KUNTHAVAI NAACCHIYAAR GOVERNMENT ARTS COLLEGE FOR WOMEN (AUTONOMOUS) THANJAVUR – 613007, TAMIL NADU, INDIA.

Accredited by NAAC with 'B' Grade

CBCS & OBE Scheme of Instruction and Syllabus for B.Sc., Physics

(I to VI Semester)

Effective from 2023 – 2024 onwards

KUNTHAVAI NAACCHIYAAR GOVT. ARTS COLLEGE FOR WOMEN (AUTONOMOUS), THANJAVUR-613007.

DEPARTMENT OF PHYSICS

VISION

The Vision of the Department of Physics is to provide in depth understanding of, the principles and concept of Physics and to acquire proficiency, both in theoretical and experimental Physics. The Department aims to enhance the student's knowledge in basics as well as in Applied Physics. To inculcate aptitude for a research career in academic or in industry, by introducing advanced ideas and techniques that are applicable.

MISSION

To import quality education in Physics such that, they aim to attain better position in the best Organizations. To make the students effectively disseminate their knowledge to the next coming generation. To develop the capacity and know-how to apply the principles and laws of Physics to solve problems. Enhance their ability to do and interpret the data obtained in experiments. To extend research facilities and thereby approaching towards the centre for excellence. To apply the knowledge of Physics for sustainable development of the society. Assume responsibility and always practice ethical principles, to function effectively, as individual as well as in a team.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR UNDERGRADUATE EDUCATION

	UNDERGRADUATE EDUCATION
Programme	B.Sc., Physics
Programme	
Code	
Duration	3 years [UG]
Programme	PO1: Disciplinary knowledge:
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding of one or
(These are	more disciplines that form a part of an undergraduate programme of study
mereguidelines	PO2: Communication Skills:
. Faculty can	Ability to express thoughts and ideas effectively in writing and orally communicate
create POs	with others using appropriate media; confidently share one's views and express
based on their	herself/himself; demonstrate the ability to listen carefully; read and write analytically
curriculum or	and present complex information in a clear and concise manner to different groups.
adopt from	PO3: Critical thinking:
UGC or the	Capability to apply the analytic thought to a body of knowledge; analyse and evaluate
University for	the proofs, arguments, claims, beliefs on the basis of empirical evidences; identify
their	relevant assumptions or implications; formulate coherent arguments; critically
Programme)	evaluate practices, policies and theories by following scientific approach.
	PO4: Problem solving:
	Capacity to extrapolate from what one has learned and apply their competencies to
	solve different kinds of non-familiar problems, rather than replicate curriculum
	content knowledge; and apply one's learning to real life situations.
	PO5: Analytical reasoning:
	Ability to evaluate the reliability and relevance of evidence; identify logical flaws and
	holes in the arguments of others; analyze and synthesize data from a variety of
	sources; draw valid conclusions and support them with evidence and examples, and
	addressing opposing viewpoints.
	PO6: Research-related skills:
	A sense of inquiry and capability for asking relevant/appropriate questions, problem
	arising, synthesising and articulating; Ability to recognise cause-and-effect
	relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-
	effect relationships; ability to plan, execute and report the results of an experiment or
	investigation
	PO7: Cooperation/Team work:
	Ability to work effectively and respectfully with diverse teams; facilitate cooperative
	or coordinated effort on the part of a group, and act together as a group or a team in
	the interests of a common cause and work efficiently as a member of a team
	PO8: Scientific reasoning:
	Ability to analyse, interpret and draw conclusions from quantitative/qualitative data;
	and critically evaluate ideas, evidence and experiences from an open-minded and
	reasoned perspective.
	PO9: Reflective thinking:
	Critical sensibility to lived experiences, with self-awareness and reflexivity of both
	self and society.
	PO10 Information/digital literacy:
	Capability to use ICT in a variety of learning situations, demonstrate ability to access,
	evaluate, and use a variety of relevant information sources; and use appropriate
	software for analysis of data.
	PO 11 Self-directed learning:
L	

	
	Ability to work independently, identify appropriate resources required for a project,
	and manage a project through to completion.
	PO 12 Multicultural competence:
	Possess knowledge of the values and beliefs of multiple cultures and a global
	perspective; and capability to effectively engage in a multicultural society and interact
	respectfully with diverse groups.
	PO 13: Moral and ethical awareness/reasoning:
	Ability toembrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstratingthe ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.
	PO 14: Leadership readiness/qualities:
	Capability for mapping out the tasks of a team or an organization, and setting
	direction, formulating an inspiring vision, building a team who can help achieve the
	vision, motivating and inspiring team members to engage with that vision, and using
	management skills to guide people to the right destination, in a smooth and efficient
	way.
	PO 15: Lifelong learning:
	Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.
Programme	PSO1: Placement:
Specific	To prepare the students who will demonstrate respectful engagement with others'
Outcomes:	ideas, behaviors, and beliefs and apply diverse frames of reference to decisions and
	actions.
(These are	PSO 2: Entrepreneur:
mere	To create effective entrepreneurs by enhancing their critical thinking, problem
guidelines.	solving, decision making and leadership skill that will facilitate start-ups and high
Faculty can	potential organizations
create POs	PSO3: Research and Development:
based on their	Design and implement HR systems and practices grounded in research that comply
curriculum or	with employment laws, leading the organization towards growth and development.
adopt from	PSO4: Contribution to Business World:
UGC or	To produce employable, ethical and innovative professionals to sustain in the dynamic
University for	business world.
their	PSO 5: Contribution to the Society:
Programme)	To contribute to the development of the society by collaborating with stakeholders for
	mutual benefit

Kunthavai Naacchiyaar Govt. Arts College for Women (Autonomous), Thanjavur - 7. B.Sc., PHYSICS Course Structure TANSCHE REGULATIONS

(For the candidates admitted from the academic year 2023 - 2024 onwards)

								Exa	Mar	ks	Toto
Semester	Part	Course	Subject Code Ti		Title of the Paper	Inst. Hrs.	Cre dit	m. Hrs.	Int.	Ext	Tota l
	Ι	LC 1	23K1T1	Tamil-I		6	3	3	25	75	100
	Π	ELC 1	23K1E1	Eng	lish-I	6	3	3	25	75	100
		CC 1	23K1P01		perties of Matter and ustics	5	5	3	25	75	100
		CC 2 (P)	23K1P02P	Phy	sics Practical 1	3	3	3	25	75	100
			23K1CH/P/CSECM1:1	Alge	ebra and Calculus						
Ι	III	EC 1	23K1CH/P/CSECM1:2		nerical Methods with lications	4	4	3	25	75	100
		EC 2		Differential Equations and Laplace Transforms		2	-	-	-	-	-
				Number Theory							
	IV -	SEC 1	23K1PSEC1	Phy	sics For Everyday Life	2	2	3	25	75	100
		FC	23K1PFC	Introductory Physics			2	3	25	75	100
			Total	Total				-	175	525	700
	Ι	LC 2	23K2T2		Tamil-II	6	3	3	25	75	100
	II	ELC 2	23K2E2		English-II	6	3	3	25	75	100
		CC 3	23K2P03		Heat, Thermodynamics and Statistical Physics	5	5	3	25	75	100
		CC 4 (P)	23K2P04P		Physics Practical 2	3	3	3	25	75	100
Π	III	EC 2	23K2CH/P/CSECM2:1		Differential Equations and Laplace Transforms	2	2	3	25	75	100
			23K2CH/P/CSECM2:2		Number Theory						
		EC 3	23K2CH/P/CSECM3:1		Discrete Mathematics	4	3	3	25	75	100
			23K2CH/P/CSECM3:2		Mathematical Statistics	4			25	15	100
		SEC 2	23K2PSEC2		Astrophysics	2	2	3	25	75	100
	IV	SEC 3	23K2PSEC3		Physics of Medical Instruments	2	2	3	25	75	100

	Total						23	-	200	600	800		
	Ι	LC	LC 3 23K3T3		Tamil-III	6	3	3	25	75	100		
	II	ELC	3	23K3E3	English-III	6	3	3	25	75	100		
	CC 5		23K3P05	Mechanics	5	5	3	25	75	100			
		CC 6	(P)	23K3P06P	Physics Practical 3	3	3	3	25	75	100		
				23K3PECCH4:1	Elective Chemistry - I	4	4	3	25	75	100		
	III	EC	4	23K3PECCH4:2	Chemistry for Physical and Biological Sciences - I								
III		EC	5		Volumetric and Organic Analysis Practical	2	-	-	-	-	-		
		SEC	4	23K3PSEC4	Entrepreneuerial Skill	1	1	3	25	75	100		
		SEC	5	23K3PSEC5	Home Electrical Installation	2	2	3	25	75	100		
	IV	EVS	S		Environmental Science	1	-	-	-	-	-		
		ECC	'1	23K3PECC1:1	Self Study	-	3	3	-	100	100		
			-1	23K3PECC1:2	MOOC	-	3	-	-	-	-		
		ECC	22	23K3PECC2	Add on Course	-	4	-	-	-	-		
		Total		Total		30	21	-	175	525	700		
	Ι	LC	4	23K4T4	Tamil-IV	6	3	3	25	75	100		
	II	ELC 4		ELC 4 23K4E4 English-IV		6	3	3	25	75	100		
		CC 7 CC 8 (P) EC5 EC 6		23K4P07	Optics and Laser Physics	4	3	3	25	75	100		
				23K4P08P	Physics Practical 4	3	3	3	25	75	100		
	III			23K4PECCH5P	Volumetric and Organic Analysis Practical	3	3	3	25	75	100		
						23K4PECCH6:1	Elective Chemistry - II						
IV				23K4PECCH6:2	Chemistry for Physical and Biological Sciences - II	3	3	3	25	75	100		
		SEC 6		23K4PSEC6	Physics Of Music	2	2	3	25	75	100		
		SEC	7	23K4PSEC7	Energy Physics	2	2	3	25	75	100		
	IV	EVS	S	23K4EVS	Environmental Science	1	2	3	25	75	100		
		ECC	12	23K4PECC3:1	Self Study	-	3	3	-	100	100		
		ECCS		ECC3 23K4PECC3:2 MOOC		-	3	-	-	-	-		
		I		Total		30	24	-	225	675	900		
	CC 9		23H	K5P09	Electricity, Magnetism and Electromagnetism	7	6	3	25	75	100		
		CC 10	CC 10 23K5P10		Atomic and Nuclear Physics	6	5	3	25	75	100		
		CC 11	C 11 23K5P11		Analog and Communication Electronics	7	5	3	25	75	100		
v	III	CC 12 (P)	23H	K5P12P	Physics Practical 5	3	3	3	25	75	100		
		EC7	231	K5PECP7:1	Nano Science and Nano Technology	5	3	3	25	75	100		
			23K5PECP7:2		Communication Physics	<u> </u>	<u> </u>						
	IV	VE	23H	K5VE	Value Education	2	2	3	25	75	100		

		IT	23K5I	Internship / Industrial Training] -	2	-	-	-	-
		Total						150	450	600
		CC 13	23K6P13	Quantum Mechanics and Relativity	7	5	3	25	75	100
		CC 14	23K6P14	Solid State Physics	6	5	3	25	75	100
	VI	CC 15	23K6P15	Digital Electronics and Microprocessor 8085	7	5	3	25	75	100
VI		CC 16 (P)	23K6P16P	Physics Practical 6	3	3	3	25	75	100
VI			EC8	23K6PECP8:1	Numerical Methods and C Programming	5	3	3	25	75
			23K6PECP8:2	Digital Photography						
	IV	SEC 8	23K6PSEC8	Professional Competency Skill	2	2	3	25	75	100
	V	EA	23K6EA	Extention Activity	-	1	-	-	-	-
	Total						-	150	450	600
			Grand Tot	180	140	-	1075	3225	4300	

ELECTIVES COURSES (EC)

- 1. COMMUNICATION PHYSICS
- 2. ENERGY PHYSICS
- 3. MATHEMATICAL PHYSICS
- 4. ADVANCED MATHEMATICAL PHYSICS
- 5. NUMERICAL METHODS AND C PROGRAMMING
- 6. MATERIALS SCIENCE
- 7. LASERS AND FIBER OPTICS
- 8. DIGITAL PHOTOGRAPHY
- 9. NANO SCIENCE AND NANO TECHNOLOGY
- 10. MEDICAL INSTRUMENTATION

NON-MAJOR ELECTIVES (NME)

- 1. PHYSICS FOR EVERYDAY LIFE
- 2. ASTROPHYSICS
- 3. PHYSICS OF MEDICAL INSTRUMENTS
- 4. HOME ELECTRICAL INSTALLATION
- 5. PHYSICS OF MUSIC

COURSE	FIRST SEMESTER – CC1
COURSETITLE	PROPERTIES OF MATTER AND ACOUSTICS
COURSE CODE	23KIP01
CREDITS	5
COURSE	Study of the properties of matter leads to information which is of practical value to
OBJECTIVES	both the physicist and the engineers. It gives us information about the internal
	forces which act between the constituent parts of the substance. Students who
	undergo this course are successfully bound to get a better insight and
	understanding of the subject.

