tuli G. D., Basu S. K., Madan R. D. (2009), Advancd
Text	
	Inorganic Chemistry, 18 th Edition, S. Chand & Co., New Delhi
	3. Lee J D, (1991), Concise Inorganic Chemistry, 4 th ed., ELBS William
	Heinemann, London.
	4. W V Malik, G D Tuli, R D Madan, (2000), Selected Topics in Inorganic
	Chemistry, Schand and Company Ltd.
	5. A. K. De, Text book of Inorganic Chemistry, Wiley East Ltd, seventh
	edition, 1992
Reference	1. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry,
Books	2 nd ed., S.Chand and Company, New Delhi.
	2. Gopalan R, (2009) Inorganic Chemistry for Undergraduates, Ist
	Edition, University Press (India) Private Limited, Hyderabad
	3. Sivasankar B, (2013) Inorganic Chemistry. Ist Edition, Pearson,
	Chennai
	4. Alan G. Sharp (1992), <u>Inorganic Chemistry</u> , 3 rd Edition, Addition-
	Wesley, England
	5. Peter Atkins, Tina Overton, Jonathan Rourke and Mark Weller, Inorganic
	Chemistry, Oxford University Press, sixth edition, 2014.
Website	1. www.epgpathshala.nic.in
ande-	2. www.nptel.ac.in
learning	3. http:/swayam.gov.in
source	

completion of the course the students should be able to

CO1: ability to explain the importance of tracer elements on biological system.

CO2: explain the metal ion transport, Bohr effect, Na, K, Ca pump.

CO3: explain the function of Vitamin B12, Zn-Cu enzyme, ferredoxin, cluster enzymes.

CO4: classification and structure of silicates.

CO5: explain the manufacture of refractories, explosives, paints and pigments

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	Μ	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	2.0	2.0	2.0	2.0	210

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEN	I CC15	PHYSICAL CHEMISTRY - II	23K6CH15	Ins.Hrs.7	Credit:6
VI					

Objective of	The course aims at providing an overall view of the
the Course	• phase diagram of one and two component systems
	• chemical equilibrium,
	• separation techniques for binary liquid mixtures.
	• electrical conductance and transport number.
	• galvanic cells, EMF and significance of electrochemical series.
Course Outline	ΤΙΝΙΤΆΡΤ
	UNIT-I Phase rule
	Definition of terms; derivation of phase rule ; application to one component
	systems – water and sulphur - super cooling, sublimation ; two component
	systems – solid liquid equilibria- simple eutectic (lead - silver and bismuth -
	cadmium), freezing mixtures (potassium iodide- water), compound
	formation with- congruent melting points
	(magnesium – zinc and ferric chloride – water system), peritectic
	change (sodium – potassium), solid solution (gold-silver); copper
	sulphate – water system. UNIT II
	Chemical equilibrium Law of mass action – thermodynamic derivation – relationship between
	Kpand K _c –application to the homogeneous equilibria – dissociation of PCl5
	gas,N2O4 gas –equilibrium constant and degree of dissociation - formation
	of HI, NH3 ,and SO3 –heterogeneous equilibrium – decomposition of solid
	calcium carbonate –Lechatelier principle – van't Hoff reaction isotherm –
	temperature dependence of equilibrium constant – van't Hoff reaction
	isochore – Clayperon equation.
	UNIT III
	Binary liquid mixtures
	Ideal liquid mixtures – non ideal solutions – azeotropic mixtures –
	fractional distillation – partially miscible mixtures – phenol-water, triethylamine-water, nicotine-water – effect of impurities on critical solution
	temperature; immiscible liquids- steam distillation; Nernst
	distribution law – applications.
	UNIT IV
	Electrical Conductance and Transference Arrhenius theory of electrolytic dissociation – Ostwald's dilution law,
	limitations of Arrhenius theory; behavior of strong electrolytes – interionic
	effects – Debye Huckel theory –Onsager equation (no derivation),
	significance of Onsager equation, Debye Falkenhagen effect, Wien effect.

