KUNTHAVAI NAACHIYAR GOVERNMENT ARTS COLLEGE FOR WOMEN, (AUTONOMOUS),THANJAVUR-613 007. DEPARTMENT OF PHYSICS

FIRST ALLIED PHYSICS III
18K2MAP3

1. Dr.N.Geetha,(UNIT I)

Dept.of Physics, KNGAC,TNJ.
2. Dr.S.Snega,(UNIT II)

Dept.of Physics, KNGAC,TNJ.
3. D.S.Vasanthi,(UNIT IV)

Dept.of Physics,KNGAC,TNJ.

UNIT -I

ELECTROSTATICS

Coulomb inverse square law- Gauss theorem and its proof- Field due to a charged Sphere-Field at a point due to a charged cylinder. Capacitance-Capacity of a conductor-Energy of a charged Capacitor-Loss of energy due to a sharing of charge between two charged conductors-Capacitors in series and Parallel.

Electrostatics is a branch of physics that studies electric charges at rest.
Since classical physics, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber, electron, was thus the source of the word 'electricity'. Electrostatic phenomena arise from the forces that electric charges exert on each other. Such forces are described by Coulomb's law. Even though electrostatically induced forces seem to be rather weak, some electrostatic forces such as the one between an electron and a proton, that together make up a hydrogen atom, is about 36 orders of magnitude stronger than the gravitational force acting between them.

Coulomb's law states that: The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them. The force is along the straight line joining them.

$$
F=K \quad \frac{q_{1} q_{2}}{r^{2}}
$$

Where $\mathrm{k}=$ constant .The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.

Gauss's Theorem

This theorem gives a relation between the flux ϕ for the surface and the net charge enclosed by the surface.Gauss's theorem states that the flux of Electric
field E through any closed surface that is the integral SE .ds over the surface is equal to $1 / \varepsilon_{0}$ times the total charge enclosed by the surface.

According to Gauss's theorem the net-outward normal electric flux through any closed surface of any shape is equivalent to $1 / \varepsilon_{0}$ times the total amount of charge contained within that surface.

Proof :

Let us consider a closed surface drawn outward a point charge $+q$ coulomb at O.Suppose ds is the small element of the closed surface . Let E be the intensity of electric field at the area element and n be the unit vector normal to ds. The total normal flux through the entire closed surface is given by ϕ. The net electric flux passing through any closed surface is ε_{0} times, the total charge q present inside it. Mathematically,

$$
\begin{equation*}
\phi_{\mathrm{E}}=\mathrm{q} / \varepsilon_{o} \tag{1}
\end{equation*}
$$

Gauss's theorem states that the flux of Electric field E through any closed surface that is the integral $\wp \mathrm{E}$.ds over the surface is equal to $1 / \varepsilon_{0}$ times the total charge enclosed by the surface.

$$
\begin{equation*}
\phi_{\mathrm{E}}=\mathrm{q} / 4 \pi \varepsilon_{0} \rho \mathrm{dA} / \mathrm{r}^{2} \tag{2}
\end{equation*}
$$

By definition, $\mathrm{d} A / \mathrm{r}^{2}=\mathrm{d} \omega$, the solid angle subtended by ds at q .
$\phi_{\mathrm{E}}=\mathrm{q} / 4 \pi \varepsilon_{0} \rho \mathrm{~d} \omega=\mathrm{q} / 4 \pi \varepsilon_{0}(4 \pi)$
Therefore,

$$
\begin{equation*}
\phi_{\mathrm{E}}=q / \varepsilon_{0} \tag{3}
\end{equation*}
$$

Thus the total flux over a closed surface is 1 / ε o times the total charge within the surface.

