Kunthavai Naacchiyaar Government Arts College(W)

(Autonomous), Thanjavur-613 007.

Department of Physics

FIRST ALLIED PHYSICS - I

18K1MAP1
1.Mrs.A.Velumani(UNIT-I)

Dept.of Physics,KNGAC,TNJ.
2.Mrs.M.Suganthi,(UNIT-II)

Dept.of Physics,KNGAC,TNJ.
3.Dr.S.Snega,(UNIT-III)
Dept.of Physics,KNGAC,TNJ.
4.Dr.N.Geetha,(UNIT-IV)

Dept.of Physics,KNGAC,TNJ.
5.Mrs.D.S.Vasanthi,(UNIT-V)

Dept.of Physics,KNGAC,TNJ.

Untt-1 ELASTICITY

Introduction
A body can be deformed (i.e. changed in shape or size, by the suitable application of external forces on it. A body is said to be perfectly elastic, if it regains its orginal shape or size, when the applied forces are removed. This property of a body to regain its original state or condition on removal of the applied forces is called elasticity. A body which does not tend to regain its original shape or size, even when the applied forces are removed, is called a perfectly plastic body. No body' in nature, is either perfectly elastic or perfectly plastic. Quarts fibre is the nearest approach to a perfectly elastic body.

Stress:
When an external force is applied on a body, there will be relative displacement of the particles and due to the property of elasticity, the particles tend to regain their original positions. stress is defined as the restoring force per unit area. If a force F is applied normally to the area of cross-section A of a wire, then stress $=F / A$. Its dimensions are $M L^{-1} T^{-2}$.
Thermal stress:
Suppose the ends of a rod are rigidly fixed, so as to prevent expansion or contraction. If the temperature of the rod is changed. tensile ar compressive stresses, called thermal stresses, will be stressesd even beyond its breaking strength. The stress is tensile when there is an increase in length. The stress is compressive
when there is a decrease in length. A tangential stress tries to slide each layen of the body oven the layer immediately below it.
strain:
When a deforming force is applied there is a change in length, shape or volume of the body. The ratio of the change in any dimensions to its original value is called strain. It is of three types:
(1) The ratio of changed in length (l) to original length (l) is called longitudinal strain $(1 / L)$
(2) Let $A B C D$ be a body with the side $C D$ fixed. suppose a tangential force F is applied on the expel face $A B$. Therefore, body is changed to $A^{\prime} B^{\prime} C D$. The Body is sheared by an angle ϕ. The angle ϕ measured in radian is called a shearing strain (ϕ)
(3) Volume strain (Bulk strain) : The ratio of change in volume to original volume (V) is called volume strain (v / V)

Hooke's Law :
Within elastic limit, the stress is directly proportional to strain, stress α strain or Stress/strain $=E$. E is constant called modulus of elasticity.

The dimensions formula of modulus of elasticity is $M L^{-1} T^{-2}$. It units are Nm^{-2}.
1.2 Different Moduli of Elasticity
(1) Young's modulus (E) : It is defined as the ratio of longitudinal stress to longidudinal strain within elastic limit. Let a wire of length and area of coss section A undergo an increase in length l. when stertching force F is applied in the direction of this length.
$\begin{aligned} & \text { Then, longitudinal stress }=F / A \text { and longitudinal strain } \\ &=t / L\end{aligned}$

$$
\therefore \quad E=\frac{F / A}{I / L}=\frac{F L}{A l} .
$$

(2) Rigidity modulus (G) : It is defined as the ratio of tangential stress to shearing strain.
consider a solid rube $A B C D E F G H$ (Fig). The lower face $C D G H$ is fished and a tangential force F is applied over the upper face $A B E F$. The result is that each horizontal layer of the aube Is displaced, the displacement being proportional to its distance from the fired plan. point A is shifted to A^{\prime} B to B^{\prime}, E to E^{\prime} and F to F^{\prime} through
 an angle ϕ, when $A A^{\prime}=E E^{\prime}=l$.
clearly $\phi=\ell / L$ where l is the
relative displacement of the upper face Do the cube with respect to the lower fixed face distant 1 from it.

This angle ϕ through which a line originally perpendicular to the fixed face is turned, is a measure of the shearing strain.

Nolo, Rigidity modulus $(G)=\frac{\text { Tangential stress }}{\text { shearing strain }}=\frac{F / A}{\phi}$
Here, $A=L^{2}=$ Area of the face $A B E F$.
$\therefore \quad G=T / \phi$ where $T=$ Tangential stress.
(3) Bulk modulus (K) : It is defined as the ratio of volume stress (Bulk stress) to the volume strain. when three equal stresses (F / A) act on a body in mutually perpendicular directions; such that there is a change of volume v in its original volume V, we have. stress $=$ pressure $P=F / A$. Volume strain $=-v / V$. The negative sign indicates that if pressure increases, volume decreases

$$
\therefore k=\frac{\text { Bulk stress }}{\text { volume strain }}=\frac{F / A}{-v / V}=\frac{P}{-v / V}
$$

poisson's Ratio (V): when a wire is strectaed, it becomes longen but thinner, (i.e) although its length increases its diameter decreases, when a wire elongates freely in the direction of a tensile stress, it constracts laterally.
(i.e) in a direction perpendicular to the force). The ratio of lateral contraction to the longitudinal elongation is called poisson's ratio. It is denoted by a tetter v.

$$
\nu=\mu / \lambda \text {. }
$$

1.7 Relation between the Elastic Moduli
suppose three stresses P, Q and R are acting perpendicular to the three faces $A B C D, A D H F$ and $A B F E$ of a unit cube of an istropic material. Each one of these stresses will produce an extension in its own direction and a compression along the other two perpendicular directions.

Let all the tire stresses act. sumuttaneously on the cube.
Net elongation along the direction of P

$$
=e=\lambda P-\mu Q-\mu R
$$

Net elongation along the direction of Q

$$
=f=\lambda Q-\mu P-\mu R ;
$$

Net elongation along the direction of R

$$
=g=\lambda R-\mu P-\mu Q
$$

We can express the three elastic constants E, G and K in terms of λ and μ.

Case (1): suppose only the stress p acts and $Q=R=0$

$$
\begin{aligned}
& \text { The linear strain }=e=\lambda \cdot P \\
& \therefore \text { The young's modulus }=E=\frac{\text { stress }}{\text { Linear strain }}=\frac{p}{\lambda \cdot P}=1 / \lambda \\
& \lambda=\frac{1}{E} \rightarrow \text { (1) }
\end{aligned}
$$

case (il): suppose the stress $R=0$ and $P=-Q$

$$
e=\lambda \cdot p-\mu(-p)=(\lambda+\mu) p
$$

The angle of shear $\phi=2 e=2(\lambda+\mu) p$

$$
\begin{aligned}
& G=\frac{\text { stress }}{\text { Angle of shear }}=\frac{P}{\phi}=\frac{p}{2(\lambda+\mu) P^{\prime}}=\frac{1}{2(\lambda+\mu)} \\
& 2(\lambda+\mu)=\frac{1}{G} \longrightarrow(2)
\end{aligned}
$$

case (iii): Let $P=Q=R$.

$$
\begin{aligned}
& \text { Let } P=Q=R . \\
& 3 e=3(\lambda-2 \mu) P
\end{aligned} \quad[\therefore e=\lambda P-\mu P-\mu P=(\lambda-2 \mu) P]
$$

The bulk strain $=3(\lambda-2 \mu) \cdot P$

$$
\begin{aligned}
& \text { The bulk modulus }=k=\frac{\text { Stress }}{\text { Bulk strain }}=\frac{P}{3(\lambda-2 \mu) P}=\frac{1}{3(\lambda-2 \mu)} \\
&(\lambda-2 \mu)=1 / 3 k \longrightarrow \longrightarrow(3)
\end{aligned}
$$

(1) Relation between E, G and k,

$$
\begin{array}{ll}
2(\lambda+\mu)=1 / G, & 2 \lambda+2 \mu=1 / G \rightarrow(4) \\
\lambda-2 \mu=1 / 3 k & \rightarrow(5)
\end{array}
$$

Adding (4) and (5), $3 \lambda=\frac{1}{G}+\frac{1}{3 k}=\frac{3 k+G}{3 G k}$

$$
\begin{aligned}
& \lambda=\frac{3 K+G}{9 G K} \longrightarrow(6) \\
& \lambda=1 / E \\
& E=\frac{9 G K}{3 K+G} \longrightarrow(7)
\end{aligned}
$$

2. Relation between G, K and ν
(2) $\Rightarrow \lambda+\mu=\frac{1}{2 G}$
(3) $\Rightarrow \lambda-2 \mu=\frac{1}{3 k}$

Subracting (3) from (2),

$$
\begin{aligned}
3 \mu & =\frac{1}{2 G}-\frac{1}{3 k} \\
\mu & =\frac{3 k-2 G}{18 G k} \longrightarrow(8) \\
\nu & =\frac{\mu}{\lambda}=\frac{(3 k-2 G)}{18 G k} \times \frac{9 G k}{(3 k+G)} \text { us } \\
v & =\frac{(3 k+2 G)}{6 k+2 G} \longrightarrow(9)
\end{aligned}
$$

3. Relation between E, G and V
(1) $\Rightarrow \lambda=1 / E$
(2) $\Rightarrow \lambda+\mu=1 / 2 G$

Dividing (2) by (1), $\frac{\lambda+\mu}{\lambda}=\frac{E}{2 G}$

$$
\begin{gathered}
1+\frac{\mu}{\lambda}=\frac{E}{2 G}(0 \gamma) 1+\nu=\frac{E}{2 G} \\
\nu=\frac{E}{2 G}-1 \longrightarrow(10)
\end{gathered}
$$

4. Limit to the value of v

$$
(a) \Rightarrow v=\frac{3 k^{0}-2 G}{6 k+2 G}
$$

$3 k(1-2 v)=2 G(1+v) \quad \longrightarrow(11)$
$(1+v)$ is positive, $(1-2 v)>0, v<\frac{1}{2},(1-2 v)$ positive $(1+v)$ positive: $(1-2 v)$ positive. In actual practice v is always a positive quantity and lies between 0 and 0.5

Bending of Beams
Definition
Beam : A beam is defined as a rod or Bar of wiform cross-section whose length is very much greater than its thickness.
Bending couples: If a beam is fixed at one end and leaded at the other end, it bends. The load acting vertically downwards at its free end and the reaction at the support acting vertically upwards, constitude the Bending couple. This couple tends to bend the beam clockwise. Since
 there is no rotation of the Beam, the external bending. couple must be balanced by another of the body.
plane of Bending: when a beam is bent as in figure, filaments like ab in the upper part of the Beam ane elongated and filaments like ed in the lower part are compressed. Therefore, there must be a filament like of in between, which is neither elongated non compressed. such a filament is known as the neutral filament and the axis of the beam lying on the neutral filament is the neutral axis. plane of Bending: The plane of Bending is the plane in which the bending takes place and the bending couple acts in the plane.
1.15 Expression for the Bending moment
consider a portion of the beam to be bent into a circular arc, as shown in figure. of is the neutral axis Let R be the radius of curvature of the neutral axis
and θ the angle substended by. it at its centre of curvature C.

Filaments above of are elongted while filaments below of are compressed. The filaments of remains unchanged in length.

original length $=a^{*} b^{*}=R \theta$
Its extended length $=a^{\prime} b^{\prime}=(R+z) \theta$
Increase in its length $=a^{\prime} b^{\prime}-a b=(R+z) \theta-R \theta=z \cdot \theta$

$$
\therefore \text { Linear strain }=\frac{\text { increase in length }}{\text { original length }}=\frac{z \cdot \theta}{R \cdot \theta}=\frac{z / R_{a^{\prime}}}{}
$$

If E is the young's modulus of the materials.
$E=$ Stress $/$ Linear strain

$$
\text { (ie) stress }=E \times \text { Linean strain }=E(z / R)
$$

If δz is the area of cross-section of the filament. the tensile force on the area $\delta A=$ stress \times area $=\frac{E \cdot Z}{R} S A$ Moment of this force about the neutral axis of

$$
=\frac{E \cdot Z}{R} \delta A \cdot Z=\frac{E}{R} \delta A \cdot Z^{2}
$$

The suer of the moment of forces acting all the filaments $\}=\sum \frac{E}{R} 8 A \cdot z^{2}$

$$
=\frac{E}{R} \sum \delta A \cdot z^{2}
$$

$\sum \delta A \cdot z^{2}$ is called the geometrical moment of inertia of the cross-section of the beam about an axis through its centre perpendular to the plane of bending. It is written. as equal to $A K^{2}$.(ie) $\sum \delta A \cdot Z^{2}=A K^{2}$

Thus, bending moment of a beam $=E A K^{2} / R$
Notes: (i) For a rectangular beam of breath b, and depth d. $A=b d$ and $k^{2}=d^{2} / 12$

$$
\therefore \quad A K^{2}=b d^{3} / 12
$$

(ii) FIn a beam of circular cross-section of radius $\pi, A=\pi r^{2}$ and $k^{2}=r^{2} / 4$

$$
A K^{2}=\pi \gamma^{4} / 4
$$

(iii) $E A K^{2}$ is called the flesural riditidy of the beam.
1.21 Measurement of young's modulus - By bending of a beam.
(1) Non-Uniforming Bending:

The given beam is symmetrically
supported on tur rnife-edges. A waight-hangen is suspended by means of a loop of thread from ca point c exactly mid -way between the knife-edges. A pin is fixed vertically at c by some wax. A travelling microscope is focused on the dip of the pin such that the horizontal cross wire coincides with the tip of the pin. The reading in the vertical traverse scale of microscope is
 noted. Weights are added in equal steps of $m \mathrm{~kg}$ and the corresponding readings are noted. similarly, readings are noted while unloading. The results are tabulated as follows.

load in kg	Readings of the microscope		y for $M \mathrm{~kg}$	
Hood increasing	Rood decreasing	Mean		

The breadth b and the thickness d of the beam are measured with a vernien calipers and screw gauge respectively.

Then, $y=\frac{w l^{3}}{48 E A K^{2}}$ (or) $E=\frac{w l^{3}}{48 A K^{2} y}$
(or)

$$
\begin{aligned}
& E=\frac{M g l^{3}}{48 \times\left(b d^{3} x_{12}\right) \times y} \\
& E=\frac{M g x^{3}}{4 b d^{3} y}
\end{aligned}
$$

$$
C \because W=M g \text { and } A K^{2}
$$

pin and Microscope Method:
The given beam is supported symmetrically on two kaife-edges A and B. Two equal.
weight-hangers are suspended so that their distances from the knife-edges are equal. A pin is placed vertically at the centre of the beam. The tip of the pin is viewed by a microscope. The load on each hanger is increased in equal steps of $m \mathrm{~kg}$ and the corresponding microscope readings are noted.