UNITS	COURSEDETAILS
	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in
UNIT-I	stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by
	static torsion- torsional pendulum (with and without masses) BENDING OF BEAMS: cantilever- expression for Bending moment - expression
	for depression at the loaded end of the cantilever– oscillations of a cantilever–
	expression for time period – experiment to find Young's modulus – non-uniform
UNIT-II	bending- experiment to determine Young's modulus by Koenig's method - uniform
	bending – expression for elevation – experiment to determine Young's modulus
	using microscope
	FLUID DYNAMICS: Surface tension: definition – molecular forces– excess
	pressure over curved surface – application to spherical and cylindrical drops and
UNIT-III	bubbles – determination of surface tension by Jaegar's method–variation of surface
UN11-111	tension with temperature <i>Viscosity</i> : definition – streamline and turbulent flow – rate of flow of liquid in a
	capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's
	formula– variation of viscosity with temperature
	WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential
	equation of SHM – graphical representation of SHM – composition of two SHM in a
UNIT-IV	straight line and at right angles – Lissajous's figures- free, damped, forced vibrations
UNIT-IV	-resonance and Sharpness of resonance.
	Laws of transverse vibration in strings –sonometer – determination of AC frequency
	using sonometer-determination of frequency using Melde'sstring apparatus
	ACOUSTICS OF BUILDINGS AND ULTRASONICS:
	Intensity of sound – decibel – loudness of sound –reverberation – Sabine's
UNIT-V	reverberation formula – acoustic intensity – factors affecting the acoustics of buildings.
	<i>Ultrasonic waves</i> : production of ultrasonic waves – Piezoelectric crystal method –
	magnetostriction effect – application of ultrasonic waves
	PROFESSIONAL COMPONENTS: expert lectures – seminars — webinars –
UNIT-VI	industry inputs – social accountability – patriotism
	1. D.S.Mathur, 2010, Elements of Properties of Matter,
	S.Chand and Co.
	2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chand and Co
TEXT BOOKS	3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound,
	AtmaRamand sons 4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised
	edition, Vikas Publishing House.
	5. R.Murugesan,2012, <u>Properties of Matter</u> , S.Chandand Co.
	, or of and a contract of the set of th

REFERENCE BOOKS	 C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition,R. Chand and Co. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold- Heinmann India.
WEB RESOURCES	 https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they- work http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html https://www.youtube.com/watch?v=gT8Nth9NWPM https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they- work https://learningtechnologyofficial.com/category/fluid-mechanics-lab/ http://www.sound-physics.com/ http://nptel.ac.in/courses/112104026/

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Relate elastic behavior in terms of three modulii of elasticity and working of torsion pendulum.
	CO2	Able to appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.
	CO3	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.
COURSE OUTCOMES	CO4	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains
	CO5	Understand the concept of acoustics, importance of constructing buildings with good acoustics. Able to apply their knowledge of ultrasonics in real life, especially in medical field and assimilate different methods of production of ultrasonic waves

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-Point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	S	Μ	М	S	М	S
CO2	М	S	S	S	Μ	Μ	S	М	S	S
CO3	S	М	S	М	S	S	М	S	S	S
CO4	S	S	S	S	S	Μ	S	Μ	Μ	Μ
CO5	М	М	S	S	М	S	S	S	S	Μ

COURSE	FIRST SEMESTER – CC2(P)
COURSETITLE	PHYSICS PRACTICAL 1
COURSE CODE	23K1P02P
CREDITS	3
COURSE	Apply various physics concepts to understand Properties of Matter,
OBJECTIVES	set up experimentation to verify theories, quantify and analyse, able
	to do error analysis and correlate results

Properties of Matter

Minimum of Eight Experiments from the list:

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulusby cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIRST SEMESTER – SEC1
COURSETITLE	PHYSICS FOR EVERYDAY LIFE
COURSE CODE	23K1PSEC1
CREDITS	2
COURSE OBJECTIVES	To know where all physics principles have been put to use in daily life and appreciate the concepts with a better understanding also to know about Indian scientists who have made significant contributions to Physics

UNITS	COURSE DETAILS
UNIT-I	MECHANICAL OBJECTS: spring scales - bouncing balls -roller coasters -
UN11-1	bicycles –rockets and space travel.
	OPTICAL INSTRUMENTS AND LASER: vision corrective lenses – polaroid
UNIT-II	glasses – UV protective glass – polaroid camera – colour photography – holography
	and laser.
	PHYSICS OF HOME APPLIANCES: bulb – fan – hair drier – television – air
UNIT-III	conditioners – microwave ovens – vacuum cleaners
UNIT-IV	SOLAR ENERGY: Solar constant – General applications of solar energy – Solar
	water heaters – Solar Photo – voltaic cells – General applications of solar cells.
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS: C.V.Raman,
UNIT-V	HomiJehangirBhabha, Vikram Sarabhai, Subrahmanyan Chandrasekhar,
0111-1	VenkatramanRamakrishnan, Dr. APJ Abdul Kalam and their contribution to science
	and technology.
	1. The Physics in our Daily Lives, UmmeAmmara, GugucoolPublishing, Hyderabad,
TEXT BOOKS	2019.
	2. For the love of physics, Walter Lawin, Free Press, New York, 2011.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIRST SEMESTER – FOUNDATION COURSE
COURSE TITLE	INTRODUCTORY PHYSICS
COURSE CODE	23K1PFC
CREDITS	2
COURSE	To help students get an overview of Physics before learning their core
OBJECTIVES	courses. To serve as a bridge between the school curriculum and the degree
	programme.

UNITS	COURSE DETAILS
UNIT-I	vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants
UNIT-II	different types of forces–gravitational, electrostatic, magnetic, electromagnetic, nuclear –mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces
UNIT-III	different forms of energy– conservation laws of momentum, energy –types of collisions –angular momentum– alternate energy sources–real life examples
UNIT-IV	types of motion– linear, projectile, circular, angular, simple harmonic motions – satellite motion – banking of a curved roads – stream line and turbulent motions – wave motion –comparison of light and sound waves – free, forced, damped oscillations
UNIT-V	surface tension – shape of liquid drop – angle of contact – viscosity – lubricants – capillary flow – diffusion – real life examples – properties and types of materials in daily use- conductors, insulators – thermal and electric
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 D.S. Mathur, 2010, Elements of Properties of Matter, S.Chandand Co BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co.
REFERENCEBO OKS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chandand Co.
WEB RESOURCES	 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/</u> <u>https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
COURSE OUTCOMES	CO3	Quantify energy in different process and relate momentum, velocity and energy
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

COURSE	SECOND SEMESTER – CC3
COURSETITLE	HEAT, THERMODYNAMICS and STATISTICAL PHYSICS
COURSE CODE	23K2P03
CREDITS	5
COURSE OBJECTIVES	The course focuses to understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales. Practical exhibition and explanation of transmission of heat in good and bad conductor. Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

UNITS	COURSEDETAILS
UNIT-I	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	adiabatic demagnetisation. THERMODYNAMICS-I: zeroth law and first law of
UNIT-II	thermodynamics – P-V diagram – heat engine – efficiency of heat engine – Carnot's engine, construction, working and efficiency of petrol engine and diesel engines – comparison of engines.
UNIT-III	THERMODYNAMICS-II: second law of thermodynamics – entropy of an ideal gas – entropy change in reversible and irreversible processes – T-S diagram –thermodynamical scale of temperature – Maxwell's thermodynamical relations –Clasius- Clapeyron's equation (first latent heat equation) – third law of thermodynamics – unattainability of absolute zero – heat death.
UNIT-IV	 HEATTRANSFER: modes of heat transfer: conduction, convection and radiation. <i>Conduction</i>: thermal conductivity – determination of thermal conductivity of a good conductor by Forbe's method – determination of thermal conductivity of a bad conductor by Lee's disc method. <i>Radiation</i>: black body radiation (Ferry's method) – distribution of energy in black body radiation – Wien's law and Rayleigh Jean's law –Planck's law of radiation – Stefan's law – deduction of Newton's law of cooling from Stefan's law.
UNIT-V	STATISTICALMECHANICS: definition of phase-space – microand macro states – ensembles –different types of ensembles –classical and quantum Statistics – Maxwell-Boltzmann statistics –expression for distribution function – Bose-Einstein statistics –expression for distribution function – Fermi-Dirac statistics –expression for distribution function – comparison of three statistics.

	PROFESSIONAL COMPONENTS: expert lectures –seminars –
UNIT-VI	– webinars – industry inputs – social accountability – patriotism
	1. BrijlalandN. Subramaniam, 2000, Heat and Thermodynamics,
	S.Chandand Co.
	2. NarayanamoorthyandKrishnaRao, 1969,Heat,Triveni Publishers,
	Chennai.
	3. V.R.KhannaandR.S.Bedi, 1998 1 st Edition, Text book of Sound,
TEXT BOOKS	Kedharnaath Publish and Co, Meerut
	4. Brijlal and N. Subramanyam, 2001, Waves and
	Oscillations, Vikas Publishing House, New Delhi.
	5. Ghosh, 1996, Text Book of Sound, S.ChandandCo.
	6. R.MurugeshanandKiruthigaSivaprasath, Thermal Physics,
	S.Chandand Co.
	1. J.B.RajamandC.L.Arora, 1976, Heat and Thermodynamics, 8 th
	edition, S.Chandand Co. Ltd.
	2. D.S.Mathur, Heat and Thermodynamics, Sultan Chand and
	Sons.
REFERENCE	3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th
BOOKS	Edition, S. Chand and Co.
	4. Resnick, HallidayandWalker, 2010, Fundamentals of Physics,
	6th Edition.
	5. Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021
	University Physics with Modern Physics 15th Edition, Pearson.
	1. <u>https://youtu.be/M_5KYncYNyc</u>
	2. <u>https://www.youtube.com/watch?v=4M72kQulGKkandvl=en</u>
	3. Lecture 1: Thermodynamics Part 1 Video Lectures Statistical
WEB	Mechanics I: Statistical Mechanics of Particles Physics MIT
RESOURCES	OpenCourseWare
	4. http://www.freebookcentre.net/Physics/Physics-Books-
	Online.html
L	Ommenum

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Acquires knowledge on how to distinguish between
		temperature and heat. Introduce him/her to the field of
		thermometry and explain practical measurements of high
		temperature as well as low temperature physics. Student
COURSE		identifies the relationship between heat capacity, specific heat
OUTCOMES		capacity. The study of Low temperature Physics sets the basis
OUTCOME D		for the students to understand cryogenics, superconductivity,
	~ ~ ~	super fluidity and Condensed Matter Physics
	CO2	Derive the efficiency of Carnot's engine. Discuss the
		implications of the laws of Thermodynamics in diesel and
		petrol engines
	CO3	Able to analyze performance of thermodynamic systems viz
		efficiency by problems. Gets an insight into thermodynamic
		properties like enthalpy, entropy
	CO4	Study the process of thermal conductivity and apply it to good
		and bad conductors. Quantify different parameters related to
		heat, relate them with various physical parameters and analyse
		them
	CO5	Interpret classical statistics concepts such as phase space,
	0.05	
		ensemble, Maxwell-Boltzmann distribution law. Develop the
		statistical interpretation of Bose-Einstein and Fermi-Dirac .
		Apply to quantum particles such as photon and electron

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	Μ	S	S	Μ	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	М

COURSE	SECOND SEMESTER – CC4(P)
COURSETITLE	PHYSICS PRACTICAL 2
COURSE CODE	23K2P04P
CREDITS	3
COURSE	Apply their knowledge gained about the concept of heat and sound
OBJECTIVES	waves, resonance, calculate frequency of ac mains set up
	experimentation to verify theories, quantify and analyse, able to do
	error analysis and correlate results
	HEAT, OSCILLATIONS, WAVES and SOUND
Minimum of Eig	ht Experiments from the list:
	n of specific heat by cooling – graphical method.
	n of thermal conductivity of good conductor by Searle's method.
	n of thermal conductivity of bad conductor by Lee's disc method.
	n of thermal conductivity of bad conductor by Charlaton's method.
	n of specific heat capacity of solid.
	n of specific heat of liquid by Joule's electrical heating method
	iation correction by Barton's correction/graphical method),
	n of Latent heat of a vaporization of a liquid.
	n of Stefan's constant for Black body radiation.
9. Verification of	of Stefan's-Boltzmans law.
10. Determination	n of thermal conductivity of rubber tube.
11. Helmholtz res	sonator.
12. Velocity of so	bund through a wire using Sonometer.
13. Determination	n of velocity of sound using Kunds tube.
14. Determination	n of frequency of an electrically maintained tuning fork
15. To verify the	laws of transverse vibration using sonometer.
	laws of transverse vibration using Melde's apparatus.
17. To compare t	he mass per unit length of two strings using Melde's apparatus.
	AC by using sonometer.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SECOND SEMESTER – SEC2
COURSETITLE	ASTROPHYSICS
COURSE CODE	23K2PSEC2
CREDITS	2
COURSE	This course intends to introduce principles of astrophysics describing the
OBJECTIVES	science of formation and evolution of stars and interpretation of various
	heavenly phenomena and provide an understanding of the physical nature of
	celestial bodies along with the instrumentation and techniques used in
	astronomical research

UNITS	COURSE DETAILS
UNIT-I	TELESCOPES: Optical telescopes – magnifying power, brightness, resolving power and f/a ratio – types of reflecting and refracting telescopes – detectors and image processing – radio telescopes – Hubble space telescope.
UNIT-II	SOLAR SYSTEM: Bode's law of planetary distances – meteors, meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection of gravitational waves – recent advances in astrophysics.
UNIT-III	 ECLIPSES: types of eclipses – solar eclipse – total and partial solar eclipse – lunar eclipse – total and partial lunar eclipse – transits. THE SUN: physical and orbital data – solar atmosphere – photosphere – chromosphere – solar corona – prominences – sunspots – 11year solar cycle – solar flares.
UNIT-IV	 STELLAR EVOLUTION: H-R diagram – birth and death of low mass, intermediate mass and massive stars – Chandrasekar limit – white dwarfs – neutron stars – pulsars – black holes – supernovae. GALAXIES: classification of galaxies – galaxy clusters –interactions of galaxies, dark matter and super clusters – evolving universe.
UNIT-V	ACTIVITIES IN ASTROPHYSICS: (i) Basic construction of telescope (ii) Develop models to demonstrate eclipses/planetary motion (iii) Night sky observation (iv) Conduct case study pertaining to any topic in this paper (v) Visit to any one of the National Observatories Any three activities to be done compulsorily.
TEXT BOOKS	 BaidyanathBasu, (2001). <u>An introduction to Astrophysics</u>, Second printing, Prentice – Hall of India (P) Ltd, New Delhi K.S.Krishnaswamy, (2002), <u>Astrophysics – a modern perspective</u>, New Age International (P) Ltd, New Delhi. Shylaja, B.S. andMadhusudan, H.R.,(1999), <u>Eclipse: A Celestial Shadow Play</u>, Orient BlackSwan,

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SECOND SEMESTER – SEC3
COURSETITLE	PHYSICS OF MEDICAL INSTRUMENTS
COURSE CODE	23K2PSEC3
CREDITS	2
COURSE	The students will be exposed to instruments like ECG,EEG,EMG, medical
OBJECTIVES	imaging, diagnostic specialties, operation theater and its safety which will
	kindle interest to specialize in instrument servicing.