	
	Ionic mobility – Discharge of ions on electrolysis (Hittorf's theoretical
	device), transport number –determination –
	Hittorf's method, moving boundary method – factors affecting transport
	number – determination of ionic mobility; Kohlrausch's law- applications;
	molar ionic conductance and viscosity (Walden's rule); applications of
	conductance measurements – determination of - degree of dissociation of
	weak electrolyte, dissociation constant of weak acidand weak base, ionic
	product of water, solubility and solubility product of sparingly soluble salts -
	conductometric titrations – acid base titrations.
	UNIT V
	Galvanic Cells and Applications
	Galvanic cell, representation, reversible and irreversible cells, EMF and its
	measurement – standard cell; relationship between electrical energy and
	chemical energy; sign of EMF and spontaneity of a reaction,
	thermodynamics and EMF – calculation of ΔG , ΔH , and ΔS from EMF
	data; reversible electrodes, electrode potential, standard electrode potential,
	primary and secondary reference electrodes, Nernst equation for electrode
	potential and cell EMF; types of electrodes - metal/metal ion, metal
	amalgam/metal ion, metal, insoluble salt/anion, gas electrode, redox
	electrode; electrochemical series – applications of electrochemical
	series. Chemical cells with and without transport, concentration cells with
	and without transport;
	Applications of EMF measurements
	applications of EMF measurements – determination of activity
	coefficient of electrolytes, transport number, valency of ions, solubility
	product, pH using hydrogen gas electrode, quinhydrone electrode and glass
	electrode, potentiometric titrations – acid base titrations, redox titrations,
	precipitation titrations, ionic product of water and degree of hydrolysis; redox
	indicators - use of diphenylamine indicator in the titration of ferrous iron
	against dichromate. Industrial component
	Galvanic cells- lead storage, Ni-Cd, Li and Zn-air, Al-air batteries Fuel
	cells – H2-O2 cell – efficiency of fuel cells.
	corrosion – mechanism, types and methods of prevention.
	contosion - incentanism, types and includes of prevention.
	1. B.R. Puri and L.R. Sharma, Principles of Physical Chemistry,
Recommended	ShobanLalNagin Chand and Co., forty eighth edition, 2021.
Text	2. Peter Atkins, and Julio de Paula, James Keeler, Physical Chemistry,
	Oxford University press, International eleventhedition, 2018.
	3. ArunBahl, B.S. Bahl, G. D. Tuli Essentials of physical
	chemistry, 28 th edition 2019, S, Chand & Co.
	4. S. K. Dogra and S. Dogra, Physical Chemistry through Problems:

	New Age International, fourth edition, 1996.
	5. J. Rajaram and J.C. Kuriacose, Thermodynamics, ShobanLalNagin Chand and CO., 1986.
Reference Books	 K. L. Kapoor, A Textbook of Physical Chemistry, MacmillanIndia Ltd, third edition,2009. Gilbert. W. Castellen, Physical Chemistry, Narosa PublishingHouse, third edition, 1985. P. W. Atkins, and Julio de Paula, Physical Chemistry, Oxford University press, seventh edition, 2002. P. P. Puri, L. P. Sharma and M.S. Pathania, Principles of Physical
	 B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, Shobanlal Nagin Chand and Co. Jalendhar, forty first, edition, 2001 D.N.Bajpai, Advanced Physical Chemistry, S.Chand&Co.,2001
Website	https://nptel.ac.in https://swayam.gov.in
ande-	https://archive.nptel.ac.in/content/storage2/courses/112108150/pdf/PPT
learning	<u>s/MTS_07_m.pdf</u>
source	Thermodynamics - NPTEL https://www.youtube.com/watch?v=f0udxGcoztE Introduction to chemical equilibrium – MIT opencourse ware

Course Learning Outcomes (for Mapping with POs and PSOs)On

completion of the course the students should be able to

- **CO1:** construct the phase diagram for one component and two component systems, explain the properties of freezing mixture, component with congruent melting points and solid solutions.
- **CO2:** apply the concepts of chemical equilibrium in dissociation of PCl5, N2O4 and formation of HI, NH3, SO3 and decomposition of calcium carbonate. Demonstrate important principles such as Le chatelier principle, van't Hoff reaction isotherm and Clausius-Clayperon equation.
- **CO3:** Identify an appropriate distillation method for the separation of binary liquid mixtures such as azeotropic mixtures, partially miscible mixtures and immiscible liquids.
- **CO4:** Explain the significance of Arrhenius theory, Debye-Huckel theory, Onsager equation and Kohlrausch's law in conductance.