Load in kg	Readings of the -microscope			y for $M \mathrm{~kg}$
	load increasing	load decreasing	Mean	

The mean elevation (y) of the centre for $M \mathrm{~kg}$ is formed. The length of the beam l between the knife-edges and a, the different between the point of suspension of the load and the heaven knife-edge are measured.

$$
\begin{aligned}
y & =\frac{\text { wal }^{2}}{8 E A K^{2}}=\frac{\mathrm{Mgal}^{2}}{8 E\left(\mathrm{bol}^{3} / 12\right)} \\
\therefore \quad E & =\frac{3 \mathrm{Mgal}^{2}}{2 \mathrm{bd}^{3} y}
\end{aligned}
$$

using the above formula we can calculate the young's modulus of the material of the seam.

$$
\begin{aligned}
& \text { 2x Liめ }
\end{aligned}
$$

1.3 2ூकீ 2n5ी (Hooke's Law):

$$
\begin{align*}
& \text { कळகみ }=\text { Lormiar } \times \text { कीनि } 4 \tag{g}\\
& \frac{\text { 50060 }}{5 \ln 14}=\text { (01mm)01 }
\end{align*}
$$

ケீเัசிந் कीति4 $=\operatorname{del} / \mathrm{J}$
Wम゙கणणनकம் $q=\frac{F / A}{d d / 1}=\frac{F l}{A \cdot d l}$

$$
\text { सकाएँ कण्काज510 }(K)=\frac{F / A}{d V / V}
$$

$$
\therefore k=\frac{d p}{(d V / V)}=V \cdot \frac{d P}{d V}
$$

(Belation between Elastic modulus)

 のध

$$
e=\lambda p-(a+R) \mu
$$

$$
\begin{aligned}
& f=\lambda Q-\mu(P+R) \\
& g=\lambda R-\mu(P+Q)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { मिट्धीक्ष कीनिय } c=\lambda P
\end{aligned}
$$

$$
\begin{align*}
& q=1 / \lambda \quad(\Leftrightarrow) \lambda=1 / q \tag{1}
\end{align*}
$$

 कीतीUण

$$
\begin{align*}
& \text { आாைப̆मए एण्णமเம் } n=\frac{p}{2(\lambda+\mu) p}=\frac{1}{2(\lambda+\mu)} \\
& \lambda+\mu=\frac{1}{2 n} \tag{2}
\end{align*}
$$

$$
\therefore c=\lambda p-\mu p-\mu p=(\lambda-2 \mu) p
$$

$$
3 C=3(\lambda-2 \mu) P
$$

Нनफ की あलिकएँ $k=P / 3 C=P / 3(\lambda-2 \mu) P$

$$
\begin{equation*}
\therefore \lambda-2 \mu=\frac{1}{3 k} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
2 \lambda+2 \mu=\Delta / n \tag{4}
\end{equation*}
$$

$$
3 \lambda=1 / 3 k+1 / n
$$

शकरणमात (1) न्ण 以 $A=1 / q$

$$
\begin{align*}
& \frac{3}{q}=2 / 3 k+\frac{1}{n}=\frac{n+3 k}{3 k n} \\
& q=\frac{9 n k}{n+3 k}
\end{align*}
$$

सबत० $\frac{3}{9}=\frac{n+3 k}{n k}$

$$
\begin{aligned}
& \frac{q}{q}=\frac{n+3 k}{3 n k} \\
& \frac{q}{q}=\frac{1}{k}+\frac{3}{n}
\end{aligned}
$$

$$
\begin{align*}
\lambda+\mu & =\Delta / 2 n & & \cdots(2) \\
\lambda-2 \mu & =4 / 3 k & & \cdots(3) \\
\text { (2)-(3) } \quad 3 \mu & =\frac{3 k-2 n}{18 \mathrm{kn}} & & \therefore \mu=\frac{3 k-2 n}{18 k n} \tag{8}
\end{align*}
$$

(2) $\times 2 \quad 2 \lambda+2 \mu=1 / n$

$$
\begin{align*}
\lambda & -2 \mu=1 / 3 k \quad \text { Floatunghmon करा } \\
3 \lambda & =\frac{1}{n}+\frac{1}{3 k}=\frac{3 k+n}{3 k n} \\
\lambda & =\frac{3 k+n}{9 k n}
\end{align*}
$$

$$
\begin{align*}
\sigma & =\frac{3 k-2 n}{18 n k} \times \frac{9 k n}{3 k+n} \\
\sigma & =\frac{3 k-2 n}{6 k+2 n} \tag{10}
\end{align*}
$$

$$
\begin{array}{ll}
\therefore 1+\mu / \lambda=\frac{q}{2 n} & \text { \&कorrai } \mu / \lambda= \tag{II}\\
1+\sigma=q / 2 n & , \sigma=\frac{q}{2 n}-1
\end{array}
$$

$$
\begin{aligned}
6 k \sigma+2 n \sigma & =3 k-2 n \\
2 n+2 n \sigma & =3 k-6 k \sigma \\
2 n(1+\sigma) & =3 k(1-2 \sigma)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sigma<1 \\
& \sigma<1 / 2
\end{aligned}
$$

$$
1+\sigma>0 \quad \text { (शबण०ण5) } \quad \sigma>-1
$$

（Expression for bending moment）

 நबतीक al

कーがy
$N F$－ゲ

8108012 Jion

$$
\begin{equation*}
\text { Бब्बकव }=q \times \text { हीता } 4=q \cdot \alpha \cdot P N \tag{2}
\end{equation*}
$$

कौण $F=$ 50ッणुय $\times d s$

$$
\begin{equation*}
F=q \cdot \alpha \cdot p N \cdot d s \tag{3}
\end{equation*}
$$

शन्णात் $\sum(P N)^{2} d s=A K^{2}$
 of inertia)

$$
\begin{aligned}
& \frac{P X}{N Y}=\frac{P Q}{N O} \text { (3) } \\
& \frac{P X}{N Y}-1=\frac{P D}{N O}-1 \\
& \frac{P x-N y}{N Y}=\frac{P O-N O}{N O}=\frac{P N}{R}
\end{aligned}
$$

gाP4 $c=\frac{P N}{R}$

$$
\begin{equation*}
\therefore \alpha \cdot P N=\frac{P N}{R} \quad \text { (r) } \alpha=\frac{R}{R} \tag{9}
\end{equation*}
$$

 $k^{2}=d^{2} / 12$

$$
\begin{equation*}
A k^{2}=b d^{3} / 12 \tag{II}
\end{equation*}
$$

$$
\begin{align*}
& A K^{2}=\pi r^{3} / 4 \tag{12}
\end{align*}
$$

i) figrim qonaray 4omm (non-unitorm Banding method)

$$
q=\frac{M g t^{3}}{4 b d^{3} y} \quad \text { B) } \cdot b^{-2}
$$

unit-II

TGRRMOMFIRY

* Thermometry:-
* The branch of heat pertaining to the meastoument of tempreture of a body is called thermometry.
* Thermometer:-

The thermometer is an instroment to measure The sempreture of a body

* The essential requisites of a thermometer are -

4) Construction
a) Calibration and
5) Sentiveness.
6) Construction:

* The physical property of a substance plays an important role in the construction. of a thermoses In a mevaury thermometer, the principle of expansion of meraoy with rise in temperature is wed. Thus, for the the construction of a thermometer. The proper choice of a substance, those physical property varies with rise in tempreture, is essential.
2). Callibration:
* When a thermometer is constructed, it should be properly calibrated. The standard fixed points are selected for calibrating a thermometer.

3) Sensitiveness:

* The instrument, once constructed and calibrated. should also be sensitive. The thermometer will be sensitive if (i) it can detect corm small changes in temproture, ii) it shows the tompreture of a body in a short time and iii) it does not take large quantity of heat for its own heating from the body whose temperature is being measwerd.
* TYPES OF THERMOMETERS -
* There are different kinds of thermometer;
(4)
(1) Liquid thermometer ${ }^{2}$
* These thermometers are based on the principle of change in volume of a liquid with change in tempretire. Mercury of alcohol thermonezters are based on this principle.
(a) Gas Thermometer:-
* These are bared on the principle of change in pressure $(o r)$ volume with change in tempreture. eeg. Callondar's constant pressure thermometer.
(3) Resistance Thermometer:-
* These are based on the principle of change in resistance with change in tompreture. oo. platinum resistance Thermometer.
(4) Thermos electric thermometer :
* These are based on the principle of Thermo-selectricity, i, e., production of Thormo-EMF. in a thermo. Couple when the two junctions are at different tempretures.
* The various thermocouples commonly used are:-
(1) Copper and constantan (a) Iron and constantan
(3) Chromal and constantan 4) Choral and alumel
(5) platinum and Rhodium.
(5) Radiation thermometer:
* These are based on the quantity of heat radiatia emitted by a body eg .1 furnaces.
(b) Vapour pressure thermometers:
* These are based on the principle of change of vapour pressure with change in tempreture. These vapour pressure theromester
(7) Bimatalic thermomotor:-
* These tharmomaturs are based on the principle of expansion of solids. They are on the prime also used to moastore tempreture at high altitudes.
(8) Magnetic thermometer
* These thermometer are based on the principle of change in the suscoptibitity of a substance with tempreture. These thermometers are useful for measuring low tempretures near the absolute zero tompreture.
* Centigrade, fahrenheit and Rankine Scales -
* Centigrade (or Gelsium) Scale :
* Celsius, in 1742, suggested the centrigrate system of temperatures. He marked kero at the lower fixed point and 100 at the upper fixed point. The interval between the two fixed points is divided in to 100 equal parts. Each part of degree represent $I^{\prime \prime}$ con i° celsius.
* Fahrenheit scale+
* Fahrenheit y in 1720 , suggested This scale by taking zero as the tomprature of the freezing mixture. I1 appears that he took 100 dogies as the the tompreture of this human body. Later the correct tempreture of the human bolos on this scale was found to be $98.1^{\circ} \mathrm{F}$. The lower fixed point is marked as 32 and the upper fixed point is marked as 212 . The interval is divided into 180 equal parts. Each part cons degrees expressents $1^{\circ} \mathrm{F}$.

Relation. Consider two identical Thuromometar marked in Centrigrade and Fatzen hit scales. Place the two thermometers,

$$
\begin{aligned}
& \therefore \frac{M L}{M N}=\frac{C-0}{100-0} \\
&=\frac{F-32}{212-32} \quad \text { cor } \frac{C}{100}=\frac{F-32}{180} \\
& \text { Contrigrade }
\end{aligned}
$$

* Relation Between cesius, kelvin, Fahrenheit and Rankine scales of TEMPRETURE -

Relation,

$$
\frac{c-0}{100}=\frac{F-32}{180}=\frac{k-273}{100}=\frac{R-492}{180}
$$

Also

$$
\frac{K}{100}=\frac{R}{180}
$$

* This method is used to determine the thermal conductivity of poor conductive viz, rubber, glass. ebonite, wood, cork etc. The specimen is taken in the form of two thin discs D_{1} and D_{2} about 10 cm in diancoter and 2 to 3 mme Thick. The disc D_{1} is pressed between two copper plates C_{1} and C_{2} and D_{2} is pressed between the copper plates C_{3} and C_{4}. Discs C_{1} and C_{3} censure normal flow of heat through the experiment al plates D_{1} and $D_{2} . H$ is a heater coil and T_{1}, T_{2}, T_{3}, and T_{1} are four therme - couples used to measure temperatures. The surface of D_{1} and D_{2} are coated with glycerine so that these surfaces make good thermal contact with the copper plates.
* A steady current I is passed through the heater coil H. The potential difference across the heater coil is E.
* Apter the study is reached the tompretures of the thermometor T_{1}, T_{2}, T_{3} and T_{4} are noted. Let the tompreture be Q_{1}, Q_{2}, Q_{3} and Q_{1} respectively: In the steady state, heat generated in the heater coil is lost from the swiface of C_{2} and C_{4}, and heat lost from the sims of C_{1}, C_{2}, D_{4} and D_{2} is negligible due to the small thickness of plates.

Lat d_{1} be the thickness of the disc D_{1} and d_{2} the thickness of the disc De . Ho at produced by heater coil in one second,

$$
=\frac{E_{1}}{4 \cdot 2} \text { calories }
$$

Heat passing through P_{1} and D_{2} in ane second

$$
=\frac{k A\left(\theta_{1}-\theta_{2}\right)}{d_{1}}+\frac{K A\left(\theta_{3}-\theta_{4}\right)}{d_{2}}
$$

Equating (i) and (ii)

$$
\frac{E I}{A \cdot 2}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d_{1}}+\frac{k A\left(\theta_{3}-\theta_{4}\right)}{d_{2}}
$$

The value of k is calculated from equation (iii)

* Les's disc Methods for bad Conductors
* The appratus consists of a cylindrical stoan. chamber A, the specimen disc D and brass or copper block C. The whole apparatus is suspended from the stand. T_{1} and T_{2} are the thrormometors used to determine the timprotwre after the steady state is reached.
* Steam is passed through the chamber and the readings of the thermometors T_{1} and T_{2} are noted after the steady state is reached. The heat passing through D in one second is equal to the heat radiated by the exposed surface of C in one second.

$$
\therefore \frac{K A\left(Q_{1}-Q_{2}\right)}{d}=m s \frac{d \theta}{d t}\left[\frac{A+3}{2 A+5}\right]
$$

* From equation (i) K can be calculated.
* Newton's LAW OF COOLING:
* Newton's Law of Cooling states that the rate of loss of heat of a body in directly proportional to the difference of tompreture of the body and the surroundings. The slaw holds good only for small difference of temperature. Also, the loss of heat by radiation depends upon the nature of the ruryace of the body and the area of exposed surface.

$$
\frac{d \theta}{d t} \alpha\left(\theta-\theta_{0}\right) \text { or } \frac{d \theta}{d t}=k\left(\theta-\theta_{\theta}\right)
$$

Consider a body of mass m, specific heat c and at tempreture θ. Let θ_{0} be the temperature of the sworoundings. Suppose, the temperature falls by a dmall amount do in time at. Then the amount of heat lost.

$$
d Q=m c d \theta
$$

\therefore Rate of loss of heat

$$
\begin{equation*}
\frac{d a}{d t}=m \cdot C \frac{d \theta}{d t} \tag{i}
\end{equation*}
$$

From Newton's law of cooling

$$
\begin{equation*}
-\frac{d \theta}{d t}=k\left(\theta-\theta_{0}\right) \tag{ii}
\end{equation*}
$$

* Where k is a constant depanding upon the area and the nature of the swesface of the body.

From(i) and (ii)

$$
\begin{align*}
-m C \frac{d \theta}{d t} & =k\left(\theta-\theta_{0}\right) \\
\frac{d \theta}{\theta-\theta_{0}} & =-\frac{k}{m c} \cdot d t=-k \cdot d t \tag{iii}
\end{align*}
$$

Ditergerating,

$$
\log \left(\theta-\theta_{0}\right)=-k t+c \longrightarrow \text { (iv) }
$$

* In a graph is plotted between t along the z axis and $\log \left(\theta-\theta_{0}\right)$ along the y-axis, it is a straight line. Hot water is taken in a calorimeter and is placed in a double walled venal. Tempreture of water after regular intervals of since is noted. A graph between $\log \left(\theta-Q_{0}\right)$ and time t is plotted (i) It is a straight line. This verifier Newton's law

(i)

(ii)
* Specific Heat of Liquid:-
* A and B are two identical calorimeters containing equal volumes of not water and the hot liquid reapestinely. The two calorimeters are mode of The same material and their cuter surfaces are equally polished. The calorimeter are kept inside a constant temprestier condosture. The themonsters T_{1} and T_{2} meatus the tenpretioce of water and liquid The temperature of the two calorimeters are noted apter regular intervals of tires. Amahs ares plotted betucen tempreture and tire, for water and the liquid.
* From equation (ii)

$$
\int \frac{d \theta}{\theta-\theta_{0}}=\frac{k}{m c} \int d t
$$

In care of water, suppose

$$
\text { mass of water }=m
$$

* Water equivalent of the catorinuter $A=\omega$

Tine taken by water to cool from $60^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}=t_{1}$,

$$
\left.\therefore \quad \int_{60}^{65} \frac{d \theta}{\theta-\theta_{0}}=-\frac{k}{(m+\omega)} \cdot t_{1}-x_{65}\right)_{65}
$$

suppose mass of the liquid $=M$
Water eequiratent of the

$$
\text { calorimeter } B=\omega
$$

Specific heat of the liquid $=C$
Time taken by the, liquid bo cool from $60^{\circ} \mathrm{C}$ te $57^{\circ} \mathrm{C}=\mathrm{ta}_{3}$

$$
\therefore \int_{t_{0}}^{55} \frac{d \theta}{\theta-\theta_{0}}=\frac{-k}{(M C+\omega)} \cdot t_{2}
$$

$$
\rightarrow \text { (vi) }
$$

$$
\begin{align*}
& \text { From equations (v) and (vi) } \\
& \frac{M C+\omega}{t_{2}}=\frac{(m+\omega)}{t_{1}} \\
& C=\frac{(m+\omega) t_{2}}{M t_{1}}-\frac{\omega}{M} \tag{rii}
\end{align*}
$$

* STEFAN - BoltzMAnN LAW -
* It states that the rate of cemisson of radiant energy by unit area of a perfectly black body is directly proportional to the fourth pacer of its absolute temperature

$$
E=\sigma T^{1}
$$

6 is the stephen constant. On value $=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{k}^{-1}$

* If a black body at absolute tempreture T is surrounded by another black body at absolute tempenteres To, the net rode of loss of heat conorgy per curt area of the surface is given by,

$$
\begin{aligned}
& E \propto\left(T^{-1}-T_{0}^{4}\right) \\
& E=\sigma\left(T^{1}-T_{0}^{1}\right)
\end{aligned}
$$

* If a body has comissitivity or relative cenittance is es, then total energy radiated by the body per second

$$
=\rho \sigma\left(T^{4}-T_{0}^{1}\right)
$$

* BLACK BODY:
* A perfectly black body is one which absorbs totally all the radiation of any wavelength Which fall on it. As it neither reflects nor transmits any radiation, it appears black. ils cemission being the greatest possible for every coaulength at any given

* Black Body In Practice:

In practice, a perfectly black body is not available. Lamp-black and platinum black are the nearest approach to a black body. Houlowe, a body showing close approximum to a pa-petty black body can be constructed.

Black body absorber

Black body cepitter

* Black Body Radiation And Its tempreture DEPENDENCE \div

When a black body is placed inside a uniform tempreturs encloses, it will emit full radiation of the encloses after it is in equilibrium with the conclaves. These rediaticus are independent. is will posses a character independent of the property of any particubers substances purely dependent on the temperature to which it is raised. Hence, it is solely temproture

Such radiation in a criform lemprature encloses are known as black body radiation.