UNITS	COURSE DETAILS
UNIT-I	BIO-POTENTIALS AND ELECTRODES: transport of ions through cell membrane- resting and action potential - Characteristics of resting potential – bio-electric potential – design of medical instruments – components of bio- medical instrumentation – electrodes – electrode potential – metal microelectrode – depth and needle electrodes – types of surface electrode – the pH electrode.
UNIT-II	Bio-potential based Instrumentation: Electrocardiography (ECG) – origin of cardiac action potential - ECG lead configuration –block diagram of ECG recording set up (qualitative) – Electroencephalography (EEG) – origin of EEG – action and evoked potentials - brain waves – block diagram of modern EEG set up – electromyography (EMG) – block diagram of EMG recording setup.
UNIT-III	OPERATION THEATRE AND SAFETY: diathermy – block diagram of the electrosurgical diathermy– shortwave, microwave, ultrasonic diathermy – ventilators – servo controlled systems – RADIATION SAFETY: units of radiation - pocket dosimeter – pocket type radiation alarm – thermo-luminescence dosimeter.
UNIT-IV	MEDICAL IMAGING: nuclear imaging technique –computer tomography (CT) – principle – mathematical basis of image construction –block diagram of CT scanner – ultrasonic imaging systems – construction of transducer – display modes – MRI principle and instrumentation.
UNIT-V	 DIAGNOSTICS AND SPECIALITIES:X-rays in radiography – fluoroscopy – comparison– image intensifiers – angiography – applications of X-ray examination (<i>problems</i>). LASER IN MEDICINE:laser interactions with biomolecules – advantages of laser surgery – endoscopy – types of endoscopes with their operation (qualitative).
TEXT BOOKS	 Biomedical Instrumentation and measurement, Leslie Cromwell, PHI, 2015 Medical Instrumentation, M. Arumugam, Anuradha agencies, 1992 Medical Electronics, M.J.Kumar Doss, Prathibha Publishers, 1987 Medical Physics, John R. Cameron and James G. Skofronick, Thrift books, Atlanta, 1985 Electronic Instruments and Instrumentation Technology, M. M.M.Anand, PHI, 2015

Continuous Internal Assessment	End Semester Examination	Total	Grade	
--------------------------------	--------------------------	-------	-------	--

25	75	100	

COURSE	THIRD SEMESTER – CC5
COURSETITLE	MECHANICS
COURSE CODE	23K3P05
CREDITS	5
COURSE OBJECTIVES	This course allows the students: To have a basic understanding of the laws and principles of mechanics; To apply the concepts of forces existing in the system; To understand the forces of physics in everyday life; To visualize conservation laws; To apply Lagrangian equation to solve complex problems.

UNITS	COURSEDETAILS
	LAWS OF MOTION: Newton's Laws – forces – equations of motion – frictional force – motion of a particle in a uniform gravitational field – types of everyday forces in Physics.
UNIT-I	 Gravitation: Classical theory of gravitation–Kepler's laws, Newton's law of gravitation – Determination of G by Boy's method – Earth-moon system – weightlessness – earth satellites – parking orbit – earth density – mass of the Sun – gravitational potential – velocity of escape – satellite potential and kinetic energy –Einstein's theory of gravitation – introduction –principle of equivalence – experimental tests of general theory of relativity – gravitational red shift – bending of light – perihelion of mercury.
UNIT-II	CONSERVATION LAWS OF LINEAR AND ANGULAR MOMENTUM: conservation of linear and angular momentum – Internal forces and momentum conservation – center of mass – examples – general elastic collision of particles of different masses – system with variable mass – examples – conservation of angular momentum – torque due to internal forces – torque due to gravity – angular momentum about center of mass – proton scattering by heavy nucleus.
UNIT-III	CONSERVATION LAWS OF ENERGY: Introduction – significance of conservation laws – law of conservation of energy concepts of work- power – energy – conservative forces – potential energy and conservation of energy in gravitational and electric field – examples –non-conservative forces – general law of conservation of energy.
UNIT-IV	RIGID BODY DYNAMICS: translational and rotational motion –angular momentum – moment of inertia – general theorems ofmoment of inertia – examples – rotation about fixed axis – kineticenergy of rotation – examples – body rollingalong a plane surface –body rolling down an inclined plane – gyroscopic precision –gyrostatic applications.
UNIT-V	LAGRANGIAN MECHANICS: generalized coordinates –degrees of freedom – constraints - principle of virtual work and D'Alembert's Principle – Lagrange's equation from D' Alembert'sprinciple – application –simple pendulum – Atwood's machine.

	PROFESSIONAL COMPONENTS: expert lectures – seminars –	
UNIT-VI	webinars – industry inputs – social accountability – patriotism	
TEXT BOOKS	 J.C.Upadhyaya, 2019, Classical Mechanics, Himalaya Publishing house, Mumbai. P.DuraiPandian, LaxmiDuraiPandian, MuthamizhJayapragasam,2005, Mechanics, 6threvised edition, S.Chandand Co. D. S.Mathur and P. S.Hemne, 2000, Mechanics, Revised Edition, S.Chandand Co. Narayanamurthi, M.andNagarathnam. N, 1998, Dynamics. The National Publishing,Chennai. Narayanamurthi, M. and Nagarathnam, N, 1982, Statics, Hydrostatics and Hydrodynamics, The National Publishers, Chennai. 	
REFERENCE BOOKS	 Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addison and Wesely. Halliday, David and Robert, Resnick, 1995, Physics Vol.I. New Age, International, Chennai. Halliday, David Robert Resnick and Walker Jearl, 2001, Fundamentals of Physics, John Wiley, New Delhi 	
WEB RESOURCES	 <u>https://youtu.be/X4_K-XLUIB4</u> <u>https://nptel.ac.in/courses/115103115</u> <u>https://www.youtube.com/watch?v=p075LPq3Eas</u> <u>https://www.youtube.com/watch?v=mH_pS6fruyg</u> 	

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSE OUTCOMES	CO1 CO2 CO3	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion Acquire the knowledge on the conservation laws Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non- conservative forces
	CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept
	CO5	Appreciate Lagrangian system of mechanics, apply D' Alemberts principle

MAPPING WITH PROGRAM OUT COMES:

Map course out comes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	М	S	S
CO2	S	S	S	М	S	М	S	S	S	М
CO3	S	S	S	S	S	S	М	S	М	S
CO4	М	S	S	S	М	S	S	М	S	S
CO5	S	S	М	S	S	М	S	S	S	М

COURSE	THIRD SEMESTER – CC6(P)		
COURSETITLE	PHYSICS PRACTICAL 3		
COURSE CODE	23K3P06P		
CREDITS	3		
COURSE	Construct circuits to learn about the concept of electricity, current,		
OBJECTIVES	resistance in the path of current, different parameters that affect a		
	circuit. Set up experiments, observe, analyse and assimilate the concept		
ELECTRICITY			

Minimum of Eight Experiments from the list:

- 1. Calibration of low range and high range voltmeter using potentiometer
- 2. Calibration of ammeter using potentiometer.
- 3. Measurement of low resistances using potentiometer.
- 4. Determination of field along the axis of a current carrying circular coil.
- 5. Determination of earth's magnetic field using field along axis of current carrying coil.
- 6. Determination of specific resistance of the material of the wire usingPO box.
- 7. Determination of resistance and specific resistance using Carey Foster's bridge.
- 8. Determination of internal resistance of a cell using potentiometer.
- 9. Determination of specific conductance of an electrolyte.
- 10. Determination of e.m.f of thermo couple using potentiometer
- 11. Determination of capacitance using Desauty's bridge and B.G./Spot galvanometer/head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells usingBG.
- 14. Comparison of capacitance using BG.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	THIRD SEMESTER – SEC5
COURSETITLE	HOME ELECTRICAL INSTALLATION
COURSE CODE	23K3PSEC5
CREDITS	2
COURSE	The students will get knowledge on electrical instruments, installations and
OBJECTIVES	domestic wiring techniques with safety precautions and servicing.

UNITS	COURSE DETAILS		
UNIT-I	SIMPLE ELECTRICAL CIRCUITS: charge, current, potential difference, resistance – simple electrical circuits – DC ammeter, voltmeter, ohmmeter – Ohm's law – difference between DC and AC – advantages of AC over DC – electromagnetic induction - transformers – inductors/chokes – capacitors/condensers – impedance – AC ammeter, voltmeter –symbols and nomenclature		
UNIT-II	TRANSMISSION OF ELECTRICITY: production and transmission of electricity – concept of power grid – Series and parallel connections – technicalities of junctions and loops in circuits –transmission losses (qualitative) – roles of step-up and step-down transformers – quality of connecting wires – characteristics of single and multicore wires		
UNIT-III	ELECTRICAL WIRING: different types of switches – installation of two way switch – role of sockets, plugs, sockets - installation of meters – basic switch board – electrical bell – indicator – fixing of tube lights and fans – heavy equipment like AC, fridge, washing machine, oven, geyser, jet pumps – provisions for inverter – gauge specifications of wires for various needs		
UNIT-IV	POWER RATING AND POWER DELIVERED: conversion of electrical energy in to different forms – work done by electrical energy – power rating of electrical appliances – energy consumption – electrical energy unit in kWh – calculation of EB bill – Joule's heating – useful energy and energy loss – single and three phase connections – Measures to save electrical energy – energy audit		
UNIT-V	SAFETY MEASURES: insulation for wires – colour specification for mains, return and earth – Understanding of fuse and circuit breakers – types of fuse: kit-kat, HRC, cartridge, MCB, ELCB – purpose of earth line – lighting arrestors – short circuiting and over loading – electrical safety – tips to avoid electrical shock – first aid for electrical shock – fire safety for electric current		
TEXT BOOKS	 Wiring a House: 5th Edition by Rex Cauldwell, (2014). Black and Decker Advanced Home Wiring, 5th Edition: Backup Power - Panel Upgrades - AFCI Protection - "Smart" Thermostats, by Editors of Cool Springs Press, (2018). Complete Beginners Guide to Rough in Electrical Wiring: by Kevin Ryan (2022). 		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FOURTH SEMESTER – CC7
COURSETITLE	OPTICS and LASER PHYSICS
COURSE CODE	23K4P07
CREDITS	4
COURSE OBJECTIVES	To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics; To explain the behaviour of light in different mediums; To understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day to day life; To understand the design of optical systems and methods to minims aberrations; To understand the working and applications of laser

UNITS	COURSEDETAILS
UNIT-I	 LENS AND PRISMS: Fermat's principle of least time – postulates of geometrical optics – thick and thin lenses – focal length, critical thickness, power and cardinal points of a thick lens – narrow angled prisms. Lens: aberrations: spherical aberration ,chromatic aberrations, coma and astigmatism – curvature of the field – distortion – chromatic aberrations methods. Prism: dispersion, deviation, aberrations - applications rainbows and halos, constant deviation spectroscope. Eyepieces: advantage of an eyepiece over a simple lens – Huygen's and Ramsden's eyepieces, construction and working –merits and demerits of the eyepiece. Resolving power: Rayleigh's criterion for resolution – limit of resolution for the eye – resolving power of, (i) Prism (ii) grating (iii) telescope
UNIT-II	 INTERFERENCE: division of wave front, Fresnel's biprism – fringes with white light – division of amplitude: interference in thin films due to, (i) reflected light, (ii) transmitted light – colours of thin films applications – air wedge – Newton's rings. Interferometers : Michelson's interferometer – applications, (i) determination of the wavelength of a monochromatic source of light, (ii) determination of a thickness of a mica sheet.
UNIT-III	DIFFRACTION: Fresnel's assumptions – zone plate – action of zone plate for an incident spherical wave front – differences between a zone plate and a convex lens –Fresnel type of diffraction – diffraction pattern due to a straight edge – positions of maximum and minimum intensities – diffraction due to a narrow slit –Fraunhofer type of diffraction – Fraunhofer diffraction at a single slit – plane diffraction grating– experiment to determine wavelengths – width of principal maxima.
UNIT-IV	POLARISATION: optical activity – optically active crystals –polarizer and analyser–double refraction – optic axis, principal plane – Huygens's explanation of double refraction in uniaxial crystals –polaroids and applications – circularlyandelliptically polarized light –quarter wave plate – half wave plate – production and detection of circularly and elliptically polarized lights – Fresnel's explanation – specific rotation – Laurent half shade polarimeter– experiment to determine specific rotatory power.