CO5: Construct electrochemical cell with the help of electrochemical series and calculate cell EMF. Demonstrate the applications of EMF and significance of potentiometric titrations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	Μ
CO2	М	S	S	S	М	S	S	Μ	Μ	Μ
CO3	S	S	S	М	S	S	S	Μ	S	М
CO4	S	S	S	S	S	S	S	Μ	Μ	Μ
CO5	S	М	S	S	S	S	S	М	М	S
CO /PS	0			PSO1	PS	SO2	PSO3	PSC	04	PSO5
CO1				3		3	3	3		3
CO2				3		3	3	3		3
CO3				3		3	3	3		3
CO4				3		3	3	3		3
CO5			3		3	3	3		3	
Weightage				15	1	5	15	15	5	15
Weighted percentage of Course Contribution to Pos				3.0	3	.0	3.0	3.0)	3.0

Level of Correlation between PSO's and CO's

23.6200 9 Q

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

SEM	EC8	MOLECULAR	23K6CHE	Ins.Hrs.7	Credit:3
VI		SPECTROSCOPY	ECCH8:1		

	This course is designed to provide knowledge on						
Objective of							
the Course	• electrical and magnetic properties of organic and inorganic						
	compounds						
	• basic principles of microwave, UV-Visible, infrared, Raman, NMR						
	and Mass spectrometry						
	 instrumentation of microwave, UV-Visible, infrared, Raman, NMR 						
	and Mass spectrometry						
	• applications of various spectral techniques in structural						
	elucidation						
	solving combined spectral problems						
Course Outline	UNIT I						
	Electrical and Magnetic properties of molecules						
	Dipole moment – polar and nonpolar molecules – polarisability of						
	molecules. Application of dipole moments in the study of organic and						
	inorganic molecules.						
	Magnetic permeability, volume susceptibility, mass susceptibility and molar						
	susceptibility; diamagnetism, paramagnetism – determination of magnetic						
	susceptibility using Guoy balance, ferromagnetism, anti-ferromagnetism						
	Microwave spectroscopy						
	Rotation spectra - diatomic molecules (rigid rotator approximation)						
	selection rules – determination of bond length, effect of isotopic substitution						
	– instrumentation and applications						
	UNIT II						
	Ultraviolet and Visible spectroscopy						
	Electronic spectra of diatomic molecules (Born Oppenheimer						
	approximation) - vibrational coarse structure – rotational fine structure of						
	electronic vibration transitions – Frank Condon principle – dissociation in						
	electronic transitions – BirgeSponer method of evaluation of dissociation						
	energy – pre-dissociation transition - σ - σ *, π - π *, n- σ *, n- π * transitions.						
	Applications of UV-Woodward – Fieser rules as applied to conjugated						
	dienes and α , β - unsaturated ketones. Elementary Problems.						
	Colorimetry - principle and applications (estimation of Fe^{3+})						

Гт	
	 UNIT - III Infrared spectroscopy Vibration spectra –diatomic molecules – harmonic oscillator and anharmonic oscillator; Vibration – rotation spectra – diatomic molecule as rigid rotator and anharmonic oscillator (Born-Oppenheimer approximation oscillator) - selection rules, vibrations of polyatomic molecules – stretching and bending vibrations – applications – determination of force constant, moment of inertia and internuclear distance – isotopic shift – application of IR spectra to simple organic and inorganic molecules – (group frequencies) Raman Spectroscopy Rayleigh scattering and Raman scattering of light – Raman shift – classical theory of Raman effect – quantum theory of Raman effect – Vibrational Raman spectrum – selection rules – mutual exclusion principle – instrumentation (block diagram) – applications.
	Nuclear magnetic resonance spectroscopy:
	PMR – theory of PMR – instrumentation - number of signals – chemical shift – peak areas and proton counting – spin-spin coupling – applications. Problems related to shielding and deshielding of protons, chemical shifts of protons in hydrocarbons, and in simple monofunctional organic compounds; spin-spin splitting of neighbouring protons in vinyl and allyl systems.
	UNIT V Mass spectrometry Principle – different kinds of ionisation – instrumentation – the mass spectrum – types of ions – determination of molecular formula- fragmentation and structural elucidation – McLafferty rearrangement; Retro Diels Alder reaction - illustrations with simple organic molecules.
	Solving structure elucidation problems using multiple spectroscopic data (NMR, MS, IR and UV-Vis).
Recommended Text	 Gopalan, R.; Subramaniam, P. S.; Rengarajan, K. Elements of Analytical Chemistry; S Chand: New Delhi, 2003. Usharani, S. Analytical Chemistry, 1sted.; Macmillan: India, 2002. Banwell, C.N.; Mc Cash, E. M. Fundamentals of Molecular
	 Spectroscopy, 4th ed.; Tata McGraw Hill, New Delhi, 2017. 4.U.N.Dash, Analytical Chemistry Theory and Practice, Sultan Chand &Sons,2nd Ed., 2005 5. B.K.Sharma, Spectroscopy,22nd ed., Goel Publishing House, 2011.
Reference	1. Srivastava, A. K.; Jain, P. C. Chemical Analysis an Instrumental