UNIT： $\overrightarrow{\|}$

のयंज

 Oभानी ती mav sant（5 5 ．
马ヘiorwi5 5 नombe：－

 Srinulers rorrsoir कfजेis forqumes．

Gथम⿱⺊口卄णन
i．LاनंगुmL のدن்பerन्नी（Resistance thermometer）

 のม山レनीmovonu Hortísovito．

Thermometer

3. यताuy बयमंLLतनान्नी:- (Gas thermometer)

 जी

サryoण 205L rorय :-

$$
\begin{aligned}
& E \propto T^{4} \quad(\text { disisg }) \\
& E=\sigma^{4}
\end{aligned}
$$

இओig a नलंपदु लिட.

Electromagnetic Spectrum- Laws of Reflection and Refraction- Laser- spontaneous and stimulated emission - Population inversion - Pumping - Optical and Electrical pumping- Types of LASER - Ruby LASER - He-Ne LASER - Applications of LASER (LIST OF FIELDS ONLY)

Electromagnetic spectrum

The EM spectrum is a range of frequencies, wavelengths and photon energies covering frequencies from below 1 Hz to above $10^{25} \mathrm{~Hz}$ corresponding to wavelengths which are a few kilometers to a fraction of the size of an atomic nucleus in the spectrum of EM waves. The entire range is given by radio waves, micro waves, infra red radiation, visible light, UV radiation, X-rays, gamma rays and cosmic rays in the increasing order of frequency and decreasing order of wavelength.

Reflection of light

Reflection is the change in direction of a wave front at an interface between two different media so that the wave front returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves.

Laws of Reflection

- The incident ray, the reflected ray and the normal to the surface of the mirror all lie in the same plane
- The angle of incidence is equal to the angle of reflection.

Refraction of light

Refraction of light is the phenomenon of change in the path of light in going from one medium to another. When going from a rarer to a denser medium, the ray of light bends towards normal and in going from a denser to a rarer medium, the ray of light bends away from normal.

Laws of Refraction

- The incident ray, refracted ray of light and the normal to the refracting surface all lie in the same plane.
- The ratio of the sine of the angle of incidence and sine of the angle of refraction is constant.

Introduction about LASER

The word LASER is an acronym for "Light Amplification by Stimulated Emission of Radiation". It is a powerful monochromatic light source of collimated beam in which the light waves are highly coherent. The laser light has many superior features compared to conventional light source. Einstein introduced this concept in 1917. Dr. T.H. Maiman demonstrated the first laser namely the ruby laser in the year 1960.

Laser characteristics

Laser differs from the ordinary light with respect to some properties. They are Monochromaticity, Directionality, Coherence and Intensity

Principles of laser

Absorption of radiation

An atom is in the ground state with energy E_{1} absorbs a photon of energy $\mathrm{h} v$ and goes to the excited state with energy E_{2} as shown in Fig. This transition is known as stimulated absorption or induced absorption or simply absorption. Here the energy difference is given as $\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)=\mathrm{h} \nu$ 。

[^0]

If there are many number of atoms in the ground state then each atom will absorb the energy from the incident photon and goes to the excited state then,

The rate of absorption $\left(\mathrm{R}_{12}\right)$ is proportional to the following factors
(i.e) $\mathrm{R}_{12} \propto$ Energy density of incident radiation (ρ_{v})
\propto No. of atoms in the ground state $\left(\mathrm{N}_{1}\right)$

$$
\mathrm{R}_{12}=\mathrm{B}_{12} \rho_{v} \mathrm{~N}_{1}
$$

$\mathrm{R}_{12} \propto \rho_{v} \mathrm{~N}_{1}$
where B_{12} is a constant which gives the probability of absorption transition per unit time

Spontaneous emission

The natural tendency of an atom is to seek out the lowest energy configuration. The excited atoms do not stay in the excited state for longer time but tend to return to the lower state by giving up the excesses energy $h \nu$ as shown in fig. The atom in the excited state E_{2} returns to the ground state E_{1} by emitting a photon of energy $h \nu$ without any external energy. Such emission of radiation not initiated by any external influence is called spontaneous emission. This emission is uncontrollable.

The rate of spontaneous emission $\mathrm{R}_{21}(\mathrm{Sp})$, (i.e) $\mathrm{R}_{21}(\mathrm{Sp}) \propto \mathrm{N}_{2}$

$$
\mathrm{R}_{21}(\mathrm{Sp})=\mathrm{A}_{21} \mathrm{~N}_{2}
$$

where A_{21} is a constant which gives the probability of spontaneous emission transitions per unit time

Stimulated emission

The atom in the excited state E_{2} as shown in fig. A photon of energy hv can stimulate the atom to move to its ground state. During this process the atom emits an additional photon whose energy is also hv. As the emission is stimulated by external photon, this process is known as stimulated emission.

The rate of stimulated emission $\mathrm{R}_{21}(\mathrm{St})$ is given by
(i.e) $\mathrm{R}_{21}(\mathrm{St}) \propto \rho_{\mathrm{v}} \mathrm{N}_{2}$

$$
\mathrm{R}_{21}(\mathrm{St})=\mathrm{B}_{21} \rho_{v} \mathrm{~N}_{2}
$$

where B_{21} is a constant which gives the probability of stimulated emission transitions per unit time

S. No	Stimulated emission	Spontaneous emission
1.	An atom in the excited state is induced to return to ground state, thereby resulting in two photons of same frequency and energy is called stimulated emission.	The atom in the excited state returns to ground state thereby emitting a photon, without any external inducement is called spontaneous emission.
2.	The emitted photons move in same direction and are highly directional.	The emitted photons move in all directions and are random.
3.	The radiation is high intense, monochromatic and coherent.	The radiation is less intense and is incoherent.
4.	The photons are in phase.	The photons are not in phase.
5.	The rate of transition is given by $\mathrm{R}_{21}(\mathrm{St})=\mathrm{B}_{21} \rho_{v} \mathrm{~N}_{2}$	The rate of transition is given by $\mathrm{R}_{21}(\mathrm{Sp})=\mathrm{A}_{21} \mathrm{~N}_{2}$

Population inversion:

When a system is in thermal equilibrium, the distribution of energy states at a given temperature follows the Boltzmann's law as
$N=N_{0} e^{\left(\frac{-E}{K T}\right)}$
where,
N_{0} is the population in the ground state
N is the population in the given energy state
K is the Boltzmann's constant
T is the absolute temperature
Dr. S. Snega, Department of Physics

From the above equation, it is clear that the population is maximum in ground state and decreases exponentially as one goes to higher energy state as shown in fig. 4(a). ie., $N_{1}>N_{2}$. If the situation is just reverse, ie there are more atoms in an excited state than the ground state as shown in fig 4 (b), a net emission of photons can result. This condition is called population inversion. In this case $N_{2}>N_{1}$.

Fig. 4 (a) population at different energy states of atoms

(b) population inversion through pumping process

Pumping methods

The process of achieving population inversion is called pumping. Pumping can be classified into the following types based on the type of source of pumping.

1. Optical pumping: Here the atoms are excited with the help of photons emitted by an optical source. The atoms absorb energy from the photons and raises to excited state. (e.g.) Ruby Laser, Nd-YAG Laser
2. Electrical pumping: The electrons are accelerated to very high velocities by strong electric field and they collide with gas atoms and these atoms are raised to excited state. (e.g.) Argon Laser, CO_{2} Laser
3. Direct Conversion
4. Inelastic collision between atoms

5. Chemical pumping

Meta stable state

It is an excited state of an atom with a longer life time than the other excited states. However it has a shorter life time than the stable ground state. Atoms in the metastable state remain excited for a considerable time in the order of 10^{-6} to $10^{-3} \mathrm{~s}$.

Active Medium: The active laser medium consists of a collection of atoms, molecules or ions. The excited state of the active laser medium has a meta stable state having longer lifetime ($\approx 10^{-8} \mathrm{sec}$) compared to excited states which usually have short life times.

Types of LASERS

1. Solid state laser : It is classified into two types (a) 3 level laser (e.g) Ruby laer, (b) 4 level laser (e.g)

Nd-YAG laser
2. Gas laser: Egs. CO2 laser, He-Ne laser
3. Semiconductor laser: Egs. GasAs
4. Liquid laser: Eg. Europium benzoyl acetone dissolved in alcohol.
5. Dye laser and chemical lasers.

RUBY LASER

Ruby laser is the first type of laser constructed by Maiman in 1960. Ruby is a crystal of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in which some of the Al^{3+} ions are replaced by (0.05% by weight) Cr^{3+} ions. Cr^{3+} ions constitute the active centres whereas the aluminum and oxygen atoms are inert.

Principle:

It is a three level solid state laser. Ruby rod is used as an active medium and Cr^{3+} ions act as a active center. Optical pumping method is used to achieve the population inversion. The wavelength of the laser beam emitted is $6943 \AA$.

Construction:

Fig. (1) schematic diagram of Ruby laser
The arrangement of laser is shown in fig (1). It consists of a ruby cylindrical rod typically 5 cm long and 0.5 cm in diameter whose ends are optically flat and accurately parallel. One end is fully silvered and the other is only partially silvered. The rod is surrounded by a glass tube. The glass tube is surrounded by helical xenon flash tube which acts as the optical pumping system.

Working:

The energy level diagram of chromium ions in ruby crystal is shown in fig (2). The Cr ions are excited from level E_{1} to level E_{3} by the absorption of light of wavelength 550 nm from the xenon flash tube. The excited ions quickly undergo non-radiative transitions to the level E_{2}, with a transfer of energy to the lattice thermal motion. The E_{2} level is a metastable state with a lifetime of about $3 \times 10^{-3} \mathrm{~s}$ (usual atomic
lifetimes are $\sim 10^{-28} \mathrm{~s}$. Now, the population of the E_{2} level becomes greater than that of the E_{1} level. Thus the "population inversion" is achieved.

Fig. (2) Energy level diagram of chromium ions in ruby laser
Some photons are produced by spontaneous transition from E_{2} to E_{1}, and have a wavelength of 694.3 nm (ruby red). The ends of the ruby rod act as reflecting mirrors. Therefore, Photons that are not moving parallel to the ruby rod escape from the side, but those moving parallel to it are reflected back and forth. These stimulate the emission of similar other photons. The chain reaction quickly develops a beam of photons all moving parallel to the rod, which is monochromatic and is coherent. When the beam develops sufficient intenstity, it emerges through the partially silvered end.

Once all the chromium ions in the metastable level have returned to ground level, the laser action stops. It is then necessary to send one more flash of pumping radiation through the rod. Thus the ruby laser operates only in pulses. Even in the short period of a few microseconds in which the ruby is lasing, we find that the emission is made up of spikes of high intensity emission as shown in fig (3). This phenomenon is known as spiking of the laser, first observed in experiments with ruby by Collins et.al.

Fig (3) characteristic spiking of ruby laser

Advantages:

- Ruby lasers are economical
- Beam diameter of ruby laser is comparitivelyless than CO_{2}
- Output power of the ruby laser is not less asin the He-Ne laser
- Since the ruby laser is in solid form, there is no chance of wastage of active material

Disadvantages:

- No significant stimulated emission occurs until atleast half of the ground state electrons excited to the metastable state.
- Efficiency of ruby laser is comparatively low
- Optical cavity of ruby laser is short as compared to other laser

Applications:

- Pulsed holography
- Ranging experiments
- To remove tattoos
- To remove skin lesions resulting from excess melanin

He - Ne LASER

$\mathrm{He}-\mathrm{Ne}$ laser is the first gas laser. It is a four level gaseous laser. The mixture of helium and neon gases is filled in the discharge tube. Helium gas used as active medium and neon atom used as active material. Inelastic atom-atom collision method is used as pumping process. Power output is approximately 0.5 to 50 milli Watt. The output light is continuous wave form.

Principle:

The active medium is the $\mathrm{He}-\mathrm{Ne}$ gas. The gas laser medium is excited by electric discharge method in which inelastic collision between atoms will results in population inversion.

Construction

Fig (1) schematic diagram of $\mathrm{He}-\mathrm{Ne}$ laser
Fig (1) shows the schematic arrangement of a $\mathrm{He}-\mathrm{Ne}$ laser apparatus. $\mathrm{He}-\mathrm{Ne}$ laser consists of a quartz discharge tube about 80 cm long and 1.5 cm diameter. The discharge tube is filled with mixture of helium and neon gases with different partial pressures. The gases are mixed under the pressure of 1 mm mercury of helium and 0.1 mm mercury of neon in the ratio of $10: 1$. these mixture acts as active material.

[^1]The ends of the discharge tube are inclined at the polarizing angle. Hence the emitted laser light is plane polarized. This arrangement is called Brewster window.

A radio frequency generator (RF generator) is connected to the discharge tube. It is used to produce population inversion in active material. A pair of concave mirror is placed at the ends of the discharge tube. One of the mirrors is 100% reflecting and the other is partially reflecting. These mirrors form an optical resonator.

Working: When RF generator is switched on, electrons are generated inside the discharge tube. At first the generated electrons collide with the helium atoms in ground state thereby helium atoms are excited to two of energy levels as shown in fig (2). These two levels happen to be very close to the 3 s and 2 s levels of the neon atoms. When the excited helium atoms collide with the neon atoms, energy is exchanged, pumping the neon atoms to the respective levels. The atoms at the neon 3 s level eventually drops down to the $2 p$ level asa result, stimulated emission is taking place and light of wavelength $0.6328 \mu \mathrm{~m}$ is emitted. The atoms at the 2 s level, on the other hand, drops to the 2 p level by emitting light at $1.15 \mu \mathrm{~m}$. However, the atoms at the 3 s level may instead dropdown to the 3 p level, by emitting light at $3.39 \mu \mathrm{~m}$.

Fig. (2) Energy level diagram of $\mathrm{He}-\mathrm{Ne}$ ions

Advantages:

- Less heat is generated inside the discharge tube, therefore no need for cooling.
- It is operated in continuous mode
- It has high stability of wavelength.
- Output of the laser can be tuned to a required wavelength $(\pm 100 \AA)$.
- It is not much expensive

Disadvantages

- Output power is moderate
- Compare with solid state laser its size is large

Dr. S. Snega, Department of Physics

Applications of Lasers

Laser is an optical device that generates intense beam of coherent monochromatic light by stimulated emission of radiation. Laser light is different from an ordinary light. It has various unique properties such as coherence, monochromacity, directionality, and high intensity. Because of these unique properties, lasers are used in various applications.
The most significant applications of lasers include:

- Lasers in medicine
- Lasers in communications
- Lasers in industries
- Lasers in science and technology
- Lasers in military

Lasers in Medicine

1. Lasers are used for bloodless surgery.
2. Lasers are used to destroy kidney stones.
3. Lasers are used in cancer diagnosis and therapy.
4. Lasers are used for eye lens curvature corrections.
5. Lasers are used in fiber-optic endoscope to detect ulcers in the intestines.
6. The liver and lung diseases could be treated by using lasers.
7. Lasers are used to study the internal structure of microorganisms and cells.
8. Lasers are used to produce chemical reactions.
9. Lasers are used to create plasma.
10. Lasers are used to remove tumors successfully.
11. Lasers are used to remove the caries or decayed portion of the teeth.
12. Lasers are used in cosmetic treatments such as acne treatment, cellulite and hair removal.

Lasers in Communications

1. Laser light is used in optical fiber communications to send information over large distances with low loss.
2. Laser light is used in underwater communication networks.
3. Lasers are used in space communication, radars and satellites.

Lasers in Industries

1. Lasers are used to cut glass and quartz.
2. Lasers are used in electronic industries for trimming the components of Integrated Circuits (ICs).
3. Lasers are used for heat treatment in the automotive industry.
4. Laser light is used to collect the information about the prefixed prices of various products in shops and business establishments from the bar code printed on the product.
5. Ultraviolet lasers are used in the semiconductor industries for photolithography. Photolithography is the method used for manufacturing printed circuit board (PCB) and microprocessor by using ultraviolet light.
6. Lasers are used to drill aerosol nozzles and control orifices within the required precision.

Lasers in Science and Technology

1. A laser helps in studying the Brownian motion of particles.
2. With the help of a helium-neon laser, it was proved that the velocity of light is same in all directions.
3. With the help of a laser, it is possible to count the number of atoms in a substance.

Dr. S. Snega, Department of Physics
4. Lasers are used in computers to retrieve stored information from a Compact Disc (CD).
5. Lasers are used to store large amount of information or data in CD-ROM.
6. Lasers are used to measure the pollutant gases and other contaminants of the atmosphere.
7. Lasers help in determining the rate of rotation of the earth accurately.
8. Lasers are used in computer printers.
9. Lasers are used for producing three-dimensional pictures in space without the use of lens.
10. Lasers are used for detecting earthquakes and underwater nuclear blasts.
11. A gallium arsenide diode laser can be used to setup an invisible fence to protect an area.