UNIT-V	LASERS: general principles of lasers – properties of lasers action – spontaneous and stimulated emission – population inversion – optical pumping – He-Ne laser (principle and working) – CO ₂ laser (principle and working) semiconductor laser – laser applications – holography.		
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism		
TEXT BOOKS	 Subramaniam. N andBrijlal, 2014, Optics, 25thEd,S.Chandand Co. P.R.Sasikumar, 2012, Photonics, PHIPvt Ltd, New Delhi. V.Rajendran, 2012, Engineering Physics, Tata McGraw Hill. 		
REFERENCE BOOKS	 Sathyaprakash, 1990,Optics,VII edition, RatanPrakashanMandhir, New Delhi. AjoyGhatak, 2009,Optics, 4thedition, PHIPvt Ltd, New Delhi. D.Halliday,R.Resnick and J. Walker, 2001, Fundamentals of Physics,6th edition, Willey, New York. JenkinsA.Francisand White, 2011, Fundamentals of Optics, 4th edition, McGraw Hill Inc., NewDelhi. 		
WEB RESOURCES	 <u>https://science.nasa.gov/ems/</u> <u>https://www.youtube.com/watch?v=tL3rNc1G0qQandlist=RDCMUCzwo7UlGkb-8Pr6svxWo-LAandstart_radio=1andt=2472</u> <u>https://science.nasa.gov/ems/</u> <u>https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/index.html</u> <u>http://www.thephysicsmill.com/2014/03/23/sky-blue-lord-rayleigh-sir-raman-scattering/</u> 		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces
	CO2	Discuss the principle of superposition of wave, use these ideas to understand the wave nature of light through working of interferometer
COURSEOU	CO3	Extend the knowledge about nature of light through diffraction
TCOMES		techniques; apply mathematical principles to analyse the optical instruments
	CO4	Interpret basic formulation of polarization and gain knowledge
		about polarimeter, appraise its usage in industries
	CO5	Relate the principles of optics to various fields of IR, Raman and
		UV spectroscopy and understand their instrumentation and
		application in industries

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	М	М	Μ	S	S	М	М
CO2	М	S	М	S	Μ	S	Μ	Μ	S	S
CO3	S	М	S	S	S	Μ	S	S	Μ	Μ
CO4	S	М	S	М	М	S	М	М	S	М
CO5	S	М	S	М	S	S	М	S	S	S

COURSE	FOURTH SEMESTER – CC8(P)
COURSETITLE	PHYSICS PRACTICAL 4
COURSE CODE	23K4P08P
CREDITS	3
COURSE	Demonstrate various optical phenomena principles, working, apply with
OBJECTIVES	various materials and interpret the results.

LIGHT(any eight experiments)

Minimum of Eight Experiments from the list:

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of Cauchy's Constants.
- 7. Determination of resolving power of grating
- 8. Determination of resolving power of telescope
- 9. Comparison of intensities using Lummer Brodhum Photometer.
- 10. Determination of range of motion using Searles goniometer.
- 11. Verification of Newton's formula for a lens separated by a distance.
- 12. Determination of refractive index of a given liquid by forming liquid lens
- 13. Determination of refractive index using Laser.
- 14. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 15. Determination of resolving power of Diffraction grating using Laser
- 16. Determination of wire using Laser.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FOURTH SEMESTER – SEC6
COURSETITLE	PHYSICS OF MUSIC
COURSE CODE	23K4PSEC6
CREDITS	2
COURSE	To apprise and train students on the role of Physics in music and get the
OBJECTIVES	knowledge on the musical notes and instruments.
	-

UNITS UNIT-I	COURSE DETAILSSCIENTIFIC STUDY OF MUSIC: vibrations of atoms of matter- vibrations coupling to air - propagation of sound waves in air, other media, fluids and solids - velocity, frequency, wavelength, time period, intensity: definition and unit fs - classification of sound on frequency and velocity- human and animal sound
UNIT-II	SIMPLE VIBRATING SYSTEMS: simple harmonic motion – tuning fork– amplitude, phase, energy,energy loss/damping/ dissipation – power – travelling waves and standing waves– laws of vibration in stretched strings– one- dimensional medium – open and closed organ pipes – over tones, harmonics – quality of sound: pitch, timber, loudness – octaves, musical notes
UNIT-III	MUSICAL TONE: pure/simple tones – sine/cosine waves– well-defined frequencies, wavelengths, amplitudes and phases– partial tones – assembly of pure tones– mix of different frequencies and amplitudes– complex tone – superposition of simple tones – complex waveform– periodic complex waveform – formants – resonances– sound envelope
UNIT-IV	PRODUCTION OF MUSICAL SOUNDS: human voice, mechanism of vocal sound production – larynx (sound box) – <i>stringed Instruments</i> : plucked and bowed, guitar, mandolin, violin, piano, etc. – <i>wind instruments</i> : whistles, flute, saxophone, pipe organ, bagpipes ,etc– <i>percussion instruments</i> : plates, membranes, drums, cymbals, xylophone etc. – <i>electronic instruments</i> : keyboards, electric guitars, rhythm pads, etc. – analog and digital sound synthesizers,–MIDI instrument– computer generated music
UNIT-V	RECORDING OF MUSIC and SOUND: Edison phonograph – cylinder and disk records – magnetic wire and tape recorders – digital recording (e.g. to CD, DVD, etc.)– analog transducers, condenser, dynamic microphones, loudspeaker – complex sound fields – near and far fields of acoustic– spectral analysis techniques – continuous and discrete Fourier transforms, digital signal processing – digital filtering – specifications of recording studios
TEXT BOOKS	 Physics and Music: The Science of Musical Sound by Harvey White (2014) Good Vibrations – The Physics of Music by Barry Parker, (2009) The History of Musical Instruments by Curt Sachs, (2006) Physics and Music: Essential Connections and Illuminating Excursions byKinko Tsuji and Stefan C. Müller(2021)

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FOURTH SEMESTER – SEC7
COURSETITLE	ENERGY PHYSICS
COURSE CODE	23K4PSEC7
CREDITS	2
COURSE OBJECTIVES	To get the understanding of the conventional and non-conventional energy sources, their conservation and storage systems.

٦

UNITS	COURSE DETAILS
UNIT-I	INTRODUCTION TO ENERGY SOURCES: energy consumption as a measure of prosperity – world energy future – energy sources and their availability – conventional energy sources – non-conventional and renewable energy sources – comparison – merits and demerits.
UNIT-II	SOLAR ENERGY: solar energy Introduction – solar constant – solar radiation at the Earth's surface – solar radiation geometry – Solar radiation measurements – solar radiation data –solar energy storage and storage systems – solar pond – solar cooker – solar water heater – solar greenhouse – types of greenhouses – solar cells.
UNIT-III	WIND ENERGY: introduction –nature of the wind – basic principle of wind energy conversion – wind energy data and energy estimation – basic components of Wind Energy Conversion Systems (WECS) – advantages and disadvantages of WECS – applications – tidal energy
UNIT-IV	BIOMASS ENERGY: introduction – classification – biomass conversion technologies –photosynthesis – fermentation - biogas generation – classification of biogas plants – anaerobic digestion for biogas – wood gasification – advantages and disadvantages.
UNIT-V	ENERGY STORAGE: importance of energy storage- batteries - lead acid battery -nickel-cadmium battery – fuel cells – types of fuel cells – advantages and disadvantages of fuel cells – applications of fuel cells - hydrogen storage.
TEXT BOOKS	 G.D.Rai, Non-Conventional Sources of Energy, Khanna Publishers, 2009, 4thEdn. S P Sukhstme, J K Nayak, Solar Energy, Principles of Thermal Collection and Storage, McGraw Hill, 2008, 3rdEdn. D P Kothari, K P Singal, RakeshRajan, PHI Learning Pvt Ltd, 2011, 2ndEdn.
REFERENCE BOOKS	 John Twidelland Tony Weir, Renewable Energy Resources, Taylor and Francis, 2005, 2ndEdn. S.A. Abbasi and NasemaAbbasi, Renewable Energy sources and their environmental impact, PHI Learning Pvt. Ltd, 2008. M. P. Agarwal, Solar Energy, S. Chand and Co. Ltd., New Delhi,1982 H. C. Jain, Non-Conventional Sources of Energy, Sterling Publishers,1986.

METHOD OF EVALUATION:

Г

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIFTH SEMESTER – CC9
COURSETITLE	ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM
COURSE CODE	23K5P09
CREDITS	6
COURSE OBJECTIVES	To classify materials based on their electrical and magnetic properties. To analyse the working principles of electrical gadgets. To understand the behaviour of dc, ac and transient currents. To know about the communication by electromagnetic waves.

UNITS	COURSE DETAILS
	CAPACITORS AND THERMO ELECTRICITY: capacitor -
	principle - capacitance of spherical and cylindrical capacitors -
	capacitance of a parallel plate capacitor (with and without dielectric
UNIT-I	slab) – effect of dielectric –Carey Foster bridge – temperature
UNII-I	coefficient of resistance - Seebeck effect - laws of thermo emf -
	Peltier effect - Thomson effect - thermoelectric diagrams -uses of
	thermoelectric diagrams - thermodynamics of thermo couple -
	determination of Peltier and Thomson coefficients.
	MAGNETIC EFFECTS OF CURRENT: Biot and Savart's law –
	magnetic induction due to circular coil – magnetic induction due to
	solenoid – Helmholtz tangent galvanometer –force on a current
UNIT-II	element by magnetic field – force between two infinitely long
0111-11	conductors – torque on a current loop in a field - moving coil
	galvanometer – damping correction – Ampere's circuital law –
	differential form – divergence of magnetic field – magnetic induction
	due to toroid.
	MAGNETISM AND ELCTROMAGNETIC INDUCTION:
	magnetic induction B – magnetization M - relation between B, H and
	M – magnetic susceptibility – magnetic permeability – experiment to
	draw B-H curve - energy loss due to hysteresis - Importance of
UNIT-III	hysteresis curves - Faraday and Lenz laws -vector form - self-
	induction - coefficient of self-inductance of solenoid - Anderson's
	method – mutual induction – coefficient of mutual inductance between
	two coaxial solenoids - coefficient of coupling - earth inductor-
	determination of angle of $dip(\Phi)$
	TRANSIENT AND ALTERNATING CURRENTS: growth and
	decay of current in a circuit containing resistance and inductance -
UNIT-IV	growth and decay of charge in a circuit containing resistance and
	capacitor – growth and decay of charge in an LCR circuit (expressions
	for charge only) – peak, average and rms values of ac – LCR series
	and parallel circuits – resonance condition – Q factor – power factor.
	MAXWELLS EQUATIONS AND ELECTROMAGNETIC
	WAVES: Maxwell's equations in vacuum, material media- physical
UNIT-V	significance of Maxwell's equations -displacement current - plane
	electromagnetic waves in free space - velocity of light - Poynting
	vector-electromagnetic waves in a linear homogenous media -
	refractive index.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars –
	webinars – industry inputs – social accountability – patriotism

TEXT BOOKS	 Murugeshan. R., - Electricity and Magnetism, 8thEdn, 2006, S.Chandand Co, New Delhi.\ Sehgal D.L., Chopra K.L, Sehgal N.K., - Electricity and Magnetism, Sultan Chand and Sons, New Delhi. M. Narayanamurthy and N. Nagarathnam, Electricity and Magnetism, 4th Edition. National Publishing Co., Meerut.
REFERENCE BOOKS	 Brijlal and Subramanian, Electricity and Magnetism, 6th Edn.,RatanandPrakash, Agra. Brijlal, N.Subramanyan and JivanSeshan, Mechanics and Electrodynamics (2005), Eurasia Publishing House (Pvt.) Ltd., New Delhi. David J. Griffiths, Introduction to Electrodynamics, 2ndEdn. 1997, Prentice Hall of India Pvt. Ltd., New Delhi D. Halliday, R. Resnik and J. Walker - Fundamentals of Physics, 6thEdn., Wiley, NY, 2001.
WEB RESOURCES	 8. <u>https://www.edx.org/course/electricity</u> 9. <u>https://www.udemy.com/courses/</u> electricity 10. <u>https://www.edx.org/course/magnetism</u> 11. <u>http://www.hajim.rochester.edu/optics/undergraduate/courses.html</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Describe various thermo-electric effects and their properties.
	CO2	Apply Biot and Savart law to study the magnetic effect of electric current.
COURSEOUT	CO3	Use Faraday and Lenz laws in explaining self and mutual inductance.
COMES	CO4	Analyze the time variation of current and potential difference in AC circuits.
	CO5	Relate different physical quantities used to explain magnetic properties of materials.

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	Μ	S	S	S	Μ	S	Μ
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	М

COURSE	FIFTH SEMESTER – CC10
COURSE TITLE	ATOMIC and NUCLEAR PHYSICS
COURSE CODE	23K5P10
CREDITS	5
OBJECTIVES	To make students understand the development of atom models, quantum numbers, coupling schemes and analysis of magnetic moments of an electrons; To gain knowledge on excitation and ionization potentials, splitting of spectral lines in magnetic and electric fields; To get knowledge on radioactive decay; To know the concepts used in nuclear reaction; to understand the quark model of classification of elementary particles.