Books	Approach, 3 rd ed.; S.Chand, New Delhi, 1997.
	2. Robert D Braun. Introduction to Instrumental Analysis; Mc.Graw Hill:
	New York, 1987.
	3.Skoog, D. A.; Crouch, S. R.; Holler, F.J.; West, D. M. Fundamentals of
	Analytical Chemistry, 9 th ed.; Harcourt college Publishers: USA, 2013.
	4.Madan, R. L.; Tuli, G. D. <i>Physical Chemistry</i> , 2 nd ed.; S.Chand: New Delhi, 2005.
	5. Puri, B. R.; Sharma, L. R.; Pathania, M.S. Principles of Physical
	Chemistry, 43 rd ed.; Vishal Publishing: Delhi, 2008.
Website	1. http://vallance.chem.ox.ac.uk/pdfs/SymmetryLectureNotes2004.pdf
ande-	2.http://chemistry.rutgers.edu/undergrad/chem207/SymmetryGroupThe
learning	ory.html
source	3. www.epgpathshala.nic.in
	4. www.nptel.ac.in
	5 http:/swayam.gov.in

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

CO1: explain electrical and magnetic properties of materials and microwave spectroscopy **CO2:** explain theory, instrumentation and applications of Infrared and Raman spectroscopy **CO3:** apply selection rules to understand spectral transitions, explain Woodward – Fieser's

rule for the calculation of wavelength maximum of conjugated dienes CO4: explain theory, instrumentation and applications of NMR spectroscopy CO5: explain theory, instrumentation and applications of Mass spectrometry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	Μ
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	Μ	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO- PO Mapping

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Level of Correlation between PSO's and CO's

23.8203 Ż

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	EC8	POLYMER SCIENCE	23K6CHE	Ins.Hrs.7	Credit:3
VI			ECCH8:2		

	The course aims at providing an overall view of
Objective of	
the Course	classification of polymers, preparation of polymers
	• kinetics of polymerization and characterization of polymers
	 analytical techniques used to characterize polymers
	 reactions of polymers
	• speciality polymers like PVC, PMMA
Course Outline	UNIT I
	Introduction
	Difference between polymer and macromolecule – classification –
	synthetic and natural, organic and inorganic, thermoplastic and
	Techniques of polymerization
	Bulk, solution, emulsion and suspension polymerization
	Unit – II Kinetics of polymerization
	Kinetics of condensation and addition polymerisation; ionic, freeradical,
	copolymerisation and coordination polymerisation – reactivity
	ratios – block and graft copolymers.
	Characterisation of polymers
	Appearance, feel and hardness, density, effect of heat, solubility, combustion,
	tensile strength, shear, stress, impact strength, mechanical,
	thermomechanical and rheological properties of
	polymers in
	viscoelastic state. UNIT III
	Molecular Weight and Properties of Polymers
	Molecular Weight of Polymers-Number Average and Weight Average,
	Molecular
	Weight Distribution, Determination of Molecular Weight polydispersity
	index – membrane and vapour phase osmometry, light scattering - Zimm
	plot, ultracentrifuge – sedimentation velocity and sedimentation equilibrium
	 viscometry – gel permeation chromatography
	Thermal properties of polymers – Glass Transition Temperature-State of Aggregation and State of Phase Transitions, Factors Influencing Glass
	Aggregation and State of Phase Transitions, Factors Influencing Glass
	Transition Temperature, Importance of
	Glass Transition Temperature, Heat Distortion Temperature, TGA /
	DTA, Crystallinity of Polymers: Crystalline Behaviour, Degree of
	Crystallinity
	UNIT IV
	Reactions of Polymers-Hydrolysis, Acidolysis, Aminolysis, Additionand