Lasers in Military

1. Laser range finders are used to determine the distance to an object.
2. The ring laser gyroscope is used for sensing and measuring very small angle of rotation of the moving objects.
3. Lasers can be used as secretive illuminators for reconnaissance during night with high precision.
4. Lasers are used to dispose the energy of a warhead by damaging the missile.
5. Laser light is used in LIDAR's to accurately measure the distance to an object

Model Questions

1. What is Electromagnetic spectrum?
2. What is reflection of light?
3. State the laws of reflection?
4. What is refraction?
5. State the laws of refraction?
6. Distinguish between spontaneous and stimulated emission?
7. List out characteristics of LASER.
8. What is meant by Spontaneous emission?
9. What is meant by stimulated emission?
10. What is meant by population inversion?
11. What is meant by pumping?
12. Describe the construction and working of Ruby laser.
13. Discuss with theory the construction and working of He-Ne laser.
14. Discuss the applications of laser in various fields.
unit-i11 Lasers
EM Spectrum- Laws of Reflection and RefractionLASER - Spontaneous and Stimulated Emission - population Inversion -pumping - Electrical and optical pumping -Types of Laser - Ruby Laser -He - Ne lower - Applications of Laser.

 (Electromagnetic spectrum) grimy romes்கப்பG10.

 (x-rays).
历ゆ्रों Gomlulusio :

$$
i=r
$$

भुणीनी00E50:

இगुண்டाio कीकी:

$$
\frac{\sin i}{\sin r}=\frac{\mu_{2}}{\mu_{1}}
$$

Gலチां :
BovFiा (Laser) बबim थrतikisens Light Amplification by

(4) ummuit Ant - 210 ent

6ெொக நுணைக்பூாக்கம்:

 (15) b00\%in (Ruby laser)

He-Ne GQFFीOO GOLTinioi
करिप由 दुoingoitorgy 8lfagiri 1 mm

 भाज्य்க்कण च

 Exeflisig rivimg.

Oहொ

- Gुontulwoi essmip (optical Fiber Communication)

 rimhwourtis.

6. डणदताsor vworibmoriबं foxms.
7. 10.

UNIT-IV - SEMICONDUCTOR PHYSICS

Theory of energy band in crystals-Distinction between Conductors, Insulators and Semiconductors-Intrinsic and Extrinsic Semiconductors-N-type and P-type SemiconductorsJunction diode-Zener Diode-V-I Characteristics-PNP and NPN transistor-Transistor action-DC Characteristics of CE configuration-FET-N channel and P channel FET-Performance-Characteristics-Comparison of Transistor and FET.

Introduction: Theory of energy band in crystals

The inner-shell electrons are the least effected when atoms form a crystal and the outer-most shell electrons are the easily influenced part of an atom. Thus, when the atoms in a crystal are placed close to each other, there is more possibility of electrons of two adjacent atoms to either collapse or bound to each other

Band diagram of a Conductors,Insulators and Semiconductors

The adjacent figure depicts the energy band diagram. From the fig., it's clear that, more the interatomic spacing, lesser is the energy(attraction) between them.And as the distance between them is reduced(moving from right to left), there will be a gradual increase in the interactions between the neighboring atoms. Because of this interaction, the atomic wave functions overlap and the crystal becomes an electronic system which must obey Pauli exclusion principle. Here, there are 2 N electrons completely filling the 2 N possible s levels of the atom and 2 N electrons filling the 6 N possible p states. Thus, when the " d " is reduced, the $2 \mathrm{~N}-\mathrm{s}$ states spread out to form a band of energy. And the 4 N electrons remain unoccupied in the p levels. The total spread between the minimum and the maximum energy levels becomes very large (several eV) and is known as Energy Bands. An energy gap (Eg) exists between them. this is known as forbidden energy gap (no electrons can occupy states in this gap). When this energy gap is further reduced to make it zero, the 6 N upper level and 2 N lower level states merge and form

8 N levels out of which 4 N electrons are already occupied ($2 \mathrm{~N}+2 \mathrm{~N}$). Now these 4 N electrons neither belong to the p subshell nor the s subshell but belong to the crystal as a whole.The energy band produced due to these electrons is known as a Valence Band.If the energy gap is further reduced, the interaction between them grows very large and finally a shape is obtained, as shown below:

Comparison Chart

BASIS FOR COMPARISON	CONDUCTORS	SEMICONDUCTORS	INSULATORS
Meaning	Conductors are the substance that transmits heat or electricity through them.	Such substance or materials that may act as a conductor, as well as insulators under different conditions, are known as semiconductors.	Insulators are the substance that does not allow heat or electricity to pass through them.
Conductivity	High.	Moderate.	Low.
Forbidden gap	There is no forbidden gap.	Small forbidden gap.	Large forbidden gap.
Resistivity	Low.	Moderate.	Very High.
Temperature coefficient	Positive.	Negative.	Negative.
Conductivity value	Very high.	Moderate.	Negligible.
Conduction	Numerous electrons for conduction.	Very less number of electrons for conduction.	Neutral number of electrons for conduction.
Resistivity value	Less than	Between	More than
Current flow	Caused by the presence of free	It is caused by free electrons and holes.	It is caused by free electrons which are negligibly

	electrons.		present.
Valence electrons valence electron in the outermost shell.	There is only one in the outermost shell.	There are eight valence electrons in the outermost shell.	
Overlapping of bands	The valence and conduction bands are overlapped.	Valence band and conduction band are separated energy gap of 1.1eV.	Both the bands get divided by an energy gap of 6eV 10eV.
Type of Bonds	Conductors are formed by a metallic bonding.	Semiconductors are formed by covalent bonding.	Insulators are formed by ionic bonds.
Examples	Gold, Bronze, Silver, Mercury, Copper, Brass, etc.	Silicon, Aluminium.	Mica, Rubber, Wood, Paper, etc.

P Type and N Type Semiconductor:The various factors like doping element, nature of doping element, the majority and minority carriers in the p-type and n-type semiconductor. The density of electrons and holes, energy level and Fermi level, the direction of movement of majority carriers, etc. are considered in explaining the difference between p-type and n-type semiconductors. The difference between a p-type semiconductor and n-type semiconductor are given below in tabulated form.

Zener diode

When a P-N junction is reverse biased, it offers a high resistance for the current flow. If the reverse-bias is increased at some particular voltage, the reverse current across the junction suddenly increases. This particular potential is called the breakdown voltage or zener breakdown voltage. The zener voltage varies from as low as a few volt to several hundred depending on the dopant density and the depletion layer. There are two distinct process by which the breakdown may occur. They are i) Zener breakdown ii) Avalanche breakdown.A zener diode is a P-N junction diode which makes use of either of the two breakdown. A zener diode is usually operated at a reverse bias voltage a little more than the breakdown voltage. Under
these conditions, the voltage drop across the diode is practically independent of the current through it. This means that the diode acts as a voltage regulator.

Zener diode characteristics

The zener diode characteristics can be studied using the circuit shown in figure. The zener diode is connected to battery through a commutator as shown in figure. By changing the commutator position, the diode can be forward biased or reverse biased. First forward bias is given. Using the rheostat different voltage is given to the diode and for each voltage, the milliammeter reading is noted. Now a reverse bias is given to the diode and the milli-ammeter is replaced by a micro-ammeter. The same procedure is repeated as per the forward bias.Now we can draw a graph taking the voltmeter reading in X -axis and the current reading in Y -axis. The graph will be as shown in figure. Under forward bias condition, the zener diode acts, just like an ordinary junction diode.Under reverse bias, a small reverse current flows through it. This current almost remains constant unit a certain critical voltage is reached. Beyond this voltage, the reverse current increases rapidly. This voltage is called turnover voltage. All zener diodes are silicon P-N junction diodes which have a sharp reverse voltage knee. Zener diodes are assorted according to their breakdown voltage. For a diode with low breakdown voltage, the knee on the curve is more abuse. For high voltage zener diode, the knee is sharp.

P-N-P and N-P-N transistor

When thin layer of N -type semiconductor is sand witched between two P-type semiconductor, the result is in the formation of a P-N-P transistor. Similarly when a P-type area is sand witched between two N-type semiconductor, we have a N-P-N transistor. P-N-P and N-$\mathrm{P}-\mathrm{N}$ transistors and their circuit symbols are as shown in figure.There are three regions in the transistor. They are i. Emitter ii. Collector iii. Base.The middle semiconductor in a transistor is called as base. Thickness of the base will be of the order 0.025 mm . The two end regions are called the emitter and the collector. The emitter - base junction is always forward biased and hence this junction offers a low resistance for the flow of current.

NPN Transistor

PNP Transistor

The collector - base junction is always reverse biased and hence this junction offers a high resistance for the current flow. The emitter, base and collector of a transistor can be controlled to cathode, grid and plate of a triode.

Transistor action

The transistor action can be understood by analyzing the current flow through it under the influence of externally applied voltage. The emitter base junction will be forward biased and the collector base junction will be reverse biased. We will study the action of a P-N-P transistor and the circuit is as shown in figure.

Cincuit Globe

As the emitter is forward biased, the holes in P-regions are injected to the base and the electrons are injected to the base and the electrons are injected from N-region to P-region. But as the bas is lightly doped and the emitter is heavily doped, the number of electrons from base to emitter is very small compared to the number of holes. In the base region some of the holes are neutralized by the electron. Since the base region is very thin, most of holes cross this region and will reach the collector region. Since the collector base region is reverse biased, the holes arriving at the junction attracted and this constitute a collector current. The emitter current is denoted by I_{E}, the collector current by I_{C} and the base current is I_{B}. It will found that $I_{C}=I_{E}$ where α is called current gain whose value will be between 0.95 to 0.98 . The emitter current is equal to the sum of the collector current and base current.

$$
I_{E}=I_{C}+I_{B}
$$

If the emitter base voltage is increased, the collector will also increase. If the emitter current is decreased, the collector current is also decrease. If an alternating voltage is applied
to the emitter as input, we will get the amplified output in the collector circuit. Hence the transistor can be used as an amplifier. In a similar way, we can explain the P-N-P transistor.

Transistor circuit configuration

There are three basic configuration in which transistor can be connected. They are
(i)Common base configuration
(ii) Common emitter configuration

(iii)Common collector configuration

The common is used to denote the electrode that is common to the input and output circuits. Because the common electrode is generally grounded, these modes of operation are frequently referred to as ground base, grounded emitted and grounded collector.The three types of configurations are as shown in figure.

Characteristics of Common emitter (CE) Configuration

The characteristic of the common emitter transistor circuit is shown in the figure below. The base to emitter voltage varies by adjusting the potentiometer R_{1}. And the collector to emitter voltage varied by adjusting the potentiometer R_{2}. For the various setting, the current and voltage are taken from the milliammeters and voltmeter. On the basis of these readings, the input and output curve plotted on the curve.

Input Characteristic Curve

The curve plotted between base current I_{B} and the base-emitter voltage V_{EB} is called Input characteristics curve.

For drawing the input characteristic the reading of base currents is taken through the ammeter on emitter voltage V_{BE} at constant collector-emitter current. The curve for different value of collector-base current is shown in the figure below.

The curve for common base configuration is similar to a forward diode characteristic. The base current IB increases with the increases in the emitter-base voltage V_{BE}. Thus the input resistance of the CE configuration is comparatively higher that of CB configuration. The effect of CE does not cause large deviation on the curves, and hence the effect of a change in $\mathrm{V}_{\text {CE }}$ on the input characteristic is ignored.

Input Resistance: The ratio of change in base-emitter voltage V_{BE} to the change in base current $\Delta I B$ at constant collector-emitter voltage $V_{C E}$ is known as input resistance, i.e.,

$$
r_{l}=\frac{\Delta V_{B E}}{\Delta I_{B}} \text { at constant } V_{C E}
$$

Output Characteristics In CE configuration the curve draws between collector current I_{C} and collector-emitter voltage V_{CE} at a constant base current IB is called output characteristic. The characteristic curve for the typical NPN transistor in CE configuration is shown in the figure below.

Output Characteristic Curve
In the active region, the collector current increases slightly as collector-emitter $\mathrm{V}_{\text {CE }}$ current increases. The slope of the curve is quite more than the output characteristic of $C B$ configuration. The output resistance of the common base connection is more than that of CE connection. The value of the collector current IC increases with the increase in $V_{\text {CE }}$ at constant voltage I_{B}, the value β of also increases.

Output Resistance: The ratio of the variation in collector-emitter voltage to the collectoremitter current is known at collector currents at a constant base current I_{B} is called output resistance r_{0}.

$$
r_{0}=\frac{\Delta V_{C E}}{\Delta I_{C}} \text { at constant } I_{B}
$$

The value of output resistance of CE configuration is more than that of CB

Field effect transistor

The field-effect transistor (FET) is a semiconductor device which depends for its operation on the control of current by an electric field since the current is carried by majority carriers only, the field effect transistor is said to be unipolar device. There are two types of FET, they are

1. Junction field effect transistor and
2. Metal oxide semiconductor field effect transistor (MOSFET) . The MOSFET is also called as insulated gate field effect transistor (IGFET).
3.

\mathbf{P}-Channel

N -Channel

The following are main difference between a FET and a conventional transistor.

1. The operations of FET depends up on the flow of majority carrier only. It is, therefore a unipolar device. But in a conventional transistor, is due to both electrons and holes. Hence it is called as bipolar junction transistor (BJT).
2. A bipolar transistor is current controlled devices. In this, the output current is controlled by the input current. But in a FET, the flow of current is controlled by an electric field.
3. The input impedance of a FET is high. Its value is of the order of 10^{8} to $10^{12} \mathrm{ohm}$.
4. A FET is less noisy than a bipolar transistor.

Junction Field Effect Transistor

Construction

In a JFET, the current flow is due to the majority carriers of charges. In a semiconductor, there are two types of carriers viz holes and electrons. Hence JFET are of two types.i) n-channel FET In this current flow is due to electrons.ii) P-channel FET -In this current flow is due to holes. The structure of an n-channel FET is shown in figure. Ohmic contacts are made to the two ends of the semiconductor bar of n - type material (if p-type silicon is used, the device is referred as p channel FET.

The junctions on both side of the bar are formed impurities opposite to that of the channel i.e. p-type impurities for n-type channel and vice versa. Current is allowed to flow along the length of the bar by applying a voltage between the end terminals of the bar. The current is carried by majority carriers which drift through the channel. The following FET notation is standard.

Source

The source S is the terminal through which majority carriers leave the bar. Conventional current entering the bar at S is designated by I_{s}.

Drain

The drain is the terminal through which the majority carriers leave the bar. Conventional current entering the bar at D is designated by I_{D}. The drain-to-source voltage is called V_{DS}.

Gate

On both side of the n-type bar in figure, heavily doped ($p+$) regions of acceptor impurities have been formed by diffusion for creating $p-n$ junction. These impurity regions are called as the gate G. Between the gate and source a voltage $V_{G S}$ is applied in the direction to reverse-bias the $p-n$ junction. Conventional current entering the bar at G is designated by I_{G}.

Channel

The regions of n-type material between the two gate regions is called channel (in a p-type FET it will be p region). The majority carrier of charge move from source to drain through this region. The circuit symbol of n-channel and p-channel are shown in figure. The arrow on the gate terminal refers to the direction of gate current, when the gate-source junction is forward biased. An n-channel FET with its terminal connected properly to voltage source is shown in figure. The source voltage $V_{G G}$ and $V_{D D}$ respectively supply the gate voltage and drain voltage. For a p-channel FET. The polarities of the voltage source should be reversed.

Operation of FET :To discuss the operation of a JFET, we have to give the following connections.

1. Gates are always reverse-biased. 2. The source terminal is always connected to that end of the drain supply which provides the negative charge carriers.

Let us consider an n-channel JFET (figure) and discuss its working when either $\mathrm{V}_{G S}$ or V_{DS} or both are changed.

1. When $V_{G S}=0$ and $V_{D S}=0$: When no voltages are applied between $D \& S$ and $G \& S$, the depletion region around the p-junction are of equal thickness and symmetrical.