UNITS	COURSE DETAILS
UNIT-I	VECTOR ATOM MODEL: introduction to atom model – vector atom model – electron spin –spatial quantization – quantum numbers associated with vector atom model – L-S and J-J coupling – Pauli's exclusion principle – magnetic dipole moment due to orbital motion and spin motion of the electron – Bohr magnetron – Stern - Gerlach experiment – selection rules – intensity rule.
UNIT-II	ATOMIC SPECTRA: origin of atomic spectra – excitation and ionization potentials – Davis and Goucher's method – spectral terms and notations – fine structure of sodium D-lines – Zeeman effect – Larmor's theorem – quantum mechanical explanation of normal Zeeman effect – anomalous Zeeman effect (qualitative explanation) –Paschen - Back effect – Stark effect.
UNIT-III	RADIOACTIVITY: discovery of radioactivity – natural radio activity – properties of alpha rays, beta rays and gamma rays – Geiger-Nuttal law – alpha particle spectra –Gammow's theory of alpha decay (qualitative study) – beta ray spectra – neutrino theory of beta decay – nuclear isomerism – internal conversion – non- conservation of parity in weak interactions.
UNIT-IV	NUCLEAR REACTIONS: conservation laws of nuclear reaction – Q-value equation for a nuclear reaction – threshold energy – scattering cross section – artificial radio activity – application of radio isotopes – classification of neutrons – models of nuclear structure – liquid drop model – shell model.
UNIT-V	ELEMENTARY PARTICLES: classification of elementary particles – fundamental interactions – elementary particle quantum numbers – i Isospin and strangness quantum number – Conservation laws and symmetry – quarks – quark model (elementary ideas only) – discovery of cosmic rays – primary and secondary cosmic rays – latitude effect– altitude effect.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 R. Murugesan, Modern Physics, S. Chand and Co. (All units) (Units IandII-Problems) Brijlaland N. Subrahmanyam, Atomic and Nuclear Physics, S.

	Chand and Co. (All units)
	3. J. B. Rajam, Modern Physics, S. Chand and Co.
	4. SehgalandChopra, Modern Physics, Sultan Chand, New Delhi
	5. Arthur Beiser– Concept of Modern Physics, McGraw Hill
	Publication, 6 th Edition.
	1. Perspective of Modern Physics, Arthur Beiser, McGraw Hill.
	2. Modern Physics, S. Ramamoorthy, National Publishing and Co.
	3. Laser and Non-Linear Optics by B.B.Laud, Wiley Easter
	Ltd., New York, 1985.
REFERENCE	4. Tayal, D.C.2000 – Nuclear Physics, Edition, Himalaya Publishing
	House, Mumbai.
BOOKS	5. Irving Kaplan (1962) Nuclear Physics, Second Edition, Oxford
	and IBH Publish and Co, New Delhi.
	6. J.B. Rajam– Atomic Physics, S. Chand Publication, 7 th Edition.
	7. Roy and Nigam, – Nuclear Physics (1967) First edition, Wiley Eastern
	Limited, New Delhi.
	1. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u>
	2. https://makingphysicsfun.files.wordpress.com/2015/01/photoelect
WEB	<u>ric-effect.pptx</u>
RESOURCES	3. <u>https://www.khanacademy.org/science/physics/quantum-</u>
	physics/in-in-nuclei/v/types-of-decay
	4. <u>https://www.khanacademy.org/science/in-in-class-12th-physics-</u>
	india/nuclei

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	List the properties of electrons and positive rays, define specific charge of positive rays and know about different mass spectrographs.
	CO2	Outline photoelectric effect and the terms related to it, State laws of photoelectric emission, Explain experiments and applications of photo electric effect, Solve problems based on photoelectric equation.
COURSE CO3		Explain different atom models, Describe different quantum numbers and different coupling schemes.
	CO4	Differentiate between excitation and ionization potentials, Explain Davis and Goucher'sexperiment, Apply selection rule, Analyse Paschen-Back effect, Compare Zeeman and Stark effect.
	CO5	Understand the condition for production of laser, Appreciate various properties and applications of lasers.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	S	S	М	М	Μ
CO3	S	S	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	М	S	М	М	М
CO5	S	Μ	S	S	М	S	S	М	М	S

COURSE	FIFTH SEMESTER – CC11				
COURSETITLE	ANALOG AND COMMUNICATION ELECTRONICS				
COURSE CODE	23K5P11				
CREDITS	5				
COURSE OBJECTIVES	To study the design, working and applications of semiconducting devices. To construct various electronic circuits. To study them in details. To study the basis of audio and video communication systems and the aspects of satellite and Fibre Optic Communications.				

UNITS	COURSE DETAILS
UNIT-I	DIODES: diode characteristics – rectifiers - clipper circuits, clamping circuits. half wave rectifier, center tapped and bridge fullwave rectifiers, calculation of efficiency and ripple factor. DC power supply: Block diagram of a power supply, qualitative description of shunt capacitor filter, Zener diode as voltage regulator, temperature coefficient of Zener diode.
UNIT-II	TRANSISTOR AMPLIFIERS: transistor configurations: CB, CE CC modes – I-V characteristics and hybrid parameters – DC load line – Q point self-bias – RC coupled CE amplifier –power amplifiers – classification of power amplifiers: A, B, C – push pull amplifiers – tuned amplifiers.
UNIT-III	TRANSISTOR OSCILLATORS: feedback amplifier - principle of feedback, positive and negative feedback of voltage and current gain, advantages of negative feedback - Barkhausen's criterion. Transistor oscillators: Hartely, Colpitt, Phase shift oscillators with mathematical analysis.
UNIT-IV	OPERATIONAL AMPLIFIERS: differential amplifiers – OPAMP characteristics –IC 741 pin configuration – inverting and non-inverting amplifiers – unity follower –summing and difference amplifiers – differentiator and integrator – astable multivibrator (square wave generator) – monostable vibrator
UNIT-V	MODULATION AND DEMODULATION theory of amplitude modulation - frequency modulation – comparison of AM and FM – phase modulation – sampling theorem – pulse width modulation – pulse modulation systems: PAM, PPM, and PCM – demodulation: AM and FM detection - duper heterodyne receiver (block diagram)
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 V.K.Mehta - Principles of Electronics, S.Chandand Co. Ltd., 2004. V.Vijayendran - Integrated Electronics, S.Vishwanathan Publishers, Chennai. B.L. Theraja - A Text Book of Electrical Technology. John D. Ryder - Electronic fundamentals and Applications. Malvino - Electronic Principles, Tata McGraw Hill.

REFERENCE BOOKS	 B. Grob - Basic Electronics, 6th edition, McGraw Hill, NY, 1989. Herbert Taub and Donald schilling - Digital Integrated Electronics, McGraw Hill, NY. Ramakant A Op amp principles and linear integrated circuits, Gaykward Bagde and S. P. Singh - Elements of Electronics. Millman and Halkias- Integrated Electronics, Tata McGraw
WEB RESOURCES	Hill. 1. https://www.queenmaryscollege.edu.in/eresources/undergraduat_eprogram/py157 2. > Circuits and Electronics">www.ocw.mit.edu>> Circuits and Electronics 3. > Introductory Analog Electronics Laboratory">https://www.ocw.mit.edu>> Circuits and Electronics 4. semiconductor devices">https://www.elprocus.com> semiconductor devices 5. technology">https://www.britannica.com>technology

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Explain the basic concepts of semiconductors devices.							
	CO2	know and classify the basic principles of biasing and transistor							
COUDEE		amplifiers							
COURSE OUTCOMES	CO3	Acquire the fundamental concepts of oscillators.							
OUTCOMES	CO4	Understand the working of operational amplifiers							
	CO5	Learn and analyze the operations of sequential and							
	combinational digital circuits								

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	М	S	М	М	М
CO3	Μ	Μ	S	L	S	S	L	S	S	S
CO4	М	S	S	S	S	S	S	М	L	М
CO5	S	М	S	S	М	М	S	М	М	S

COURSE	FIFTH SEMESTER – CC12(P)					
COURSETITLE	PHYSICS PRACTICAL 5					
COURSE CODE	23K5P12P					
CREDITS	3					
COURSE	Demonstrate various optical phenomena principles, working, apply with					
OBJECTIVES	various materials and interpret the results.					
	GENERAL					
Minimum of Eig	ht Experiments from the list:					
	rating Normal incidence.					
	rating minimum deviation.					
3. Diffraction a						
4. Specific rota	tion of sugar solution.					
	Determination of \Box .					
	a thin film of Bi-prism					
	aw – polarization					
	ction (\Box e and \Box o)					
9. $Y - by Corlu$						
	ower of plane diffraction grating.					
11. Diffraction a	e – Velocity of sound, Adiabatic Young's modulus of the material of the rod.					
	nod – Thermal conductivity of a metal rod.					
	er– Grating - Normal incidence - Wave length of Mercury spectral lines.					
-	er – Grating - Minimum deviation - Wave length of Mercury spectral lines.					
-	er – (i-d) curve.					
_						
-	er – (i-i') curve.					
-	er – Narrow angled prism.					
19. Rydberg's o						
20. e/m Thoms						
21. h by photoc						
	ponse of photo conductor (LDR).					
	ter –Resistance and Specific resistance of the coil.					
	ter – E.M.F of a thermocouple.					
•	er's bridge - Temperature coefficient of resistance of the coil.					
	Magnetometer – Determination of Magnetic moment of a bar magnet and					
Ũ	cular coil carrying current.					
	hagnetometer - Determination of B _H using circular coil carrying current– Tan					
B position.						
28. B.G – Figur	re of Merit – Charge Sensitivity					

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIFTH SEMESTER – EC7					
COURSETITLE	COURSETITLE NANOSCIENCE AND NANO TECHNOLOGY					
COURSE CODE	23K5PECP7:1					
CREDITS	3					
COURSE	This course aims to provide an overall understanding of Nanoscience and					
OBJECTIVES	Nanotechnology and introduces different types of nanomaterials, their properties, fabrication methods, characterization techniques and a range of applications.					

UNITS	COURSE DETAILS
UNIT-I	NANOSCIENCE AND NANOTECHNOLOGY: nanoscale – nature and nanostructures – nanostructures: 0D, 1D,2D– surface to volume ratio– size effect – excitons – quantum confinement– metal based nanoparticles (metal and metal oxide) – nanocomposites (non-polymer based) – carbon nanostructures – fullerene –SWCNT and MWCNT
UNIT-II	PROPERTIES OF NANOMATERIALS: introduction-mechanical behavior – elastic properties – hardness and strength – ductility and toughness –superplastic behavior – optical properties – surface plasmon resonance – electrical properties – dielectric materials and properties – magnetic properties – super paramagnetism – electrochemical properties – properties of CNTs.
UNIT-III	FABRICATION METHODS AND VACUUM TECHNIQUES: top-down and bottom-up approaches – electrochemical method – chemical and physical vapour depositions (CVD and PVD) – plasma arc discharge – sputtering – thermal evaporation – pulsed laser deposition – ball milling – lithography: photolithography – e-beam lithography – sol-gel methods – synthesis of CNT.
UNIT-IV	CHARACTERIZATION TECHNIQUES: scanning probe microscopy – scanning tunneling microscopy – atomic force microscopy – scanning electron microscopy – transmission electron microscopy –powder XRD method: determination of structure and grain size analysis – UV-visible and photoluminescence spectroscopy.
UNIT-V	APPLICATIONS OF NANOMATERIALS: medicine: drug delivery – photodynamic therapy – molecular motors –energy: fuel cells –rechargeable batteries – supercapacitors– photovoltaics. sensors: nanosensors based on optical and physical properties – electrochemical sensors – nanobiosensors. nanoelectronics: CNTFET – display screens – GMR read/write heads – nanorobots –applications of CNTs
TEXT BOOKS	 K.K.Chattopadhyay and A.N.Banerjee, (2012), Introduction to Nanoscience and Nanotechnology, PHI Learning Pvt. Ltd., M.A. Shah, Tokeer Ahmad (2010), <u>Principles of Nanoscience and Nanotechnology</u>, Narosa Publishing House Pvt Ltd. Mick Wilson, et al (2005) <u>Nanotechnology</u>, Overseas Press.
REFERENC E BOOKS	 Richard Booker and Earl Boysen, (2005) <u>Nanotechnology</u>, Wiley Publishing Inc. USA J.H.Fendler (2007) Nano particles and nano structured films; Preparation, Characterization and Applications, John Wiley and Sons B.S.Murty, et al (2012) Textbook of Nanoscience and Nanotechnology, Universities Press.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIFTH SEMESTER – EC7
COURSETITLE	COMMUNICATION PHYSICS
COURSE CODE	23K5PECP7:2
CREDITS	3
COURSE	This course aims to provide an overall understanding of Nanoscience and
OBJECTIVES	Nanotechnology and introduces different types of nanomaterials, their
	properties, fabrication methods, characterization techniques and a range of applications.

	ve: To get a thorough knoowledge on transmission and reception of radio				
waves, the different types of communication like fibre optic, radar, satellite, cellular					
UNITS	COURSE DETAILS				
UNIT-I	RADIO TRANSMISSION AND RECEPTION: transmitter – modulation types of modulation – amplitude modulation – limitations of amplitude modulation – frequency modulation – comparison of FM and AM – demodulation- essentials in demodulation – receivers: AM radio receivers – types of AM radio receivers – stages of superheterodyne radio receiver, advantages – FM receiver – difference between FM and AM receivers.				
UNIT-II	FIBER OPTIC COMMUNICATION: introduction – basic principle of fiber optics – advantages – construction of optical fiber – classification based on the refractive index profile – classification based on the number of modes of propagation – losses in optical fibers – attenuation–advantages of fiberoptic communication				
UNIT-III	RADAR COMMUNICATION: i ntroduction - basic radar system –radar range – antenna scanning –pulsed radar system – search radar –tracking radar – moving target indicator Doppler effect-MTI principle – CW Doppler radar				
UNIT-IV	SATELLITE COMMUNICATION: introduction history of satellites – satellite communication system – satellite orbits – basic components of satellite communication system – commonly used frequency in satellite – communication –multiple access communication – satellite communication in India				
UNIT-V	MOBILE COMMUNICATION: introduction – concept of cell –basic cellular mobile radio system – cellphone – facsimile – important features of fax machine – application of facsimile – VSAT (very small aperture terminals) modem IPTV (internet protocol television) -Wi-Fi-4G (basic ideas)				
TEXT BOOKS	 V.K.Metha, Principles of Electronics, S. Chand and CoLtd., 2013 Anokh Singh and Chopra A.K., Principles of communication Engineering, S.Chandand Co, 2013 				
REFERENCE BOOKS	 J.S. Chitode, Digital Communications, 2020, Unicorn publications Senior John. M, Optical Fiber Communications: Principles and Practice, 2009, Pearson Education. 				