	Substitution Reactions (One Example Each)
	Cyclisation, Cross-Linking and Reactions of Specific FunctionalGroups in
	the Polymer
	Polymer technology
	Processing of polymers – casting, thermoforming, moulding –
	extrusion, compression, blow moulding – foaming,
	amination, reinforcing – processing of fibres – melt, wet and dry spinning.
	UNIT V
	Speciality polymers
	Polyelectrolytes, conducting polymers, polymeric supports for solid phase
	synthesis, biomedical polymers, liquid crystalline polymers,
	electroluminescent polymers – two examples of each of these polymers. Polyethylene, PVC, PMMA, polyester; rubber – synthetic and natural,
	vulcanisation of rubber.
	Polymer Degradation
	Types of Degradation - Thermal, Mechanical, Ultra Sound, Photo
	Radiation and Chemical Degradation Methods.
	Rubber-Natural and Synthetic-Structure, Mechanism of Vulcanisation
	Biodegradable and Non-Biodegradable Polymers.
	1. Gowariker V.R, N.V. Viswanthan and Jayadev Sreedhar. Polymer
Recommended	Science.
Text	2. New Delhi: New Age International, 2015
	3. Misra G.S. Introductory Polymer Chemistry. New Delhi: Wiley
	Eastern, 2010.
	4. Bahadur P and Sastry N V. Principles of Polymer Science. New
	Delhi: Narosa Publishing House, 2005
	5. Ahluwalia, V.K. Anuradha Mishra, <i>Polymer Science A Text Book</i> ,
	Ane Books India: New Delhi, 2008.
	6. Morrison, R. R.; Boyd, R. N.; Bhattacharjee, S. K. Organic Chemistry, 7 th ed.; Pearson: New Delhi, 2011.
Reference	1. Billmeyer, F.W. Polymer Science. India: Wiley-Interscience, 2007.
Books	2. Seymour, R. B.; CarraherJr.C.E. Polymer Chemistry: An
	Introduction, Marcel Dckker
	Inc : New York, 1981.
	3. Sinha, R. <i>Outlines of Polymer Technology</i> , Prentice Hall of India:New
	Delhi, 2000.
	4. Joel R. Fried, Polymer Science and Technology, 3rd ed.; Prentice
	5. Hall of India: New Delhi, 2014.
I	

Website	1. <u>https://polymerdatabase.com</u>
and e-	2. http://amrita.vlab.co.in/?sub=2&brch=190∼=603&cnt=1
learning	3http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/polymers. Htm
source	4. http://nsdl.niscair.res.in/bitstream/123456789/406/2/Molecular+weigh ts+of+polymers.pdf

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

CO1: explain classification of polymers, elastomers, fibres and liquid resins

CO2: explain addition and condensation polymerization, mechanical properties of polymersCO3: determine the molecular weight of polymers, and explain the thermal properties of polymers

CO4: explain reactions of polymers and polymer processing

CO5: discuss speciality polymers like PVC, PMMA, rubbers, biodegradable polymers

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	Μ
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of					
Course Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

Level of Correlation between PSO's and CO's

23.6203 117

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 613 007, TN.

SEM	SEC8	INDUSTRIAL	23K6CHSEC8	Ins.Hrs.2	Credit:2
VI		APPLICATION OF			
		CHEMISTRY			

	This course aims at providing knowledge on						
Objectives of							
thecourse	Lime manufacture						
	Manufacture of glasses						
	• Refractories						
	• Adhesive						
	Abrasives						
	UNIT I						
	Lime and its manufacture, Gypsum – plaster – Cement – Types of Cements,						
	manufacture of Portland cement and its applications.						
	UNIT II						
	Glass – Ceramics- manufacture of Glasses, Ceramics and its applications.						
	UNIT III						
	Refractories – classification, manufacture of refractories, cermets - Insulating						
	refractories – Regvivement of a refractory – Applications.						
	UNIT IV						
	Adhesive: Classification of adhesives – adhesive ackor – development of						
	Adhesive strength – chemically reactive adhesives preparations of adhesives						
	– applications of adhesives.						
	UNIT V						
	Abrasives – natural abrasives, artificial abrasives – grinding wheels – pulp						
	and paper – manufacture of pulp and paper – applications of abrasives, paper						
	and pulp.						
Reference Books	1. Industrial Chemistry, B.K Sharma.						

Course Learning Outcomes (for Mapping with POs and PSOs) On completion of the course the students should be able to

CO1: to know the manufacturing process of cements and its materials.

CO2: learn the applications of ceramics and its products. **CO3:** examine the refractories and its applications.

CO4: illustrate the adhesive types of items.

CO5: understand the abrasives, pulp and paper materials

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	М	S	S	S	М	S	S	Μ	М	Μ
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	Μ	М	Μ
CO5	S	М	S	S	S	S	S	Μ	М	S

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of					
Course Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

ll 23.8203

HOD of Chemistry, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), THANJAVUR - 813 007, TN.