2. When $V_{G S}=0$ and $V_{D S}$ is increased from zero: For this, the JFET is connected to $V_{D D}$ supply. The electron flow from S to D whereas the conventional drain current I_{D} flows through the channel from D to S. When $V_{D S}$ is applied, there is a gradual increase of positive potential along the channel as we go from S to $D-i . e$. as we go along the channel from S to D the reverse voltage across the p-n junction increases. Hence thickness of the depletion region also increases. Therefore the channel is wedge shaped. As $V_{D S}$ is gradually increased from zero, I_{D} increases proportionally as per ohm's law. This ohmic relationship between $V_{D S}$ and I_{D} continues till $V_{D S}$ reaches a certain critical value called pinch of voltage V_{P}. When $V_{D S}=V_{P}$, the current I_{D} is maximum. When $V_{D S}$ is increased beyond V_{P}, the length of the pinch-off region increases. Hence there is no further increase of I_{D}. At a certain value of $V_{D S}, I_{D}$ suddenly increases. This effect is due to the avalanche multiplication of electron caused by breaking of covalent bonds of silicon in the depletion region between the gate and the drain. The variation of I_{D} with $V_{D S}$ when $V_{G S}=0$ is shown in figure.
3. When $V_{D S}=0$ and $V_{G S}$ is decreased from zero : When $V_{G S}$ is made more and more the negative the gate reverse bias increases. Hence the thickness of the depletion region also increases. At a particular voltage, the two depletion regions make contact with each other. In this condition, the channel is said to be cut-off. The value of $V_{G S}$ which is required to cut-off the channel is called the cut-off voltage.
4. When $V_{G S}$ is negative and $V_{D S}$ is increased : AS $V_{G S}$ is made more and more negative, value of V_{o} as well as breakdown voltage are decreased. It is shown in figure.Since gate voltage controls the drain current JFET is called a voltage controlled device. A p-channel JFET operates exactly in the same manner as n-channel JFET except the current carriers are holes and the polarities of both $V_{D S}$ and $V_{G S}$ are reversed.

UNIT-IV - SEMICONDUCTOR PHYSICS

அறிமுகம்: படிகங்களில் ஆற்றல் குழுவின் கோட்பாடு

அணு்கள் ஒரு படிகத்தை உருவாக்கும் போது உள்-ஷெல் எலக்ட்ரான்கள் மிகக் குறைவானவை மற்றும் வெளிப்புற-ஷெல் எலக்ட்ரான்கள் ஒரு அணுவின் எளிதில் பாதிக்கப்படும் பகுதியாகும். இவ்வாறு, ஒரு படிகத்தில் உள்ள அணுக்க் ஒருவருக்கொருவர் நெருக்கமாக வைக்கப்படும் போது, அருகிலுள்ள இரண்டு அணுக்களின் எலக்ட்ரான்கள் ஒன்றுடன் ஒன்று பிணைக்கப்படுவதற்கோ அல்லது பிணைக்கப்படுவதற்கோ அதிக வாய்ப்பு உள்ளது. எடுத்துக்காட்டாக, இரண்டு எளிய காந்தங்களின் உதாரணத்தைக் கருத்தில் கொள்வோம்: அவற்றுக்கிடையேயான தூரம் அதககமாக இருப்பதால், அவற்றுக்கிடையேயான ஈர்ப்பு குறைவாகவும், நேர்மாறாகவும் இருக்கும்.எலக்ட்ரான்கள் அணுவிலிருந்து அணுவுக்கு சுரங்கப்பாதை மாற்றத்தால் நகரும். கடத்திகள், குறைக்கடத்திகள் மற்றும் மின்கடத்திகளின் வேலன்ஸ் பட்டைகள் வெளிப்புற மின்காந்த புலத்தில் வித்தியாசமாக செயல்படுகின்றன. வெளிப்புற மின்காந்த புலங்கள் விகததத்தில் விநியோகத்தில் எலக்ட்ரான்களின் சமச்சீர்மையை உடைக்கின்றன. எலக்ட்ரான்கள் புலத்தின் திசையில் துரிதப்படுத்துகின்றன மற்றும் எதிர் தூண்டுதல் அடையாளத்துடன் துகள்களைக் குறைக்கன்றன. எலக்ட்ரான் வீதத்தின் எந்த மாற்றங்களும் அவற்றின் ஆற்றலில் மாற்றத்திற்கு வழிவகுக்கிறது, மேலும் எலக்ட்ரான்கள் அவற்றின் குவாண்டம் நிலைகளை மாற்றுகின்றன. வேலன்ஸ் பேண்டில் ஒரு இலவச நிலை இருந்தால் எலக்ட்ரான் மாற்றம் நிகழலாம். மின்காந்த புலத்தில் பெறப்பட்ட சராசரி கூடுதல் ஆற்றல் எலக்ட்ரான்கள் சுமார் $10^{-3}-10^{-4} \mathrm{eV}$ ஆகும், இது இசைக்குழுவில் உள்ள ஆற்றல் சப்லெவல்களுக்கு இடையிலான தூரத்தை விட மிக அதிகம். வேலன்ஸ் பேண்ட் எலக்ட்ரான்களால் முழுமையாக நிரப்பப்படாத உலோகங்களில், எலக்ட்ரான் ஆற்றலின் ஒரு சிறிய மாற்றம் கூட அவற்றை அருகிலுள்ள இலவச ஆற்றல் மட்டங்களுக்கு மாற்றும். உலோகங்கள் நல்ல நடத்துனர்களாக இருப்பதற்கான காரணம் இதுதான். குறைக்கடத்திகள் மற்றும் மின்கடத்திகளில் அனைத்து எலக்ட்ரான்களும் வேலன்ஸ் பேண்டில் உள்ளன.

கடத்திகள், மின்தேக்கிகள் மற்றும் குறைக்கடத்திகள் இடையே வேறுபாடு

கடத்தகளள், குறைக்கடத்திகள் மற்றும் மின்கடத்திகள் அவற்றின் கடத்துத்திறன் மற்றும் பிற பண்புகளின் அடிப்படையில் வேறுபடிகின்றன. உலோகங்கள் போன்ற கடத்திகள் அறை வெப்பநிலையில் கடத்துத்திறனைக் காட்டுகின்றன, ஆனால் வெப்பநிலை அதிகரிக்கும் போது அவற்றின் கடத்துத்திறன் குறைகிறது. இருப்பினும், குறைக்கடத்திகள் குறைந்த வெப்பநிலையில் மின்கடத்திகளாக செயல்படுகின்றன, ஆனால் வெப்பநிலை அதிகரிக்கும் போது அவற்றின் நடத்தும் பண்புகளும்; இருப்பினும், மின்கடத்தகள் வெப்பநிலை மாறுபாடுகளின் எந்தவொரு விளைவையும் கொண்டிருக்கவில்லை, ஏனெனில் அவை நடத்தும் பண்புகளைக் கொண்டிருக்கவில்லை. இன்சுலேட்டர்கள் மற்றும் கடத்திகள் திடமான, திரவ அல்லது வாயுவாக இருக்கலாம், மேலும் கண்ணாடி (திட) போன்ற சில விதிவிலக்குகளில் இது ஒரு மின்தேக்கி அதிக அளவில் உருகும்போது கடத்திகள் ஆகிறது வெப்ப நிலை. கடத்துத்திறன் என்பது வெப்பம், மின்சாரம் அல்லது ஒலி போன்றவற்றை கடத்தும் நிகழ்வு ஆகும். எனவே, எந்தவொரு பொருளின் கடத்துத்திறன் மற்றும்

தடைசெய்யப்பட்ட இடைவெளியின் அடிப்படையில், அவை (பொருட்கள்) கடத்தககள், குறைக்கடத்திகள் அல்லது மின்கடத்திகள் என வகைப்படித்தலாம்.

ஜீனர் டையோடு

ஒரு பி-என் சந்தி தலைகீழ் சார்புடையதாக இருக்கும்போது, அது தற்போதைய ஓட்டத்திற்கு அதிக எதிர்ப்பை வழங்குカிறது. சில குறிப்பிட்ட மின்னழுத்தத்தில் தலைக்த்-சார்பு அதிகரிக்கப்பட்டால், சந்தி முழுவதும் தலைகீழ் மின்னோட்டம் தடீரென்று அதுகரிக்கிறது. இந்த குறிப்பிட்ட திறனை முறிவ மின்னழுத்தம் அல்லது ஜீனர் முறிவு மின்னழுத்தம் என்று அழைக்கப்படுகிறது. டோபன்ட் அடர்த்தி மற்றும் குறைப்பு அடுக்கைப் பொறுத்து ஜீனர் மின்னழுத்தம் ஒரு சில வோல்ட் முதல் பல நூறு வரை மாறுபடும். முறிவு ஏற்படக்கூடிய இரண்டு தனித்துவமான செயல்முறைகள் உள்ளன.

அவை
i. ஜீனர் முறிவு ii. பனிச்சரிவு முறிவு ஓரு ஜீனர் டையோடு என்பது பி-என் சந்தி டையோடு ஆகும், இது இரண்டு முறிவுகளில் ஒன்றைப் பயன்படுத்துகிறது. ஒரு ஜீனர் டையோடு வழக்கமாக தலைகீழ் சார்பு மின்னழுத்தத்தில் முறிவு மின்னழுத்தத்தை விட சற்று அதிகமாக இயக்கப்படுகிறது. இந்த நிலைமைகளின் கீத், டையோடு முழுவதும் மின்னழுத்த வீழ்ச்சி நடைமுறையில் அதன் மூலம் மின்னோட்டத்திலிருந்து சுயாதீனமாக உள்ளது. இதன் பொருள் டையோடு மின்னழுத்த சீராக்கி செயல்படுகிறது.

ஜீனர் டையோடு பண்புகள் படத்தில் காட்டப்பட்டிள்ள சுற்றுகளைப் பயன்படுத்த ஜீனர் டையோடு பண்புகளை ஆய்வு செய்யலாம். ஜீனர் டையோடு படத்தில் காட்டப்பட்டுள்ளபபி ஓரு கம்யூட்டேட்டர் மூலம் பேட்டரியுடன் இணைக்கப்பட்டிள்ளது. கம்யூட்டேட்டர் நிலையை மாற்றுவதன் மூலம், டையோடு முன்னோக்க சார்புடையதாகவோ அல்லது தலைகீத் சார்புடையதாகவோ இருக்கலாம்.முதல் முன்னோக்கி சார்பு வழங்கப்படுகிறது. ரியோஸ்டாட்டைப் பயன்படித்தி வெவ்வேறு மின்னழுத்தம் டையோடு கொடுக்கப்படுகிறது மற்றும் இவ்வொரு மின்னழுத்தத்திற்கும், மில்லி-அம்மீட்டர் வாசப்பு குறிப்பிடப்படுகிறது. இப்போது டையோடு ஓரு தலைக்த் சார்பு கொடிக்கப்பட்டு மில்லி-அம்மீட்டர் மைக்ரோ அம்மீட்டரால் மாற்றப்படுகிறது. முன்னோக்கச் சார்பின் படி அதே நடைமுறை மீண்டிம் நிகழ்கிறது. இப்போது எக்ஸ்அச்சில் வோல்ட்மீட்டர் வாசிப்பையும், Y - அச்சில் தற்போதைய வாசப்பையும் எடுத்து ஒரு வரைபடத்தை வரையலாம். படத்தில் காட்டப்பட்டுள்ளபடி வரைபடம் இருக்கும். முன்னோக்க சார்பு நிலையில், ஜீனர் டையோடு ஒரு சாதாரண சந்தி டையோடு போலவே செயல்படுகிறது.ஜீனர் மின்னழுத்தம், ஜீனர் மின்னோட்டத்தின் சராசரி மதிப்புக்கு முறிவு பகுதியில் உள்ள மின்னழுத்தமாக வரையறுக்கப்படுகிறது. ஓரு a.c. ஓற்றை சூப்பர் திணிக்கப்பட்டுள்ளது, வளைவின் சாய்வு ஜீனர் நடப்பு- Iz இன் சராசரியாக அளவிட முடியும் .ஜீனர் எதிர்ப்பு என்பது அதிகரிக்கும் வாக்கிற்கும் மின்னோட்டத்தறறகும் இடையிலான விகததமாக வரையறுக்கப்படுகிறது. ஜீனர் எதிர்ப்பின் குறைந்தபட்ச மதிப்பு சுமார் 10 ஆகும் ஓம் சுமார் 6 வோல்ட்.

பி-என்-பி மற்றும் என்-பி-என் டிரான்சிஸ்டர்

என்-வகை குறைக்கடத்தியின் மெல்லிய அடுக்கு இரண்டு பி-வகை குறைக்கடத்திக்கு இடையில் மணல் சூனியமாக இருக்கும்போது, இதன் விளைவாக பி-என்-பி டிரான்சிஸ்டர் உருவாகிறது. இதேபோல் ஒரு பி-வகை பகுதி இரண்டு என்-வகை குறைக்கடத்திக்கு இடையில் மணல் சூனியமாக இருக்கும்போது, எங்களிடம் ஒரு என்-பி-என் டிரான்சிஸ்டர் உள்ளது. பி-என்-பி மற்றும் என்-பி-என் டிரான்சிஸ்டர்கள் மற்றும் அவற்றின் சுற்று சின்னங்கள் படத்தில் காட்டப்பட்டிள்ளபடி உள்ளன. டிரான்சிஸ்டரில் மூன்று பகுதிகள் உள்ளன. அவர்கள் நான். உமிழ்ப்பான் ii. கலெக்டர் iii. அடித்தளம்.

NPN Transistor

PNP Transistor

டிரான்சிஸ்டர் நடவடிக்கை

வெளிப்புறமாக பயன்படுத்தப்படும் மின்னழுத்தத்தின் செல்வாக்கன் கீ்் அதன் வழியாக தற்போதைய ஓட்டத்தை பகுப்பாய்வு செய்வதன் மூலம் டிரான்சிஸ்டர் செயலைப் புரிந்து கொள்ள முடியும். உமிழ்ப்பான் அடிப்படை சந்தி முன்னோக்க சார்புடையதாகவும் கலெக்டர் அடிப்படை சந்தி தலைகீழ் சார்புடையதாகவும் இருக்கும். பி-என்-பி டிரான்சிஸ்டரின் செயல்பாட்டை நாங்கள் படிப்போம், மேலும் படம் படத்தில் காட்டப்பட்டிள்ளது.

Cirmilt Ginber
உமிழ்ப்பான் முன்னோக்க சார்புடையதாக இருப்பதால், பி-பிராந்தியங்களில் உள்ள துளைகள் அடித்தளத்திற்கு செலுத்தப்படுகின்றன மற்றும் எலக்ட்ரான்கள் அடித்தளத்திற்கு செலுத்தப்படுகின்றன மற்றும் எலக்ட்ரான்கள் என்பிராந்தியத்திலிருந்து பி-பகுதிக்கு செலுத்தப்படுகின்றன. ஆனால் அடிப்படை லேசாக அளவிடப்பட்டு, உமிழ்ப்பான் பெரிதும் அளவிடப்பட்டிருப்பதால், துளைகளின் எண்ணிக்கையுடன் ஒப்பிடிம்போது அடித்தளத்திலிருந்து உமிழ்ப்பான் வரையிலான எலக்ட்ரான்களின் எண்ணிக்கை மிகக் குறைவு. அடிப்படை பகுதியில் சில துளைகள் எலக்ட்ரானால் நடிநிலையானவை. அடிப்படை பகுதி மிகவும் மெல்லியதாக இருப்பதால், பெரும்பாலான துளைகள் இந்த ரெஜ்சியனைக் கடந்து சேகரிப்பான் பகுதியை அடையும்.கலெக்டர் அடிப்படை பகுதி தலைஷீழ் சார்புடையதாக இருப்பதால்,

சந்திக்கு வரும் துளைகள் ஈர்க்கப்பட்டு இது ஒரு சேகரிப்பான் மின்னோட்டமாக அமைகிறது. உமிழ்ப்பான் மின்னோட்டம் । E ஆல் குறிக்கப்படுகிறது, கலெக்டர் மின்னோட்டம் IC மற்றும் அடிப்படை மின்னோட்டம் I_{B} ஆகும். $I_{C}=I_{E}$ where என்பது தற்போதைய ஆதாயம் என்று அழைக்கப்படுகிறது, அதன் மதிப்பு 0.95 முதல் 0.98 வரை இருக்கும். உமிழ்ப்பான் மின்னோட்டம் சேகரிப்பான் மின்னோட்டம் மற்றும் அடிப்படை மின்னோட்டத்தின் தொகைக்கு சமம்.

$$
I_{E}=I_{C}+I_{B}
$$

உமிழ்ப்பான் அடிப்படை மின்னழுத்தம் அதிகரித்தால், சேகரிப்பாளரும் அதிகரிக்கும். உமிழ்ப்பான் மின்னோட்டம் குறைந்துவிட்டால், சேகரிப்பான் மின்னோட்டமும் குறைகிறது. ஓரு மாற்று மின்னழுத்தம் உமிழ்ப்பாளருக்கு உள்ளீடாகப் பயன்படுத்தப்பட்டால், சேகரிப்பான் சுற்றுவட்டத்தில் பெருக்கப்பட்ட வெளியீட்டைப் பெறுவோம். எனவே டிரான்சிஸ்டரை ஒரு பெருக்கியாகப் பயன்படுத்தலாம். இதேபோல், பி-என்-பி டிரான்சிஸ்டரை விளக்கலாம்.