Γ

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SIXTHSEMESTER – CC13
COURSETITLE	QUANTUM MECHANICS AND RELATIVITY
COURSE CODE	23K6P13
CREDITS	5
COURSE OBJECTIVES	To understand the theory of relativity, its postulates and the consequences. To learn the importance of transformation equations and also to differentiate between special and general theory of relativity. To interpret the wave theory of matter with various theoretical and experimental evidences. To derive and use Schrodinger's wave equation and also learn about various operators. To solve Schrodinger's wave equation for simple problems and analyse to understand the solutions.

UNITS	COURSE DETAILS
	SPECIAL THEORY OF RELATIVITY: Michelson-Morley
	experiment-frames of reference – Galilean Relativity – postulates of
UNIT-I	special theory of relativity – Lorentz transformation – consequences –
UNII-I	time dilation-concept of simultaneity – Doppler effect – length
	contraction-variation of mass with velocity - Einstein's mass-energy
	relation-relativistic momentum - energy relation
	TRANSFORMATION RELATIONS: transformation of velocity,
	mass, energy and momentum – four vector – invariance under
	transformation – Lorentz transformation and velocity addition equations
UNIT-II	in terms of hyperbolic functions.
	GENERAL THEORY OF RELATIVITY: Inertial and Gravitational
	mass – Principle of equivalence – Experimental evidences for General
	theory of Relativity
	PHOTONS AND MATTER WAVES: difficulties of classical physics
	and origin of quantum theory – black body radiation – Planck's law –
	Einstein's photoelectric equation – Compton effect – pair production –
UNIT-III	De Broglie waves – phase velocity and group velocity – Davisson and
	Germer's experiment – uncertainty principle – consequences –
	illustration of Gamma ray microscope.
	OPERATORS AND SCHRÖDINGER EQUATION: postulates of
	quantum mechanics – Wave function and its interpretation –
	Schrödinger's equation – linear operators – Eigenvalue – Hermitian
UNIT-IV	operator - properties of Hermitian operator- observable - operators for
	position, linear Momentum, angular momentum components –
	commutator algebra -commutator between these operators -expectation
	values of position and momentum –Ehrenfesttheorem.
	SOLVING SCHRÖDINGER EQUATION FOR SIMPLE
	PROBLEMS: <i>one-dimensional problems</i> : (i) particle in a box, (ii)
UNIT-V	barrier penetration problem – quantum mechanical tunneling, (iii) linear
	harmonic oscillator.
	higher dimensional problems: (i) Rigid rotator (qualitative), (ii)
	Hydrogen atom (qualitative).
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars —
	webinars – industry inputs – social accountability – patriotism

	 Modern Physics, R. Murugeshan, KiruthigaSivaprasath, S. Chand and Co., 17th Revised Edition, 2014. 					
	2. Concepts of Modern Physics, A.Beiser, 6 th Ed., McGraw-Hill,					
	2003.					
TEXT BOOKS	3. Special Theory of Relativity, S. P. Puri, Pearson Education, India,					
ILAI DOORD	2013.					
	4. Quantum Mechanics, GhatakandLoganathan, Macmillan					
	Publications.					
	5. Quantum mechanics – Satyaprakash and Swati Saluja.					
	KedarNath Ram Nathand Co.					
	1. Fundamentals of Modern Physics, Peter J. Nolan, 1 st Edition, 2014,					
	by Physics					
	2. Quantum Mechanics, V. Devanathan, Narosa Pub. House, Chennai,					
	2005.					
REFERENCE	3. Quantum Mechanics, V.K. Thangappan, New Age International,					
BOOKS	New Delhi.					
	4. A Text Book of Quantum Mechanics, MathewsandVenkatesan, Tata					
	McGraw Hill, New Delhi.					
	5. Introduction to Quantum Mechanics, Pauling and Wilson, McGraw					
	Hill Co., NewYork.					
	1. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/qapp.html</u>					
	2. <u>https://swayam.gov.in/nd2_arp19_ap83/preview</u>					
WEB	3. https://swayam.gov.in/nd1_noc20_ph05/preview					
RESOURCES	4. <u>https://www.khanacademy.org/science/physics/special-</u>					
	relativity/minkowski-spacetime/v/introduction-to-special-relativity-					
	and-minkowski-spacetime-diagrams					
TETHOD OF EVAL						

ſ	Continuous Internal Assessment	End Semester Examination	Total	Grade
	25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.
	CO2	Appreciate the importance of transformation equations and also the general theory of relativity
COURSEO UTCOMES	CO3	Realise the wave nature of matter and understand its importance
	CO4	Derive Schrodinger equation and also realize the use of operators.
	CO5	Apply Schrödinger equation to simple problems.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	Μ	S	М	М	S	М	М	М
CO3	М	Μ	S	Μ	S	S	М	S	S	S
CO4	М	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	М	М	S	М	М	S

COURSE	SIXTH SEMESTER – CC14
COURSETITLE	SOLID STATE PHYSICS
COURSE CODE	23K6P14
CREDITS	4
COURSE	To understand constituents, properties and models of nucleus.
OBJECTIVES	To give reason for radioactivity and study their properties. Tolearn about the principles of various particle detectors and accelerators.
	To acquire knowledge on different types of nuclear reactions and
	their applications. To know the reason for cosmic rays and their effect
	on the surface of earth and also understand the classification of
	elementary particles.

UNITS	COURSE DETAILS
	BONDING IN SOLIDS, CRYSTAL STRUCTURE: types of
	bonding -ionic bonding - bond energy of NaCl molecule -covalent
	bonding – metallic bonding – hydrogen bonding – Van-der-Waals
	bonding – crystal lattice – lattice translational vectors – lattice with
	basis – unit cell – Bravais' lattices – Miller indices – procedure for
UNIT-I	finding them –packing of BCC and FCC structures – structures of
	NaCl and diamond crystals –reciprocal lattice – reciprocal lattice
	vectors – properties – reciprocal lattices to SC, BCC and FCC
	structures – Brillouin zones – X-rays – Bragg's law(simple problems)
	- experimental methods: Laue method, powder method and rotating
	crystal method
	ELEMENTARY LATTICE DYNAMICS: lattice vibrations and
	phonons: linear monoatomicanddiatomic chains. acoustical and
	optical phonons -qualitativedescription of the phonon spectrum in
	solids –Dulong and Petit's Law – Einstein and Debye theories
UNIT-II	of specific heat of solids $-T^3$ law (qualitative only)-properties of
	metals – classical free electron theory of metals(Drude-Lorentz) –
	Ohm's law – electrical and thermal conductivities – Weidemann-
	Franz' law –Sommerfeld'squantum free electron theory (qualitative
	only) – Einstein's theory of specific heat capacity.
	MAGNETIC PROPERTIES OF SOLIDS: permeability,
	susceptibility, relation between them – classification of magnetic
	materials – propertiesofdia, para, ferro, ferri and antiferromagnetism–
	Langevin's theory of diamagnetism – Langevin's theory of
UNIT-III	paramagnetism– Curie-Weiss law – Weiss theory of
	ferromagnetism(qualitative only) – Heisenberg's quantum theory of ferromagnetism – domains – discussion of B-H curve –hysteresis
	·
	and energy loss – soft and hard magnets – magnetic alloys.
	DIELECTRIC PROPERTIES OF MATERIALS: polarization
	and electric susceptibility –local electric field of an atom – dielectric
UNIT-IV	constant and polarisability – polarization processes: electronic
	polarization – calculation of polarisability – ionic, orientational and
	space charge polarization –internal field –Clausius-Mosotti relation –
	frequency dependence of dielectric constant –dielectric loss – effect
	of temperature on dielectric constant – dielectric breakdown and its

	types – classical theory of electric polarisability –normal and				
	anomalous dispersion – Cauchy and Sellmeir relations –Langevin-				
	· · · ·				
	Debye equation – complex dielectric constant -optical phenomena.				
	Application – plasma oscillations – plasma frequency –plasmons,				
	FERROELECTRIC and SUPERCONDUCTING PROPERTIES				
	OF MATERIALS: <i>ferroelectric effect</i> : Curie-Weiss Law –				
	ferroelectric domains, P-E hysteresis loop – elementary band				
	<i>theory</i> :Kronig-Penny model – band gap(no derivation) – conductor,				
	semiconductor (P and N type) and insulator -conductivity of				
UNIT-V	semiconductor – mobility – Hall effect – measurement of				
	conductivity (four probe method) - Hall coefficient.				
	Superconductivity: experimental results – critical temperature – critical				
	magnetic field – Meissner effect –type-I and type-II superconductors				
	– London's equation and penetration depth – isotope effect – idea of				
	BCS theory (no derivation)				
	PROFESSIONAL COMPONENTS: expert lectures – seminars –				
UNIT-VI	webinars – industry inputs – social accountability – patriotism				
	1. Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003).				
	 2. Solid state Physics, Rita John, 1st edition, TataMcGraw Hill publishers 				
	(2014).				
	3. Solid State Physics, R L Singhal, Kedarnath Ram Nathand Co., Meerut				
	(2003)				
	4. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006,				
	Prentice-Hall of India				
	5. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw				
TEXT BOOKS	Hill				
	6. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976,				
	Cengage Learning				
	7. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer				
	8. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson				
	India				
	9. Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House,				
	ND				
	1. PuriandBabber – Solid State Physics – S.ChandandCo. New Delhi.				
	2. Kittel - Introduction to solid state physics, Wiley and Sons, 7 th				
	edition.				
REFERENCE	3. Raghavan - Materials science and Engineering, PHI				
BOOKS	4. Azaroff - Introduction to solids, TMH				
20010	5. S. O. Pillai - Solid State Physics, Narosa publication				
	6. A.J. Dekker - Solid State Physics, McMillan India Ltd.				
	7. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006,				
	Prentice-Hall of India				
WEB	1. https://nptel.ac.in/courses/115105099/				
RESOURCES	2. https://nptel.ac.in/courses/115106061/				
	1				

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Classify the bonding and crystal structure also learn about the crystal structure analysis using X ray diffraction.
COURSEO	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.
UTCOMES	CO3	Give reason for classifying magnetic material on the basis of their behaviour.
	CO4	Comprehend the dielectric behavior of materials.
	CO5	Appreciate the ferroelectric and super conducting properties of materials.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER – CC15
COURSETITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085
COURSE CODE	23K6P15
CREDITS	3
COURSE OBJECTIVES	To learn all types of number systems, Boolean algebra and identities, digital circuits for addition and subtraction, flip-flops, registers, counters. To get the knowledge on fundamentals of 8085 architecture, instruction sets and simple programs.