டிரான்சிஸ்டர் சுற்று உள்ளமைவு

டிரான்சிஸ்டரை இணைக்கக்கூடிய மூன்று அடிப்படை உள்ளமைவுகள் உள்ளன. அவை

(i) பொதுவான அடிப்படை உள்ளமைவு (ii) பொதுவான உமிழ்ப்பான் உள்ளமைவு (iii) பொதுவான கலெக்டர் உள்ளமைவு.உள்ளீடு மற்றும் வெளியீட்டு சுற்றுகளுக்கு பொதுவான மின்முனையைக் குறிக்க பொதுவானது பயன்படுத்தப்படுகிறது. பொதுவான மின்முனை பொதுவாக அடித்தளமாக இருப்பதால், இந்த செயல்பாட்டு முறைகள் பெரும்பாலும் தரை தளம், தரையிறக்கப்பட்ட உமிழ்வு மற்றும் தரையிறங்கிய சேகரிப்பாளர் என குறிப்பிடப்படுகின்றன.

பொதுவான உமிழ்ப்பான் (CE) உள்ளமைவின் பண்புகள்

பொதுவான உமிழ்ப்பான் டிரான்சிஸ்டர் சுற்றுகளின் சிறப்பியல்பு கழே
 உமிழ்ப்பான் மின்னழுத்தத்தின் அடிப்படை மாறுபடும். மற்றும் உமிழ்ப்பான் மின்னழுத்தத்திற்கு சேகரிப்பவர் பொட்டென்டோமீட்டர் R_{2} ஐ சரிசெய்வதன் மூலம் மாறுபடும். பல்வேறு அமைப்புகளுக்கு, மின்னோட்டம் மற்றும் மின்னழுத்தம் மில்லியமீட்டர்கள் மற்றும் வோல்ட்மீட்டரிலிருந்து எடுக்கப்படுகின்றன. இந்த அளவீடிகளின் அடிப்படையில், உள்ளீடி மற்றும் வெளியீட்டு வளைவு வளைவில் திட்டமிடப்பட்டுள்ளது.

உள்ளீட்டு சிறப்பியல்பு வளைவு

அடிப்படை மின்னோட்ட I_{B} மற்றும் அடிப்படை-உமிழ்ப்பான் மின்னழுத்த $V_{E B}$ க்கு இடையில் திட்டமிடப்பட்ட வளைவு உள்ளீட்டு பண்புகள் வளைவு என அழைக்கப்படுகிறது. உள்ளீட்டு சிறப்பியல்பை வரைவதற்கு, அடிப்படை நீரோட்டங்களின் வாசிப்பு நிலையான சேகரிப்பான்-உமிழ்ப்பான் மின்னோட்டத்தில் உமிழ்ப்பான் மின்னழுத்த $V_{B E}$ இல் உள்ள அம்மீட்டர் வழியாக எடுக்கப்படுகிறது. கலெக்டர்-பேஸ் மின்னோட்டத்தின் வெவ்வேறு மதிப்பிற்கான வளைவு கழே உள்ள படத்தில் காட்டப்பட்டுள்ளது. பொதுவான அடிப்படை உள்ளமைவுக்கான வளைவு முன்னோக்க டையோடு பண்புக்கு ஓத்ததாகும். உமிழ்ப்பான்-அடிப்படை மின்னழுத்த $V_{\text {BE }}$ இன் அதிகரிப்புடன் அடிப்படை மின்னோட்ட I_{B} அதிகரிக்கிறது.

இதனால் CE உள்ளமைவின் உள்ளீட்டு எதிர்ப்பு CB கட்டமைப்பின் ஓப்பீட்டளவில் அதிகமாக உள்ளது. CE இன் விளைவு வளைவுகளில் பெரிய விலகலை ஏற்படுத்தாது, எனவே உள்ளீட்டு பண்புகளில் $V_{C E}$ இன் மாற்றத்தின் விளைவு புறக்கணிக்கப்படுகிறது.

உள்ளீட்டு எதர்ப்பு: நிலையான கலெக்டர்-உமிழ்ப்பான் மின்னழுத்தம் VCE இல் அடிப்படை மின்னோட்டம் Δ_{B} இன் மாற்றத்திற்கான அடிப்படை-உமிழ்ப்பான் மின்னழுத்த $\quad V_{B E}$ இன் மாற்றத்தின் விகிதம் உள்ளீட்டு எதர்ப்பு என அழைக்கப்படுகிறது.அதாவது,

$$
r_{i}=\frac{\Delta V_{B E}}{\Delta I_{B}} \text { at constant } V_{C E}
$$

வெளியீட்டு சிறப்பியல்பு

CE கட்டமைப்பில், கலெக்டர் நடப்பு ஐசி மற்றும் கலெக்டர்-உமிழ்ப்பான் மின்னழுத்தம் VCE க்கு இடையில் ஒரு நிலையான அடிப்படை மின்னோட்டத்தில் வளைவு ஈர்க்கிறது வெளியீட்டு பண்பு என்று அழைக்கப்படுகிறது. CE உள்ளமைவில் வழக்கமான NPN டிரான்சிஸ்டருக்கான சிறப்பியல்பு வளைவு கழே உள்ள படத்தில் காட்டப்பட்டுள்ளது.

Output Characteristic Curve
செயலில் உள்ள பிராந்தியத்தில், கலெக்டர்-உமிழ்ப்பவர் $V_{C E}$ மின்னோட்டம் அதிகரிக்கும்போது சேகரிப்பான் மின்னோட்டம் சற்று அதிகரிக்கிறது. வளைவின் சாய்வு CB உள்ளமைவின் வெளியீட்டு பண்புகளை விட அதிகம். பொதுவான அடிப்படை இணைப்பின் வெளியீட்டு எதர்ப்பு CE இணைப்பைக் காட்டிலும் அதிகமாகும். நிலையான மின்னழுத்த I_{B} இல் $V_{C E}$ இன் அதிகரிப்புடன் சேகரிப்பாளரின் தற்போதைய I_{C} இன் மதிப்பு அதிகரிக்கிறது, இதன் மதிப்பு β மேலும் அதிகரிக்கிறது.வெளியீட்டு எதிர்ப்பு: சேகரிப்பான்-உமிழ்ப்பான் மின்னழுத்தத்தின் மாறுபாட்டின் விகதம் சேகரிப்பான்-உமிழ்ப்பான் மின்னோட்டத்துடன் கலெக்டர் நீரோட்டங்களில் ஒரு நிலையான அடிப்படை மின்னோட்டத்தில் அறியப்படுகிறது.

$$
r_{o}=\frac{\Delta V_{C E}}{\Delta I_{C}} \text { at constant } I_{B}
$$

புல விளைவு டிரான்சிஸ்டர்

புலம்-விளைவு டிரான்சிஸ்டர் (FET) என்பது ஒரு குறைக்கடத்த சாதனம் ஆகும், இது ஒரு மின்சார புலத்தால் மின்னோட்டத்தைக் கட்டுப்படுத்துவதில் அதன் செயல்பாட்டைப் பொறுத்தது, ஏனெனில் மின்னோட்டம் பெரும்பான்மை கேரியர்களால் மட்டுமே செயல்படுத்தப்படுகிறது, புலம் விளைவு டிரான்சிஸ்டர் யூனிபோலார் சாதனம் என்று கூறப்படுகிறது.

P-Channel

N-Channel

FET இல் இரண்டு வகைகள் உள்ளன, அவை

1. சந்தி புலம் விளைவு டிரான்சிஸ்டர் மற்றும்
2. மெட்டல் ஆக்சைடு குறைக்கடத்த புலம் விளைவு டிரான்சிஸ்டர் (MOSFET). MOSFET இன்சுலேட்டட் கேட் ஃபீல்ட் எஃபெக்ட் டிரான்சிஸ்டர் (IGFET) என்றும் அழைக்கப்படுகிறது.

சந்தி புலம் விளைவு டிரான்சிஸ்டர் கட்டுமானம்
ஓரு JFET இல், தற்போதைய ஓட்டம் கட்டணங்களின் பெரும்பான்மையான கேரியர்கள் காரணமாகும். இரு குறைக்கடத்தியில், இரண்டு வகையான கேரியர்கள் வைஸ் துளைகள் மற்றும் எலக்ட்ரான்கள் உள்ளன. எனவே JFET இரண்டு வகையாகும்.
i). N- சேனல் FET ii. P-சேனல் FET - இந்த தற்போதைய ஓட்டத்தில் துளைகள் ஏற்படுகின்றன.

ஒரு n- சேனல் FET இன் கட்டமைப்பு படத்தில் காட்டப்பட்டுள்ளது. N- வகை பொருளின் குறைக்கடத்த பட்டியின் இரண்டு முனைகளிலும் ஓமிக் தொடர்புகள் செய்யப்படுகின்றன (பி-வகை சிலிக்கான் பயன்படுத்தப்பட்டால், சாதனம் P-சேனல் FET என குறிப்பிடப்படுகிறது. பட்டியின் இருபுறமும் சந்திப்புகள் அதற்கு நேர்மாறான அசுத்தங்களை உருவாக்குகின்றன சேனலின் அதாவது n - வகை சேனலுக்கான p - வகை அசுத்தங்கள் மற்றும் அதற்கு நேர்மாறாக. பட்டியின் இறுதி முனையங்களுக்கு இடையில் ஒரு மின்னழுத்தத்தைப் பயன்படுத்துவதன் மூலம் பட்டியின் நீளத்துடன் மின்னோட்டம் பாய அனுமதிக்கப்படுகிறது. மின்னோட்டமானது பெரும்பான்மை கேரியரால் கொண்டு செல்லப்படுகிறது சேனல். பின்வரும் FET குறியீடு நிலையானது.மூல S என்பது முனையமாகும், இதன் மூலம் பெரும்பான்மையான கேரியர்கள் பட்டியை விட்டு வெளியேறுகின்றன. S இல் பட்டியில் நுழையும் வழக்கமான மின்னோட்டம் Is ஆல் நியமிக்கப்படுகிறது.

ஒரு n- சேனல் JFET ஐக் கருத்தில் கொண்டு VGS அல்லது VDS அல்லது இரண்டும் மாற்றப்படும்போது அதன் செயல்பாட்டைப் பற்றி விவாதிப்போம்.

1. $V_{G S}=0$ மற்றும் விடிஎஸ் $=0: D_{S}$ மற்றும் G_{S} இடையே மின்னழுத்தங்கள் எதுவும் பயன்படித்தப்படாதபோது, பி-சந்தியைச் சுற்றியுள்ள குறைப்பு பகுதி சமதடிமன் மற்றும் சமச்சீர் ஆகும்.
2. $V_{G S}=0$ மற்றும் $V_{D S}$ பூஜ்ஜியத்திலிருந்து அதிகரிக்கும் போது: இதற்காக,JFET விநியோகத்துடன் இணைக்கப்பட்டுள்ளது. S முதல் D வரை எலக்ட்ரான் ஓட்டம், வழக்கமான வடிகால் நடப்பு ஐடி டி முதல் எஸ் வரை சேனல் வழியாக பாய்கிறது. விடிஎஸ் பயன்படுத்தப்படும்போது, எஸ் முதல் டி-அதாவது செல்லும்போது சேனலுடன் நேர்மறையான ஆற்றலின் படிப்படியான அதிகரிப்பு உள்ளது. எஸ் முதல் டி வரை சேனலுடன் செல்லும்போது p-n சந்தி முழுவதும் தலைகீழ் மின்னழுத்தம் அதிகரிக்கிறது. எனவே குறைப்பு பகுதியின் தடிமனும் கூட அதிகரிக்கிறது.

3. $V_{D S}=0$ மற்றும் $V_{G S}$ பூஜ்ஜியத்திலிருந்து குறையும் போது: $V_{G S}$ மேலும் மேலும் எதிர்மறையாக இருக்கும்போது கேட் தலைக்ழ் சார்பு அதிகரிக்கிறது. எனவே குறைப்பு பகுதியின் தடிமனும் அதிகரிக்கிறது. ஒரு குறிப்பிட்ட மின்னழுத்தத்தில், இரண்டு குறைவு பகுதிகளும் ஓருவருக்கொருவர் தொடர்பு கொள்கனனறன. இந்த நிலையில், சேனல் கட்-ஆஃப் என்று கூறப்படுகிறது. சேனலை வெட்டுவதற்குத் தேவையான விஜிஎஸ் மதிப்பு கட்-ஆஃப் மின்னழுத்தம் என்று அழைக்கப்படுகிறது.
4. $V_{G S}$ எதர்மறையாக இருக்கும்போது மற்றும் விடிஎஸ் அதிகரிக்கும் போது: விஜிஎஸ் மேலும் மேலும் எதிர்மறையாக செய்யப்படுவதால், வோவின் மதிப்பு மற்றும் முறிவு மின்னழுத்தம் குறைகிறது. இது படத்தில் காட்டப்பட்டுள்ளது. கேட் மின்னழுத்தம் வடிகால் மின்னோட்டத்தை கட்டுப்படுத்துவதால் JFET ஒரு மின்னழுத்த கட்டுப்பாட்டு சாதனம் என்று அழைக்கப்படுகிறது. ஒரு பி-சேனல் JFET சரியாக n- சேனல் JFET போலவே இயங்குகிறது தவிர தற்போதைய கேரியர்கள் துளைகள் மற்றும் $V_{D S}$ மற்றும் $V_{G S}$ இரண்டின் துருவமுனைப்புகளும் தலைகீழாக மாறும்.
```
Number system - Conversions - Binary: Addition, Subtraction Multiplication and Division -
8421 Code - BCD Code - Excess 3 Code -Gray code - Binary to Gray and Gray to Binary
conversion - ASCII Code - Basic Gates and derived gates: AND, OR NOT, NAND, NOR, EX-
NOR, NAND & NOR as Universal gates .
```


Introduction

Electronic circuits can be divided into two broad catagories such as analog and digital. Analog circuit deals quantities with discrete values and digital circuit deals quantities with decrete values (i.e., the values occur at discrete interval of time). Now a days the digital technology is applied in every part of human life such as television, communication systems, biomedical instruments and consumer electronics etc.

The advantage of digital circuits over analog circuits are accuracy of the system is high, power consumption is very low, fast and more efficient and reliable than analog system. The digital circuits has only two possible states such as "high" and "low". It can be represented by open and closed switches or on and off condition of the switch. Thus to describe the behavior of the digital system two state number system known as "binary number" system used. In this unit fundamentals of digital electronics have been discussed.

Number system

1. Decimal number system, base $-10,0-15$, Ex- $(65)_{10}$
2. Binary number system, base $-2,0000-1111, \mathrm{Ex}-(101)_{2}$
3. Octal number system, base $-8,0-7, \mathrm{Ex}-(76)_{8}$
4. Hexadecimal number system, base $-16,0-9$, A-F, Ex- (3D1) ${ }_{16}$

DECIMAL NUMBER SYSTEM

The decimal number system makes use of ten digits namely, $0,1,2,3,4,5,6,7,8$ and 9. Since ten basic symbols or digits are used, the decimal number system is said to have a base or radix of ten.

Any decimal number is formed combining the digits at different positions and applying corresponding weights to the digits. e.g.:

$$
25=20+5=2 \times 10+5 \times 1=2 \times 10^{1}+5 \times 10^{0}
$$

MSB - Most significant Bit

LSD - Least significant Digit
LSB - Least Significant Bit

Mrs. D. S. Vasanthi, Dept. of Physics

BINARY NUMBER SYSTEM

A binary number system uses only two symbols or digits namely, $\mathbf{0}$ and $\mathbf{1}$. That is the binary number system has a base or radix of 2 . A binary digit 0 or 1 is called a bit.

A 4-bit binary word is called as a nibble. An 8-bit binary word is called as a byte. A 16bit binary word is simply called as a word.

For example: $(101)_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$

OCTAL NUMBER SYSTEM

The octal number system has a base 8 . The basic digits used are $0,1,2,3,4,5,6,7$.
For example: $(475)_{8}=4 \times 8^{2}+7 \times 8^{1}+5 \times 8^{0}$

HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system has a base 16 . The basic digits are $0,1,2,3,4,5,6,7$, 8, 9, A, B, C, D, E, F.

The hex to decimal conversion is similar to binary to decimal conversion, only the weights are different. In this case, the weights used are $16^{0}, 16^{1}, 16^{2}$ etc., for the integer part and $16^{-1}, 16^{-2}$ etc. for the fractional part.

For example : $(\mathrm{D} 5)_{16}=\left(13 \times 16^{1}+5 \times 16^{0}\right)$

CONVERSION

DECIMAL TO BINARY CONVERSION

A decimal number like 19 can be converted into binary by repeatedly dividing the number by 2 and collecting the remainders (double dabble method).