UNITS	COURSE DETAILS
UNIT-I	decimal, binary, octal, hexadecimal numbers systems and their conversions – codes: BCD, gray and excess-3 codes –code conversions – complements (1's, 2's, 9's and 10's) –binary addition, binary subtraction using 1's and 2's complement methods – Boolean laws – De-Morgan's theorem –basic logic gates -universal logic gates (NAND and NOR) – standard representation of logic functions (SOP and POS) – minimization techniques (Karnaughmap: 2, 3, 4 variables).
UNIT-II	adders,halfandfull adder –subtractors,half and fullsubtractor –parallel binary adder – magnitude comparator – multiplexers (4:1) and demultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3-line-to- 8-line), BCD to seven segment decoder.
UNIT-III	flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master- slave flip-flop, truth tables, registers:- serial in serial out and parallel in and parallel out – counters asynchronous:-mod-8, mod-10, synchronous - 4-bit and ring counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EEPROM, EAROM. IC – logic families: RTL, DTL, TTL logic, CMOS NAND and NOR Gates, CMOS Inverter, Programmable Logic Devices – Programmable Logic Array (PLA), Programmable Array Logic (PAL).
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 –programmes for addition (8-Bit and 16-Bit), subtraction (8- Bit and 16-Bit), multiplication (8- Bit), division (8- Bit) – largest and smallest number in an array – BCD to ASCII and ASCII to BCD.
UNIT-V	I/O Interfaces: serial communication interface (8251-USART) – programmable peripheral interface (8255-PPI) –programmable interval timers (8253) – keyboard and display (8279), DMA controller (8237).
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 M.Morris Mano, "Digital Design "3rd Edition, PHI, NewDelhi. Ronald J. Tocci. "Digital Systems-Principles and Applications" 6/e. PHI. New Delhi. 1999.(UNITS I to IV) S.Salivahanaand S. Arivazhagan-Digital circuits and design Microprocessor Architecture, Programming and Applications with the

	 8085 – Penram International Publishing, Mumbai Ramesh S.Gaonakar 5. Microcomputer Systems the 8086/8088 family – YU-Cheng Liu and GlenSA
REFERENCE BOOKS	 Herbert Taub and Donald Schilling. "Digital Integrated Electronics" . McGraw Hill. 1985. S.K. Bose. "Digital Systems". 2/e. New Age International.1992. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters: Fundamentals andApplications". TMH.1994. Malvino and Leach. "Digital Principles and Applications". TMG HillEdition Microprocessors and Interfacing – Douglas V.Hall Microprocessor and Digital Systems – Douglas V.Hall
WEB RESOURCES	1. <u>https://youtu.be/-paFaxtTCkI</u> 2. <u>https://youtu.be/s1DSZEaCX_g</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Learn about number systems, Boolean algebra, logical operation and logic gates
COURSEO	CO2	Understand the working of adder, subractors, multiplexers and demultiplexers.
UTCOMES	CO3	Get knowledge on flip-flops and storage devices.
	CO4	Gain inputs on architecture of microprocessor 8085.
	CO5	Develop program writing skills .on microprocessor 8085.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	Μ	S	М	Μ	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER – CC16(P)					
COURSETITLE	PHYSICS PRACTICAL 6					
COURSE CODE	23K6P16P					
CREDITS	3					
COURSE	To perform basic experiments on characteristics of electronic devices and then get into					
OBJECTIVES	the applications such as amplifiers, oscillators, counters, multivibrators. Perform					
	fundamental experiments on microprocessor 8085 and learn to write programs by					
	themselves.					
	Electronics					
Minimum of Ten	Experiments from the list:					
	voltage regulations					
2. Bride rectifier						
3. Clipping and c	lamping circuits using diodes.					
	s of a transistor $-$ (CE mode)					
5. Characteristics	s of a transistor $-$ (CB mode).					
6. RC coupled C	E transistor amplifier - single stage.					
7. Transistor Emi	itter follower.					
8. Colpitt's oscill	lator -transistor.					
9. Hartley oscilla	tor - transistor.					
10. Astablemultivi	ibrator - transistor.					
11. Bistablemultiv						
12. FET - characte						
13. FET - amplifie						
14. UJT -character						
	th L,C,R -Series resonance.					
	th L,C,R - Parallel resonance.					
-	nplifier - inverting amplifier and summing.					
*	nplifier - non-inverting amplifier and summing.					
	nplifier – differential amplifier					
	nplifier - differentiator and integrator.					
*	nplifier - D/A converter by binary resistor method.					
22. 5V, IC Regula						
	of seven segment display. ICs – NOT, OR, AND, NOR, NAND, XOR, XNOR					
	f De Morgan's theorem using ICs –NOT, OR, AND					
	versal building block.					
20. NOR as univer						
	alf subtractor using basic logic gate ICs					
	or 8085 – addition (8 bit only)					
-	or 8085 – subtraction (8 bit only)					
	r 8085 – multiplication (8 bit only)					
	or 8085 – division (8 bit only)					
-	or 8085 – square (8 bit only)					
-	or 8085 – square root (8 bit only)					
-	or 8085 – largest/smallest of numbers (8 bit only)					
-	or 8085 –ascending/descending order					
	or 8085 – Fibonacci series					
L						

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SIXTH SEMESTER – EC8
COURSETITLE	NUMERICAL METHODS AND C PROGRAMMING
COURSE CODE	23K6PECP8:1
CREDITS	3
COURSE OBJECTIVES	To understand the methods in numerical differentiation and integration and to develop the problem solving skills of the student. To introduce and explain the basic structure, rules of compiling and execution of C programming.

UNITS	COURSE DETAILS
UNIT-I	NUMERICAL SOLUTIONS: determination of zeros of polynomials – roots of linear and nonlinear algebraic and transcendental equations – bisection and Newton-Raphson methods – convergence and divergence of solutions
	NUMERICAL DIFFERENTIATION, INTEGRATION AND CURVE
UNIT-II	FITTING: Newton's forward and backward interpolation – Lagrange's interpolation – Newton-Raphson method to find square root and cube roots – principle of least squares – fitting a straight line and exponential curve – trapezoidal rule – Simpson's 1/3 and 1/8 rule
UNIT-III	ALGORITHM, FLOW CHART AND PROGRAM: development of algorithm – flow chart for solving simple problems– average of set of numbers – greatest, smallest – conversion of Fahrenheit to Celsius and Celsius to Kelvin, miles to kilometer – sorting set of numbers in ascending and descending order – square matrix, addition, subtraction and multiplication of order (2x2) using arrays.
	INTRODUCTION TO C: importance of C – basic structure of C programming – constants, variables and data types – character set, key
UNIT-IV	words and identifiers – declaration of variables and data types – character set, key expressions: arithmetic, relational, logical, assignment – increment and decrement – conditional – comma operators
	CONTROL STRUCTURE: decision making with if, if-else, nested if –
UNIT-V	switch –go to – break – continue –while, do while, for statements – arrays, one dimensional and two dimensional – declaring arrays – storing arrays in memory –initializing arrays – simple programs
	1. Numerical methods, Singaravelu, Meenakshipublication, 4 th Edn., 1999.
TEXT BOOKS	 Numerical methodsP.Kandasamy, K.Thilagavathy, K. Gunavathi, S.Chand, 2016 Programming in C, Balagurusamy, TMG, ND, 2012 Numerical Analysis, M.K.Venkatraman, NPH, 2013 Numerical Analysis, B.D.Gupta, Konark Publishers, New Delhi, 2013
REFERENCE BOOKS	 Schaum's outline series, Theory and Problems of programming in C, C.Byronand S. Gottfried, Tata McGraw Hill 2003 Numerical methods and C Programming, Veerarajan, 2015.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE SIXTH SEMESTER – EC8				
COURSETI	TLE DIGITAL PHOTOGRAPHY			
COURSE C	DDE 23K6PECP8:2			
CREDITS	3			
COURSE OBJECTIVI	To understand the principles of photography and image formation and the science and arts behind it. To understand the essential components of conventional and digital cameras and also the different image processing techniques.			
UNITS	COURSE DETAILS			
UNIT-I	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE FORMATION: principle –chemical route and digital route –light, wavelengths, colours – shadows – light intensity and distance – making light form images –pin-hole images – practical limitations to pin-hole images – lens instead of pin-hole – focal length and image size – imaging of closer subjects.			
UNIT-II	LENSES – CONTROLLING THE IMAGES: photographic lens – focal length and angle of view (<i>problems</i>) – focusing movement – aperture and f-numbers (<i>problems</i>) – depth of field– depth of focus – image stabilization – lenses for digita cameras – lens and camera care			
UNIT-III	CAMERA USING FILMS AND ITS TYPES: camera and its essentic components- shutter – aperture – light measurement – film housing – camera type view camera- view finder camera – Reflex camera- single lens reflex (SLR) camera			
UNIT-IV	DIGITAL CAMERAS PRINCIPLE AND TYPES: principle of digital image capturing –comparison of digital and analog picture information – megapixel – grain, noise and pixel density – optical and digital zooming – image stabilizer – bi depth – white balance – colour modes – file formats (TIFF, RAW and JPEG) – storage cards and types – digital cameras: camera phones – compact camera – bybrid camera – digital SLP			
UNIT-V	hybrid camera – digital SLR. THE DIGITAL IMAGE – POSTPRODUCTION: hardware: computer and its peripherals – software: saving digital file – basic editing: navigating the image – undo/redo/history – crop – rotate – brightness and contrast – colourbalance – hue/saturation – dodge/burn – cloning and retouching – removing an element in ar image – advanced editing: histogram/levels – curves – selection tools: magic wand – printing digital images: inkjet printer – laser printer – dye sub printer – lambda/light jet printers.			
TEXT BOOKS	 Michel J.Langford, Anna Fox and Richard Sawdon Smith, Basic photography, 9th Edition, 2010-NL, Focal press, London Henry Carroll, Read this if you want to take great photographs of people, Laurence King Publishing 			
REFEREN CE BOOKS	1. Mark Galer, Digital Photography in Available Light essential skills, 2006, Foc			

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	EC1/EC4/EC4
COURSETITLE	ALLIED PHYSICS – I
COURSE CODE	23K1MECP1:1/23K3CHECP4:1/23K3CSECP4:1
CREDITS	4
COURSE	To impart basic principles of Physics that which would be helpful
OBJECTIVES	for students who have taken programmes other than Physics.

UNITS	COURSE DETAILS
UNIT-I	WAVES, OSCILLATIONS AND ULTRASONICS: simple harmonic motion (SHM) – composition of two SHMs at right angles (periods in the ratio 1:1) – Lissajous figures – uses – laws of transverse vibrations of strings – determination of AC frequency using sonometer (steel and brass wires) – ultrasound – production – piezoelectric method – application of ultrasonics: medical field – lithotripsy, ultrasonography –ultrasonoimaging- ultrasonics in dentistry – physiotheraphy, opthalmology – advantages of noninvasive surgery – ultrasonics in green chemistry.
UNIT-II	PROPERTIES OF MATTER: <i>Elasticity</i> : elastic constants – bending of beam – theory of non- uniform bending – determination of Young's modulus by non-uniform bending – energy stored in a stretched wire – torsion of a wire – determination of rigidity modulus by torsional pendulum <i>Viscosity</i> : streamline and turbulent motion – critical velocity – coefficient of viscosity – Poiseuille's formula – comparison of viscosities – burette method, <i>Surface tension</i> : definition – molecular theory – droplets formation–shape, size and lifetime – COVID transmission through droplets, saliva – drop weight method – interfacial surface tension.
UNIT-III	HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule-Thomson porous plug experiment – theory – temperature of inversion – liquefaction of Oxygen– Linde's process of liquefaction of air– liquid Oxygen for medical purpose– importance of cryocoolers– thermodynamic system – thermodynamic equilibrium – laws of thermodynamics – heat engine – Carnot's cycle – efficiency – entropy – change of entropy in reversible and irreversible process.
UNIT-IV	ELECTRICITY AND MAGNETISM: potentiometer – principle – measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – types of switches in household and factories– Smart wifi switches- fuses and circuit breakers in houses
UNIT-V	DIGITAL ELECTRONICS AND DIGITAL INDIA: logic gates, OR, AND, NOT, NAND, NOR, EXOR logic gates – universal building blocks – Boolean algebra – De Morgan's theorem – verification – overview of Government initiatives: software technological parks under MeitY, NIELIT- semiconductor laboratories under Dept. of Space – an introduction to Digital India
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism

	1. R.Murugesan (2001), AlliedPhysics, S. ChandandCo, NewDelhi.				
	2. BrijlalandN.Subramanyam(1994),				
	WavesandOscillations, VikasPublishing House, NewDelhi.				
	3. BrijlalandN.Subramaniam (1994),				
TEXT	PropertiesofMatter,S.ChandandCo.,NewDelhi.				
BOOKS	4. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics (8 th				
	edition), S.ChandandCo., New Delhi.				
	5. R.Murugesan(2005), OpticsandSpectroscopy,S.ChandandCo,NewDelhi.				
	6. A.Subramaniyam,				
	AppliedElectronics2 nd Edn.,NationalPublishingCo.,Chennai.				
	1. ResnickHallidayandWalker(2018).FundamentalsofPhysics(11 th edition),J				
	ohnWilleyand Sons, Asia Pvt.Ltd., Singapore.				
	2. V.R.KhannaandR.S.Bedi (1998), TextbookofSound1 st Edn.				
REFERE	KedharnaathPublishandCo, Meerut.				
NCEBOO	3. N.S.KhareandS.S.Srivastava (1983),				
KS	ElectricityandMagnetism10 th Edn.,AtmaRamandSons, New Delhi.				
	4. D.R.KhannaandH.R. Gulati(1979). Optics, S. Chand and Co.Ltd., New				
	Delhi.				
	5. V.K.Metha(2004).Principlesofelectronics6 th Edn. S.Chandandcompany.				
	1. https://youtu.be/M_5KYncYNyc				
	2. <u>https://youtu.be/ljJLJgIvaHY</u>				
	https://youtu.be/7mGqd9HQ_AU				
	4. https://youtu.be/h5jOAw57OXM				
WEB	5. <u>https://learningtechnologyofficial.com/category/fluid-mechanics-lab/</u>				
RESOURC	6. <u>http://hyperphysics.phy-</u>				
ES	astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/watch?v=gT8				
	<u>Nth9NWPMhttps://www.youtube.com/watch?v=9mXOMzUruMQandt=</u>				
	1shttps://www.youtube.com/watch?v=m4u-				
	SuaSu1sandt=3shttps://www.biolinscientific.com/blog/what-are-				
	surfactants-and-how-do-they-work				

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSE OUTCOMES	CO1	Explain types of motion and extend their knowledge in the study of various dynamic motions analyze and demonstrate mathematically. Relate theory with practical applications in medical field.
	CO2	Explain their knowledge of understanding about materials and their behaviors and apply it to various situations in laboratory and real life. Connect droplet theory with Corona transmission.
	CO3	Comprehend basic concept of thermodynamics concept of entropy and associated theorems able to interpret the process of flow temperature physics in the background of growth of this technology.
	CO4	Articulate the knowledge about electric current resistance, capacitance in terms of potential electric field and electric correlatetheconnectionbetweenelectricfieldandmagneticfieldan danalyzethemmathematicallyverifycircuitsandapplytheconcepts to construct circuits and study them.
	CO5	Interpret the real life solutions using AND, OR, NOT basic logic gates and intend their ideas to universal building blocks.InferoperationsusingBooleanalgebraandacquireelement aryideasofICcircuits.Acquire information about various Govt. programs/ institutions in this field.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	EC1/EC4/EC4
COURSETITLE	APPLIED PHYSICS – I
COURSE CODE	23K1MECP1:2/23K3CHECP4:2/23K3CSECP4:2
CREDITS	4
COURSE	To impart basic principles of Physics that which would be helpful
OBJECTIVES	for students who have taken programmes other than Physics.