Collecting the remainders in the reverse, we get

$$
(19)_{10}=(10011)_{2}
$$

For decimal fractions, the fractional part has to be multiplied by 2 successively and collecting the carries from top to bottom. For example the decimal fraction 0.625 is converted into binary as,

$$
\begin{aligned}
& 0.625 \times 2=1.250 ; \text { carry is } 1(\mathrm{MSB}) \\
& 0.250 \times 2=0.500 ; \text { carry is } 0 \\
& 0.500 \times 2=1.000 ; \text { carry is } 1(\mathrm{LSB})
\end{aligned}
$$

$(0.625)_{10}=(0.101)_{2}$

DECIMAL TO OCTAL CONVERSION

To convert a decimal number to octal, we have to divide the decimal number by 8 repeatedly and collect the remainders from top to bottom (for the integer part). The remainders also must be taken in octal.

For example, let us convert the decimal number 68 to octal
i.e., $(68)_{10}=(104)_{8}$

$$
(109)_{10}=(155)_{8}
$$

8	68
8	8 --- 4
	1 --- 0

8	109	
	13	--5
	1	---5

DECIMAL TO HEXADECIMAL CONVERSION

To convert a decimal number to hex, we have to divide the decimal number by 16 repeatedly and collect the remainders from top to bottom (for the integer part). The remainders also must be taken in hex. Example, the decimal number

$(213)_{10}=(D 5)_{16}$

$(1020)_{10}=(3 \mathrm{FC})_{\mathrm{H}}$

To convert the fractional part of a decimal number, multiply by 16 repeatedly and collect the carriers. For example, (0.5) 10 can be converted into hex as shown.

$$
\begin{aligned}
& 0.5 \times 16=8.0 \\
\text { i.e., } & (0.5)_{10}=(0.8)_{\mathrm{H}}
\end{aligned}
$$

BINARY TO DECIMAL CONVERSION

A binary number can be converted into a decimal number by adding the products of each bit and its weight. Examples.

$$
\begin{aligned}
& \text { (i) }(101)_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =4+0+1=5 \\
& \text { i.e., }(101)_{2}=(5)_{10} \\
& \text { (ii) }(10011)_{2}=1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =16+0+0+2+1=19 \\
& \text { i.e., }(10011)_{2}=(19)_{10}
\end{aligned}
$$

OCTAL TO DECIMAL CONVERSION

Let us convert a octal number (62) 8 to decimal.

$$
\begin{aligned}
(62)_{8} & =\left(6 \times 8^{1}+2 \times 8^{0}\right)_{10} \\
& =(6 \times 8+2 \times 1)_{10} \\
& =(48+2)_{10}=(50)_{10}
\end{aligned}
$$

HEXADECIMAL TO DECIMAL CONVERSION

The hex to decimal conversion is similar to binary to decimal conversion, only the weights are different. In this case, the weights used are $16^{0}, 16^{1}, 16^{2}$ etc., for the integer part and $16^{-1}, 16^{-2}$ etc. for the fractional part.

Let us convert a hexadecimal number (D5) H to decimal.

$$
\begin{aligned}
(\text { D5 })_{16} & =\left(13 \times 16^{1}+5 \times 16^{0}\right)_{10} \\
& =(13 \times 16+5 \times 1)_{10} \\
& =(208+5)_{10}
\end{aligned}
$$

(D5) ${ }_{16}$ can also be written as (D5) $)_{\mathrm{H}}$.

HEXADECIMAL TO BINARY CONVERSION

To convert a hexadecimal number to binary, replace each hex digit with its equivalent 4bit binary.

Table gives the hex, decimal and the corresponding binary combination.

Decimal	Hexadecimal	Binary $2^{3}+2^{2}+2^{1}+2^{0}$ $8+4+2+1$
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	9	1000
9	A	1001
10	C	1010
11	D	1011
12	E	1100
13	F	1101
14		1110
15		

Mrs. D. S. Vasanthi, Dept. of Physics

BINARY TO HEXADECIMAL CONVERSION

To convert a binary number to hex, we have to arrange the bits into group of 4 bits starting from LSB (Least significant Bit). If the final group has less than 4-bits, just include zeros in MSB to make it a group of 4 bits.

For example, to convert $(100101)_{2}$ into hex, arrange the bits as (100101) $)_{2}$. Now include two zeros for the first group at the front. The binary combination now becomes (0010 0101) 2. In the last step replace each 4 bit binary group by its equivalent hex digit. i.e. $0010=2$ and $0101=$ 5

Therefore, $(100101)_{2}=(00100101)_{2}=(25)_{\mathrm{H}}$.
$(6 \mathrm{~F})_{\mathrm{H}}=(01101111)_{2}$

OCTAL TO BINARY CONVERSION

Since the base of octal number system is 8 which is equal to 2^{3}, to convert a octal number to binary, all we have to do is replace each octal digit with its equivalent 3-bit binary.

Decimal	Octal	Binary $\left(\mathbf{2}^{\mathbf{2}} \mathbf{2}^{\mathbf{1}} \mathbf{\mathbf { 2 } ^ { \mathbf { 0 } })}\right.$
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

BINARY TO OCTAL CONVERSION

To convert a binary number to octal, we have to arrange the bits into group of 3 bits starting from LSB (least significant bit). If the final group has than 3 bits just include zeros to make it a group n of 3 bits. For example, to example (10 101) into octal, arrange the bits as (10 101). Now include a zero for the first group at the front. The binary combination now becomes (010 101). In the last step, replace each 3-bit binary group by its equivalent octal digit. i.e., $010=$ 2 and $101=5$.

Therefore, $(10101)_{2}=\left(\begin{array}{lll}010 & 101\end{array}\right)_{2}=(25)_{8}$

$$
(37)_{8}=(011111)_{2}
$$

Mrs. D. S. Vasanthi, Dept. of Physics

BINARY ARITHMETIC

Binary arithmetic operations are carried out in a same manner as decimal operations.

BINARY ADDITION

The addition of two binary numbers is very similar to addition of two decimal numbers. The following rules are followed while adding two binary numbers.
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=10 \quad ;$ Read as 0 with a carry 1
$\left(1+1\right.$ is 2 which is $\left.(10)_{2}\right)$
$1+1+1=11 \quad ;$ Read as 1 with a carry 1
$\left(1+1+1\right.$ is 3 which is $(11)_{2}$; the third bit is usually the carry from the previous addition.

1) Add 11110_{2} to 11_{2}
2) $1101_{2}+1110_{2}$

11110
11
100001
$(11110+11)_{2}=(100001)_{2}$

1101
1110
11011
$(1101+1110)_{2}=(11011)_{2}$

BINARY SUBTRACTION

The subtraction of two binary numbers is similar to the subtraction of two decimal numbers.
$0-0=0$
$0-1=1 \quad$; Read as difference 1 with a borrow 1
$1-0=1$
$10-1=1$
(1 cannot be subtracted from 0 ; therefore a ' 1 ' is assumed to be borrowed from the next column whose weight is 2^{1} which makes it 10 . Therefore $10-1=1$ (difference) and borrow $=1$)

1) Subtract 110_{2} from $1101_{2} \quad 2$) $1001_{2}-111_{2}$

010
$0 \quad 10$
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$

1	1	0
1	1	1

$(1101-110)_{2}=(111)_{2}$

01
01010
1001
$\begin{array}{r}111 \\ \hline 10\end{array}$
$(1001-111)_{2}=(10)_{2}$

BINARY MULTIPLICATION

The following are the four basic rules for multiplying binary digits.
$0 \times 0=0$
$0 \times 1=0$
$1 \times 0=0$
$1 \times 1=1$

BINARY DIVISION

Binary division is the same as decimal division.

1) Divide 1100_{2} by 100_{2}

100 | 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 0 | 0 |
| | 1 | 0 |

Quotient $=11_{2}$
Remainder $=0 \mathrm{O}_{2}$
2) Divide 110110_{2} by 101_{2}

Quotient $=1010_{2}$
Remainder $=100_{2}$

BCD CODES - 8421 CODE

A group of bits (usually four) which are used to represent decimal numbers 0 to 9 are called Binary Coded Decimal codes or BCD codes.

The most popular BCD code is the 8421 code. The 8421 indicates the binary weights of the four bits $\left(2^{3}, 2^{2}, 2^{1}, 2^{0}\right)$. Using the four bits with weight $8,4,2,1$, we can easily represent the decimal numbers 0 to 9 as given in the Table.

From the Table, we can see that the four bit binary combination given is only the first ten combination of the four bit binary progression. The six remaining combinations, namely 1010, 1011, 1100, 1101, 1110 and 1111 are invalid 8421 BCD codes.

Decimal	8421
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Any decimal number greater than 9 can be easily represented in 8421 BCD , by repeatedly using the four bit code for each digit. Few examples are given below.

Decimal	8421 BCD code
29	00101001

Mrs. D. S. Vasanthi, Dept. of Physics

468	010001101000
97.5	10010111.0101

Excess - 3 CODE

The Excess -3 code is a BCD code used in earlier computers. The Excess -3 code for a decimal digit is obtained by adding 0011 (3) to the 8421 BCD code. The Excess -3 code also has ten valid codes and six invalid codes. The six invalid codes are $0000,0001,0010,1101,1110$ and 1111. The valid Excess -3 codes are given in the Table.

Decimal	8421	Excess - 3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

In Excess-3 code (Like in 8421 BCD code), if the number is greater than 9, the code is given separately for each digit. Few examples are given below.

Decimal number	Excess-3 code
26	$0101 \quad 1001$
97	$1100 \quad 1010$
85.3	1011

The Excess- 3 code is not a weighted code

Mrs. D. S. Vasanthi, Dept. of Physics

GRAY CODE

Gray code is another important code that can be used in sequence counting. When the count advances by one, to reduce error, the number of changes in the bits has to be kept minimum.

Binary to Gray conversion:

To convert a given binary number to its equivalent Gray code the following rules are applied

1. The MSB of the Gray code is the same as the MSB of the binary.
2. Coding from left to right, add each adjacent pair of bits to get the next bit of the Gray code. Omit the carries if occurs.

An example, lett us convert the binary number 1011 to Gray code.

Step 1.

The left most bit (MSB) in Gray code is the same as the MSB of the binary.
$1 \quad 0 \quad 1 \quad 1$
Binary
1
Gray

Step 2.

Add the left most bit to the adjacent one.
$1+0 \quad 1 \quad 1$
Binary
11
Gray

Step 3.
Add the next adjacent pair.
$10+11$
Binary
111
Gray

Step 4.

Add the next adjacent pair and omit the carry.

The conversion is now complete.

Mrs. D. S. Vasanthi, Dept. of Physics

Gray to Binary conversion:

To convert a given number in Gray code into equivalent binary, the following rules are applied.

1. The MSB of the Binary is the same as the MSB of the Gray.
2. Coding from left to right, add the binary digit generated to the adjacent gray bit to get the next bit of the binary. Omit the carries if occurs.

An example, let us convert the Gray code 1110 to its equivalent binary.

Step 1.

The left most bit (MSB) in binary is the same as the MSB of the Gray.
1110
Gray
\downarrow
1
Binary

Step 2.
Add the binary digit generated to the adjacent bit of the Gray code.
1110
Gray

10
Binary

Step 3.

Add the binary digit generated to the adjacent bit of the Gray code.
1110
Gray
\nearrow
$1 \quad 0 \quad 1$
Binary

Step 4.

Add the binary digit generated to the adjacent bit of the Gray code.

1110

$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$
1

Gray

Binary

The conversion is now complete.

$$
(1110)_{\mathrm{G}}=(1011)_{2}
$$

ASCII CODE

ASCII stands for American standard code for information interchange. This is 7- bit code used to represent decimal digits 0 to 9 , alphabets A to Z (both lower case and upper case) and some special characters. That is, ASCII is an alpha numeric code.

Since ASCII is a 7 -bit code, there are $128\left(2^{7}\right)$ possible binary combinations. A few examples are given below.

ASCII Symbol	Decimal	Hex	7 -binary
0	48	30	0110000
1	49	31	0110001
2	50	32	0110010
9	57	39	0111001
:	58	3 A	0111010
?	63	3F	0111111
A	65	41	1000001
B	66	42	1000010
Z	90	5A	1011010
a	97	61	1100001
b	98	62	1100010

z	122	7 A	1111010
DEL	127	7 F	$111 \quad 1111$

The ASCII code also includes some control characters like DEL (Delete), ESC (Escape), STX (Start of Text), ETX (End of Text), etc.

LOGIC GATES

A gate is logic circuit which has one output and one or more inputs. An output occurs only for a particular combination of input signal. The output of the logic circuit can be in logic ' 1 ' state or logic ' 0 ' state.

Logic 0 state means ' 0 ' volt or less than 5 volts occurs in output. Logic 1 state means 5 volts occurs at the output.

1. Basic gates - AND, OR, NOT
2. Universal gates - NAND, NOR
3. Other gates - EX-OR, EX-NOR.

Truth table

A truth table is one which shows all possible input, output combinations for a logic circuit. If there are ' n ' inputs then we have 2^{n} output states.
a) AND gate (IC - 7408)

It has one or more input and only one output. In this gate the output is high if all the inputs are high, if any one input or all the inputs are low the output is low. The symbol and truth table given in below.

Boolean equation $\mathbf{Y}=\mathbf{A} \cdot \mathbf{B}$

Mrs. D. S. Vasanthi, Dept. of Physics
b) OR gate (IC - 7432)

An OR gate has one or more inputs and only one output. The output is ' 1 ' when anyone or more than one of the inputs is ' 1 ' and the output is ' 0 ' only when all the inputs are ' 0 '.

Boolean equation $\mathbf{Y}=\mathbf{A}+\mathbf{B}$

Symbol

Truth table

A	B	$\mathrm{Y}=\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

c) NOT gate (IC - 7404)

The NOT gate has a single input and single output. The is always the complements (opposite) of the input.

Boolean equation $\mathbf{Y}=\overline{\mathbf{A}}$

Truth table

A	$\mathrm{Y}=\overline{\boldsymbol{A}}$
0	1
1	0

UNIVERSAL GATES

d) NAND gate (NOT + AND = NAND) (IC - 7400)

This gate is equivalent to an AND gate followed by an inverter (NOT gate) as shown in figure. It has two or more inputs and only one output. If any one of the inputs to the gate is ' 0 ' then the output is ' 1 ' and the ouput is ' 0 ' only when all the inputs are ' 1 '.

Boolean equation $\mathbf{Y}=\overline{\boldsymbol{A} \cdot \boldsymbol{B}}$

Symbol

Truth table

A	B	$\mathrm{Y}=\overline{A . B}$

0	0	1
0	1	1
1	0	1
1	1	0

e) NOR gate $(\mathrm{NOT}+\mathrm{OR}=\mathrm{NOR})(\mathrm{IC}-7402)$

This gate is equivalent to an OR gate followed by an inverter as shown in figure. It has two or more inputs but only one output. If any of the inputs to a NOR gate is ' 1 ' the outputs is ' 0 ' and if all the inputs to the NOR gate are ' 0 's, then the output is ' 1 '.

Boolean equation $\quad \mathbf{Y}=\overline{\boldsymbol{A}+\boldsymbol{B}}$

Symbol

Truth table

A	B	$\mathrm{Y}=\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

OTHER GATES

f) EX-OR (or) XOR gate (Exclusive - OR) (IC - 7486)

The exclusive OR gate has two or more inputs but only one output. If odd number of inputs are ' 1 ' then the output is ' 1 ' and for all other input combinations, the output is '0'.

For a two input EX-OR gate, the output is ' 1 ' when either of the input is ' 1 ' and the output is ' 0 ' when both the inputs are equal i.e., ' 1 ' or ' 0 '.

Boolean equation $\quad \mathbf{Y}=\mathbf{A} \oplus \boldsymbol{B}$

Symbol

Truth table

A	B	$Y=A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Mrs. D. S. Vasanthi, Dept. of Physics

g) EX-NOR (or) XNOR gate (Exclusive - NOR) (IC - 74266)

This gate is equivalent to an exclusive OR gate followed by an inverter. If even number of inputs are ' 1 ' the output is ' 1 ' and for all other input combinations, the output is ' 0 '. For a two input exclusive - NOR gate, the output is ' 1 ' when both the inputs are equal to ' 1 ' or ' 0 ' and the output is ' 0 ' when the inputs are different. It is also called a comparator or a logic identity gate.

Boolean equation $\boldsymbol{Y}=\overline{\boldsymbol{A} \oplus \boldsymbol{B}}=\overline{\boldsymbol{A}} \boldsymbol{B}+\boldsymbol{A} \overline{\boldsymbol{B}}$
Symbol
Truth table

A	B	$Y=\overline{A \oplus B}$
0	0	1
0	1	0
1	0	0
1	1	1

UNIVERSAL GATES

1. NAND as UNIVERSAL GATE

The symbol for the NAND gate and the truth table are shown in fig.