UNITS	COURSE DETAILS
UNIT-I	Current Electricity Electric Current - Ampere, Voltage – Volt, Resistance – Ohm - Ohm's Law- Verification of Ohm's Law - Kirchhoff's law - Applications of Kirchhoff's law: Wheatstone's bridge- Metre bridge - Carey foster's bridge- Potentiometer: Measurement of Current, Resistance, Calibration of low range Voltmeter.
UNIT-II	Alternating Current Alternating Current - Alternating e.m.f and Average value of an alternating e.m.f as current - Root Mean Square (RMS) value of an alternating e.m.f and current - Alternating current circuit containing L, C, R, Land R, C and R, LCR - Power in AC circuit: Power in a Pure resistive circuit - Power in a Inductive circuit - Power in a circuit L and R in series -Power factor - LCR circuit - Series resonant circuits - Q factor - Parallel resonant circuit.
UNIT-III	Number Systems, Codes and Logic gates Number Systems - Conversions - Binary: Addition, Subtraction, Multiplication, Division-1's Complement and 2's Complement - Gray code - Binary to Gray and Gray to Binary Conversion - ASCII code - Basic and Derivative Gates: AND, OR, NOT, NAND, NOR, EX-OR - NAND & NOR as Universal Gates.
UNIT-IV	 Boolean algebra and Arithmetic Circuits Laws of Boolean algebra - Verification of Boolean expression - De Morgan's Theorems - Half-adder - Full adder - Half-subtractor - Full subtractor (using basic gates) -Minterm - Maxterm - SOP - POS - Karnaugh map (2 Variable & 3Variable).
UNIT-V	Basics of Digital Computer and Semiconductor MemoriesDigital Computer – Hardware, Software and Firmware - Microprocessoras a CPU -ALU – Memory - Semiconductor Memories – ROM – PROM –EPROM – EEPROM – RAM -Static RAM - Dynamic RAM.
UNIT-VI	Applications of Microprocessor Applications: Speed control of motors, Communication equipment, Traffic light control, Television Satellite Communication and Home Appliances.

1. A. Sundravelusamy, 2011, Applied Physics Paper I & II, Priya
Publications, Karur.
2. Malvino & Leech, 2005, <i>Digital Principles and Applications</i> , Tata
McGraw Hill. New Delhi.
3. V. Vijayendren & V. Subramanian, 2012, Introduction to Integrated
Electronics, S.Viswanathan Pvt Ltd., Chennai.
4. B. Ram, 2016, Fundamentals of Microprocessor and Microcontrollers
(Dhanpat Rai Publications (P) Ltd. New Delhi
5. Brijlal and Subramanyam, 1995, Electricity and Magnetism, Ratan
Prakashan Mandir, New Delhi.
1. Narayanamurthi and Nagarathinam, 1994, Electricity and Magnetism,
The National
Publishing Company, Madras.
2. D. L. Sehgal and K. L. Chopra, 1996, <i>Electricity and Magnetism</i> , Sultan
Chand and
Sons, New Delhi.
3. Ramesh S. Goankar, Microprocessor Architecture Programming and
Applications with the 8085, Penram International Publishing, Mumbai.

CO-PO Mapping with Programming Outcomes:

CO/PO	1	2	3	4	5	6	7	8	9	10
1	М	М	S	-	-	-	-	-	-	-
2	I	Μ	М	-	S	-	-	-	-	_
3	М	-	-	S	-	-	-	-	-	-
4	М	_	S	_	_	S	-	_	_	_
5	-	S	-	-	S	S	-	-	-	-

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	EC2/EC5/EC5
COURSETITLE	ALLIED PHYSICS PRACTICAL – I
COURSE CODE	23K2MECP2P/23K4CHECP5P/ 23K4CSECP5P
CREDITS	2
COURSE OBJECTIVES	Apply various physics concepts to understand Properties of Matter and waves, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method.
- 4. Rigidity modulus by torsional oscillations without mass
- 6. Surface tension and interfacial Surface tension drop weight method
- 7. Comparison of viscosities of two liquids burette method
- 8. Specific heat capacity of a liquid half time correction
- 9. Verification of laws of transverse vibrations using sonometer
- 10. Calibration of low range voltmeter using potentiometer
- 11. Determination of thermo emf using potentiometer
- 12. Verification of truth tables of basic logic gates using ICs
- 13. Verification of De Morgan's theorems using logic gate ICs.
- 14. Use of NAND as universal building block.
- *Note* : Use of digital balance permitted

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	EC3/EC6/EC6
COURSETITLE	ALLIED PHYSICS –II
CREDITS	3
COURSE CODE	23K2MECP3:1/23K4CHECP6:1/23K4CSECP6:1
COURSE OBJECTIVES	To understand the basic concepts of optics, modern Physics, concepts of relativity and quantum physics, semiconductor physics, and electronics.

UNITS	COURSE DETAILS
UNIT-I	OPTICS: interference – interference in thin films – colors of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction – diffraction of light vs sound – normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double reflection – Brewster's law – optical activity – application in sugar industries
UNIT-II	ATOMIC PHYSICS: atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Bohr magneton – Stark effect – Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation – applications of photoelectric effect: solar cells, solar panels, optoelectric devices
UNIT-III	NUCLEAR PHYSICS:nuclear models – liquid drop model – magicnumbers – shell model – nuclear energy – mass defect – binding energy– radioactivity – uses – half life – mean life - radio isotopes and uses –controlled and uncontrolled chain reaction – nuclear fission – energyreleased in fission – chain reaction – critical reaction – critical size- atombomb – nuclear reactor – breeder reactor – importance of commissioningPFBR in our country – heavy water disposal, safety of reactors: seismicand floods –introduction to DAE, IAEA – nuclear fusion –thermonuclear reactions – differences between fission and fusion.
UNIT-IV	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL WAVES: frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox – mass- energy equivalence –introduction on gravitational waves, LIGO, ICTS opportunities at International Centre for Theoretical Sciences
UNIT-V	SEMICONDUCTOR PHYSICS: p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode – characteristic of zener diode – voltage regulator – full wave bridge rectifier – construction and working – advantages (no mathematical treatment) – USB cell phone charger –introduction to e-vehicles and EV charging stations
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism

	1 D Manager (2005) All's I Plansing C Chanden IC a Nam Dalle
	1. R.Murugesan (2005), Allied Physics, S.ChandandCo, NewDelhi.
	2. K.ThangarajandD.Jayaraman(2004),
	AlliedPhysics,PopularBookDepot,Chennai.
	3. BrijlalandN.Subramanyam(2002),
TEXT BOOKS	TextbookofOptics,S.ChandandCo,NewDelhi.
	4. R.Murugesan (2005), ModernPhysics, S.ChandandCo, NewDelhi.
	5. A.SubramaniyamAppliedElectronics,
	2 nd Edn.,NationalPublishingCo.,Chennai.
	-
	1. ResnickHallidayandWalker (2018), FundamentalsofPhysics,
	11 th Edn.,JohnWilleyandSons, Asia Pvt.Ltd.,Singapore.
	2. D.R.KhannaandH.R. Gulati (1979).Optics, S.ChandandCo.Ltd.,New
	Delhi.
REFERENCE	3. A.Beiser (1997),
BOOKS	ConceptsofModernPhysics,TataMcGrawHillPublication,NewDelhi.
	4. Thomas L. Floyd (2017), Digital Fundamentals, 11 th Edn., Universal
	Book Stall, NewDelhi.
	5. V.K.Metha(2004), Principlesofelectronics, 6 th Edn. ,S.Chandand
	Company, New Delhi.
	1. <u>https://www.berkshire.com/learning-center/delta-p-</u>
	facemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://w
	dfeature=emb_logo
WEB	2. https://www.youtube.com/watch?v=JrRrp5F-Ou4
RESOURCES	
	transducers/
	4. <u>https://www.atoptics.co.uk/atoptics/blsky.htm</u> -
	5. https://www.metoffice.gov.uk/weather/learn-about/weather/optical-
	effects
	 https://www.berkshire.com/learning-center/delta-p- facemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://w ww.youtube.com/watch?time_continue=318andv=D38BjgUdL5Uan dfeature=emb_logo https://www.youtube.com/watch?v=JrRrp5F-Qu4 https://www.youtube.com/blog/leak-test-using-pressure- transducers/ https://www.atoptics.co.uk/atoptics/blsky.htm - https://www.metoffice.gov.uk/weather/learn-about/weather/optical-

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Explain the concepts of interference diffraction using principles of super position of waves and rephrase the concept of polarization based on wave patterns
	CO2	Outline the basic foundation of different atom models and various experiments establishing quantum concepts. Relate the importance of interpreting improving theoretical models based on observation. Appreciate interdisciplinary nature of science and in solar energy related applications.
COURSE OUTCOMES	CO3	Summarize the properties of nuclei, nuclear forces structure of atomic nucleus and nuclear models. Solve problems on delay rate half-life and mean-life. Interpret nuclear processes like fission and fusion. Understand the importance of nuclear energy, safety measures carried and get our Govt. agencies like DAE guiding the country in the nuclear field.
	CO4	To describe the basic concepts of relativity like equivalence principle, inertial frames and Lorentz transformation. Extend their knowledge on concepts of relativity and vice versa. Relate this with current research in this field and get an overview of research projects of National and International importance, like LIGO, ICTS, and opportunities available.
	CO5	Summarize the working of semiconductor devices like junction diode, Zener diode, transistors and practical devices we daily use like USB chargers and EV charging stations.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	EC3/EC6/EC6
--------	-------------

COURSETITLE	APPLIED PHYSICS – II
COURSE CODE	23K2MECP3:2/23K4CHECP6:2/23K4CSECP6:2
CREDITS	4
COURSE	To impart basic principles of Physics that which would be helpful
OBJECTIVES	for students who have taken programmes other than Physics.

UNITS	COURSE DETAILS
	Semiconductor Physics
UNIT-I	Conductor – Insulator – Semiconductor – Distinguish between conductors, Insulators and Semiconductors- Intrinsic and Extrinsic semiconductors - P-type – N-type - Energy band description of semiconductors - P-N Junction diode: Characteristics of PN junction diode- Avalanche Breakdown and Zener Breakdown - Zener diode: Characteristics of Zener diode – Transistors: PNP and NPN transistors, Transistor action, Common Emitter configuration.
	Lasers and Opto-Electronic devices
UNIT-II	Laser – Absorption – Spontaneous Emission- Stimulated Emission – Population Inversion - Pumping Methods - Ruby Laser - Applications of Laser (List out the fields only) Photo electric effect - Laws of Photo electric emission – Photoelectric Cells: Photo emissive cell, Photo voltaic cell, Photo Conductive Cell – LED - Seven Segment Display-Advantages and disadvantages of LED's.
	Operational Amplifiers
UNIT-III	Operational Amplifier – Properties-Inverting and Non inverting Operational amplifier – CMRR – Basic Operational Amplifier Circuits: Sign changer, Scale changer, Phase shifter, Inverting Summing Amplifier (Adder), Difference Amplifier (Subtractor), Integrator and Differentiator.
	IC Fabrication
UNIT-IV	Integrated Circuits - Active and Passive components - Scale of Integration -Fabrication of monolithic IC's: Epitaxial growth, Masking and Etching - Fabrication of IC components: Transistors and Resistors - Advantages and Disadvantages of IC's.
	Fibre Optics
UNIT-V	Introduction to Fibre Optics -Optical Fibre - Principle and Propagation of light in optical fibre - Acceptance Angle - Numerical Aperture - Types of optical fibres: Materials, Modes, Refractive Indices - Fibre Optical Communication system (Block diagram) - Fibre Optic Sensors – Types of sensors – Intrinsic sensors – Extrinsic sensors: Displacement sensor.
	Applications
UNIT-VI	i) Semiconductors

	ii) Optoelectronic Devicesiii) Fibre Optics
TEXT BOOKS	 V.K. Mehta, 2010, Principles of Electronics, S.Chand & Co. New Delhi (UNIT I& IV). Dr.G. Senthil Kumar, 2007, Engineering Physics – I, VRB Publishers, Chennai (UNIT II & V). R.Murugesan, 2002, Modern Physics, S.Chand & Co. New Delhi (UNIT II) V. Vijayendran, 2010, Introduction to Integrated Electronics (Digital & Analog), S.Viswanathan, PVT. LTD. Chennai (UNIT II).
REFERENCE BOOKS	 A. Ambrose and T. Vincent Devaraj, 1990, <i>Introduction to Electronics</i>, Meera Publications. Jacob Millman, 1985, <i>Micro Electronics</i>, Mc Graw Hill. New Delhi.

CO-PO Mapping with Programming Outcomes:

CO/PO	1	2	3	4	5	6	7	8	9	10
1	М	М	S	-	-	-	-	-	-	-
2	-	Μ	Μ	-	S	-	-	-	-	-
3	М	-	-	S	-	-	-	-	-	-
4	М	-	S	-	-	S	-	-	-	-
5	-	S	-	-	S	S	-	-	-	-