A	B	$\mathrm{Y}=\overline{A B}$
0	0	1
0	1	1
1	0	1
1	1	0

By connecting NAND gates in different ways, it is possible to get the function of any other gate. That, is the functions of NOT, AND, OR,etc., can be implemented using only NAND gates. Therefore, the NAND gate is called as a Universal gate or Universal building block.
(i) NAND as NOT

A NOT gate has only one input and one output. If the input is \mathbf{A} the output is given by $\overline{\boldsymbol{A}}$.

A	$\mathrm{Y}=\bar{A}$
0	1
1	0

In a two input NAND gate, if both the inputs are marked as \mathbf{A}, then the output is given by $\overline{\boldsymbol{A}} A$ which is equal to $\overline{\boldsymbol{A}}$. This arrangement makes the NAND to function as NOT. NAND as NOT is shown in Fig.

(ii) NAND as AND

The symbol and the truth table for the AND gate is shown in the Fig.,

The output of the NAND gate is $\overline{\boldsymbol{A B}}$. To make it as AB , the output of the NAND gate is inverted once. But, the inverter is also implemented using a second NAND gate. The arrangement is shown in fig.

(iii) NAND as OR

The symbol and the truth table for the OR gate is shown in the Fig.,

A	B	$\mathrm{Y}=\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

To get the OR expression $\mathrm{A}+\mathrm{B}$, the inputs are first inverted and then passed through NAND gate. This arrangement is shown in fig. Three NAND gates are needed to get the OR function. By Demorgan's theorem,

$$
\overline{\bar{A} \bar{B}}=\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}=\mathrm{A}+\mathrm{B}
$$

Mrs. D. S. Vasanthi, Dept. of Physics

The NOT gate are also obtained using NAND gates.
(iv) NAND as NOR

The symbol and the truth table for the NOR gate is shown in the Fig.,

A	B	$\mathrm{Y}=\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

The NOR gate is obtained by simply inverting the output of the OR gate. The implementation of NOR gate using NAND gates is given in Fig.,

2. NOR as UNIVERSAL GATE

The symbol and the truth table for the NOR gate is shown in the Fig.,

(i) NOR as NOT

A	B	$\mathrm{Y}=\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

In a two input NOR gate, if both the inputs are marked as A, then the output is given by $\overline{\boldsymbol{A}+\boldsymbol{A}}$ which is equal to $\overline{\boldsymbol{A}}$. Since the two inputs are the same, the two inputs of the NOR gate can be connected together and used as gate with a single input. This arrangement makes the NOR to function as NOT. The arrangement is shown in Fig.,

A	$\mathrm{Y}=\bar{A}$
0	1
1	0

(ii) NOR as OR

The output of the NOR gate is $\overline{\boldsymbol{A}+\boldsymbol{B}}$. To make it as $(\mathrm{A}+\mathrm{B})$, the output of the NOR gate is inverted once. But the inverter is also implemented using a second NOR gate. The arrangement is shown in Fig.,

Mrs. D. S. Vasanthi, Dept. of Physics

A	B	$\mathrm{Y}=\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

(iii) NOR as AND

To get the AND expression A.B, the inputs are first inverted and then passed through a NOR gate. This arrangement is shown in Fig., Three NOR gates are needed to get the AND function.

A	B	Y =A.B
0	0	0
0	1	0
1	0	0
1	1	1

(iv) NOR as NAND

The NAND gate is obtained by simply inverting the output of the AND gate. The implementattion of NAND gate using NOR gates is given in Fig.,

Mrs. D. S. Vasanthi, Dept. of Physics

Question Bank

Two Mark Questions

1. What is number system?
2. Mention the different types of number.
3. What is decimal number system?
4. What is binary number system?
5. What is an octal number system?
6. What is hexadecimal number system?
7. Define thwe terms BIT , BYTE, NIBBLE and WORD.
8. Explain the radix of a number system.
9. How a decimal number is converted into a binary number.
10. Convert the decimal number 33 into a binary number.
11. How a fractional decimal numberr is converted into a binary number?
12. Convert 0.45 into a binary number.
13. How a binary number is converted into a decimal number?
14. Convert $(1010)_{2}$ into a decimal number.
15. How an octal number is converted into a decimal number?
16. Convert the octal number 132 into a decimal number.
17. How a decimmal number is converrted into an octal number?
18. Convert the decimal number 789 into an octal number.
19. How a fractional decimal number is converted into an octal number?
20. Convert the decimal number 0.15 into fractional octal number.
21. How an ocrtal number is converted into a binary number.
22. Convert the octal number 14 into a binary number.
23. How a binary number is converted into an octal number?
24. Converted the binary number 1010111 into an octal number.
25. How a hexadecimal number is converted into a decimal number?
26. How a decimal number is converted into a hexadecimal number?
27. How a hexadecimal number is converted into a binary number?
28. How a binary number is converted into a hexadecimal numberr?
29. What is binary arithmetic?
30. Add 5 and 8 using binary addition, 111 and 101, 1101 and 100.
31. Subtract 4 from 9 using binary subtraction, 1011 from 11000, 0101 from 1000.
32. Multiply 5 and 3 using binary multiplication, 11100×101
33. Divide 6 by 3 using binary division, 1010 by 100 .
34. What is BCD codes?
35. Decimal numbers 468, 98.5 are converted into BCD codes.
36. What is 8421 codes?
37. Convert 29,54 into 8421 codes.
38. What is the Excess -3 code?
39. Convert decimal number 852 into excess -3 code.
40. What is gray code?

Mrs. D. S. Vasanthi, Dept. of Physics

41. Convert binary to gray code $1011,1010,1110$.
42. Convert Gray to binary $11110,10110$.
43. What is ASCII code?
44. What is logic circuit?
45. What are the basic gates?
46. What is an AND gate?
47. Give the truth table of AND gate.
48. What is an OR gate?
49. Give the truth table of OR gate.
50. What is a NOT gate?
51. Give the truth table of NOT gate.
52. What is a NAND gate?
53. Give the truth table of NAND gate.
54. What is a NOR gate?
55. Give the truth table of NOR gate.
56. What is an EXOR gate?
57. Give the truth table of EXOR gate.
58. Why are NAND, NOR gate called as universal gate?
59. Draw the circuit diagram of logic gates AND, OR, NOT, NAND, NOR.
60. Draw the circuit diagram of universal logic gatees NAND as AND, OR, NOT,NOR and NOR as AND, OR, NOT,NAND.

Five and Ten Mark Questions

1. Explain the number system about decimal, binary, octal and hexadecimal.
2. Convert the following decimal numbers to binary $67,152,1902,378.05,51.125$.
3. Convert the following binary numbers to decimal 11101, 101011, 100011, 1111001.
4. Convert the following decimal numbers to hexadecimal nmbers $78,94,2064,378$
5. Convert the following hexadecimal numbers to binary 99, D89,F6A, 3BC, A02E.
6. Convert the following binary numbers to hexadecimal numbers 11101, 1110001, 1010110, 11.1101,1010.111.
7. Convert the following octal numbers to decimal $167,2541,24.35,562.43$.
8. Convert the following binary numbers to octal 101100, 101011, 11011,1011, 10011.11.
9. Perform the following additions in the binary number system. $15+86,27+38,58+97$.
10. Perform the following subtractions in the binary number system. $87-26,95-41,36.7-$ 16.2.
11. Perform the following multiplications in the binary number system. $8 * 5,32 * 13,78 * 25$.
12. Perform the following divisions in the binary number system. 12/3, 45/5,50/2
13. Explain the logic gates with its circuit and its truth tables.
14. Explain the universality of NAND and NOR with its circuit and its truth tables.

 (Lang (positional number system) गrmisit.
1) Fमए (b)
2) तनाम (काल?
3) ण以ا丩 कुलि?

Hifis Otnoi (fimn (Aecimal Number System)
 - BBmis. Hmis $0,1,2,3,4,5, b, 7,8,9$ Siby fonmulin

$$
\begin{aligned}
(7246.58)_{10}= & 7 \times 10^{3}+2 \times 10^{2}+4 \times 10^{1}+6 \times 10^{0}+5 \times 10^{-1} \\
& +8 \times 10^{-2} \\
= & 7000+200+40+6+0.5+0.08
\end{aligned}
$$

ता. 5229 गtoot (50mm. (Binary Number System).

(2) otruy otmi (tpmy (otal Number System).

 $0,1,2,3,4,5,6,7$ angis. कfin ang 8 Ab Gia.

8^{4}	8^{3}	8^{2}	8^{\prime}	8^{0}	8^{-1}	8^{-2}	8^{-3}

यकीजिताभ 19 णmiot (Fhmin (Heradecimal Number System)

 $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$, 45

Lrimgerir (Conversion)

(1) $(53)_{10}$
(2) $(0.625)_{10}$
$2 \longdiv { 5 3 }$
$2 \sqrt{2 b}-1$ LSB
$0.625 \times 2=1.250$ (intal
2 13-0
$0.250 \times 2=0.500$ मिल.000
$2 \quad b-1$
$5.500 \times 2=1.000$ fimial,
$2\left[\frac{3-0}{1-1}\right]_{M S 3}$

$$
(0.625)_{10}=(0.101)_{2}
$$

$$
(53)=(110101)_{2}
$$

$$
\begin{aligned}
& 8 \frac{1175}{8 \frac{21-7}{2-5}} \\
& (175)_{10}=(257)_{8}
\end{aligned}
$$

$$
8 \longdiv { 9 9 }
$$

$$
8 \frac{12-3}{1-4}
$$

$$
(99)_{10}=(143)_{8}
$$

(i) 16$) 24779$

16 154-(15) $\rightarrow F$
i1)

$$
\begin{array}{r}
9-(10) \rightarrow A \\
(24,79)_{10}=(9 \mathrm{AF})_{16}
\end{array}
$$

$$
\begin{aligned}
(1010)_{2} & =1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& =1 \times 8+0 \times 4+1 \times 2+0 \times 1 \\
& =8+0+2+0=10 \\
(1010)_{2} & =(10)_{10}
\end{aligned}
$$

$$
\begin{aligned}
(352)_{8} & =3 \times 8^{2}+5 \times 8^{1}+2 \times 8^{0} \\
& =3 \times 64+5 \times 8+2 \times 1 \\
& =192+40+2=234 \\
(352)_{8} & =(234)_{10}
\end{aligned}
$$

$$
\begin{aligned}
(2 A)_{16} & =2 \times 16^{1}+A \times 16^{0} \\
& =2 \times 16+10 \times 1 \\
& =32+10=42 \\
(2 A)_{16} & =42)_{10}
\end{aligned}
$$

$$
\begin{array}{ccc}
(1011.01101)_{2} & \\
001011 \cdot & 011 & 010 \\
1 & 3 & 3
\end{array} 2
$$

$$
\begin{aligned}
(35)_{8} & =3 \\
& =011 \quad 101 \\
(35)_{8} & =(11101)_{2}
\end{aligned}
$$

$$
\begin{aligned}
(10110101)_{2} & =10110101 \\
& =B 5 \\
(10110101)_{2} & =(B 5)_{16}
\end{aligned}
$$

$$
\begin{aligned}
(23 A)_{16} & =2 \quad 3 A \\
& =001000111010 \\
(23 A)_{16} & =(1000111010)_{2}
\end{aligned}
$$

F..Ilg GTmi Brofntio (Binary Arithmetic)
(i) N.sys बimi सo LiN (Binary addition)
$29508 \mathrm{~m}=$

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10 \\
& 1+1+1=11 \\
& 10+1=11 \\
& 10+1+1=100 \\
& 1+1+1+1=900
\end{aligned}
$$

(1) $2+3$

$$
\begin{array}{ll}
2 \rightarrow 0010 & \\
\frac{3}{5} \rightarrow \frac{0011}{0101} & \frac{6}{11} \rightarrow \frac{0101}{1011} \\
2+3=(101)_{2} & 5+6=\frac{(1011)_{2}}{}
\end{array}
$$

(6)
 100) FrLL Blamiolis.
(2) $5+6$

बानीक्रो
$0-0=0$
$1-0=1$
$10-1=1$
$1-1=1$

(6) $(i)(111)_{2}-(101)_{2}$

$$
\begin{aligned}
& 111 \rightarrow 7 \\
& \frac{101}{010} \rightarrow \frac{5}{2} \\
& \frac{(i i 1)}{2}-(101)_{2}=(10)_{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& (1101)_{2}-(1010)_{2} \\
& 1.101 \rightarrow 13 \\
& 1010 \rightarrow 10 \\
& \frac{0011}{(1101)_{2}-(1010)_{2}=(11)_{2}}
\end{aligned}
$$

(iii) N.gमी nL(GBnகत (Binary Multiplication)

2gignit	(i) $(111)_{2} \times(101)_{2}$	111
$0 \times 0=0$		101
$0 \times 1=0$	Ans $=(100011)_{2}$	$\frac{111}{100}$
$1 \times 0=0$		111
$1 \times 1=1$		100011

(iv) N1.0/7 1-FFgniv (Binary Division)
295)

$$
\begin{aligned}
& 0 \div 1=0 \\
& 1 \div 1=1
\end{aligned}
$$

(i) $(110)_{2} \div(10)_{2}$
(ii) $(11001)_{2} \div(101)_{2}$

$$
\begin{array}{r}
101 \\
\frac{101}{110,01} \\
\begin{array}{r}
101 \\
101 \\
\hline 0
\end{array}
\end{array}
$$

$$
\begin{aligned}
& 11.4=110_{2} \\
& {\left[007=O_{2}\right.}
\end{aligned}
$$

AsciI
American standard coded for Information Interchange.

(Basic Logic Gates)

 (Logic circuit or logic gates) नक्षेडो.
2) Whmarois SIPA (ANSD gate)

पूीusnt कuinscorfilie $y=A \cdot B$

A	B	$Y=A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

dinnmprooits BOT (OR Gate)

$\left[\begin{array}{c|c|c}A & B & Y=A+B \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline\end{array}\right.$

（8）जग⿰亻⿱丶⿻工二十⿴囗十

A	$y=A$
0	1
1	0

 Б（15L4य

फूीusrot Susinकार्णfio $y=\overline{A+B}$

A	B	$y=\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

 गीक्यिए 4 is．

A	B	$y=\overline{A B}$
0	0	1
0	1	1
1	0	1
1	1	0

 EX-OR Gate.

A	B	$Y=A 2 B$
0	0	0
0	1	1
1	0	1
1	1	0

$$
=A \vec{B}+B \bar{A}
$$

NOR Nyit OLungisis कहрperts (NOR as universal gate)
(i) riminीmmis Bopsins (as OR gate)

NAND Nit Ourgis Bopurats (NAND as universal gate

rivivipanitis BFaites (as OR gate.)

（10）जभीinmmis कुणuriss（as Nor gate）．

LE L्यांककीज्ण Brninnts（De Morgan＇s Theorems）
Le Intriseofrot ©fir senifimpis．

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

 किใिए

A	B	$\overline{A+B}$	$\bar{A} \cdot \bar{B}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

$$
\overline{A \cdot B}=\bar{A}+\bar{B}
$$

風部以地：－

A	B	$\overline{A \cdot B}$	$\bar{A}+\bar{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Scanned by CamScanner

Books for reference:

1.R.Murugeshan,Properties of Matter,S.Chand \& Company LTD.Ram Nagar,N ew Delhi-110 005.
2. A. Sundaravelusamy, பொருட்பண்பியல் \& ஒ மி, Priya Publications, Karur - 2 .
3. Brij lal \& Subramanyam,Heat and thermodynamics, Chand \& Company LTD.Ram

Nagar, N ew Delhi-1 10005
4.Dr. G. Senthilkumar, Engineering Physics - I, Revised edition, 2005-2006, VRB publishers Pvt, Ltd, Chennai.
5.Anuradha De, Optical fibre and laser, Second edition, New generation private limited, Kolkata.
6.A. Sundaravelusamy, 2014, Applied Physics Paper - II, Priya Publications, Karur - 2.
7.A. Sundaravelusamy, 2015, Applied Physics Paper - I, Priya Publications, Karur - 2.
8.V. Vijayendran, 2012, Digital Fundamentals - K. Viswanathan (Printers \& Publishers) PVT. LTD., Chennai-31.
9.N .Premkumar, 2010, Basic Electrical and Electronics Engineering AnuradhaPhublications, Kumbakonam - 5.

Books for scanned images:

1. Dr. A. Ramadoss, Engineering Physics - I, 2010 Edison, Sri Maruthi Publishers, Chennai.

[^0]: Dr. S. Snega, Department of Physics

[^1]: Dr. S. Snega, Department of Physics