Electric field intensity due to a charged sphere

Consider a charged spherical shell with a surface charge density σ and radius R . Consider a spherical Gaussian surface with any arbitrary radius r, centered with the spherical shell. By symmetry, the electric field must point radially. Thus, for a Gaussian surface outside the sphere, the angle between electric field and area vector is $0(\cos \theta=1)$. For a Gaussian surface outside the sphere, the angle between electric field and area vector is $180^{\circ}(\cos \theta=-1)$. Due to symmetry ,the field at P and on everywhere on the Gaussian surface will be perpendicular to the surface i.e E is directed along the outward drawn normal.The flux through the surface is given by
$\oint \mathrm{E}$ ds (since the angle between E and ds is zero)
By Gauss's theorem,

$$
\begin{equation*}
\mathrm{Ejds}=q / \varepsilon_{0} \tag{2}
\end{equation*}
$$

$$
\mathrm{E} .4 \pi \mathrm{r}^{2}=\mathrm{q} / \varepsilon_{0}
$$

$$
\begin{equation*}
E=1 / 4 \pi \epsilon_{0}\left(q / r^{2}\right) N / C \tag{3}
\end{equation*}
$$

This equation gives the electric field at a point at a distance r from the centre O. Hence a uniformly charged sphere is the same as if the charge on the sphere is concentrated at the centre.
(ii) At a point on the surface:

$$
\begin{equation*}
\text { Here } r=R, \quad E=q / 4 \pi \epsilon_{0} R^{2} \quad N / C \tag{4}
\end{equation*}
$$

(iii) At a point inside the charged sphere

Now we have to find the field intensity E at a point P1 inside the charged sphere. Now also we have to construct Gaussian surface. The electric field
will be constant on this surface and is directed along the normal to the surface of the sphere. The outward flux through the surface of the sphere is given by jE ds .

The total charge enclosed by the Gaussian surface=Volume x charge density $=4 / 3 \pi r_{1}^{3} \rho$.The variation of electric field intensity with radial distance and it is given by $E=q / 4 \pi \varepsilon_{0} r^{2}$.

Electric field at a point due to a uniformly charged cylinder

If the charge is distributed throughout the volume, then we have field of uniform cylinder of charge. Hence the electric field at any outside point can be shown to be equal to

$$
\begin{equation*}
E=\lambda / 2 \pi \epsilon_{0} r \tag{1}
\end{equation*}
$$

Where, r is the radius of the cylinder.
Here λ is the charge per unit length of the cylinder.

$$
\begin{equation*}
\lambda=\pi r^{2} \rho \tag{2}
\end{equation*}
$$

where ρ is the charge per unit volume of the cylinder

$$
\begin{align*}
& E=\pi r^{2} \rho / 2 \pi \epsilon_{0} r \\
& E=r \rho / 2 \epsilon_{0} \tag{3}
\end{align*}
$$

It shows that the electric field inside a charged cylinder is directly proportional to the distance of the point from the axis of the cylinder.

Capacitance

The capacitor is a component which has the ability or "capacity" to store energy in the form of an electrical charge producing a potential difference (Static Voltage) across its plates, much like a small rechargeable battery.There are many different kinds of capacitors available from very small capacitor beads used in resonance circuits to large power factor correction capacitors, but they all do the same thing, they store charge.In its basic form, a capacitor consists of two or more parallel conductive (metal) plates which are not connected or touching each other, but are electrically separated either by air or by some form of a good insulating material such as waxed paper, mica, ceramic, plastic or some form of a
liquid gel as used in electrolytic capacitors. The insulating layer between a capacitors plates is commonly called the Dielectric. When used in a direct current or DC circuit, a capacitor charges up to its supply voltage but blocks the flow of current through it because the dielectric of a capacitor is non-conductive and basically an insulator. However, when a capacitor is connected to an alternating current or AC circuit, the flow of the current appears to pass straight through the capacitor with little or no resistance. There are two types of electrical charge, a positive charge in the form of Protons and a negative charge in the form of Electrons. When a DC voltage is placed across a capacitor, the positive (+ve) charge quickly accumulates on one plate while a corresponding and opposite negative (-ve) charge accumulates on the other plate. For every particle of +ve charge that arrives at one plate a charge of the same sign will depart from the -ve plate.

Then the plates remain charge neutral and a potential difference due to this charge is established between the two plates. Once the capacitor reaches its steady state condition an electrical current is unable to flow through the capacitor itself and around the circuit due to the insulating properties of the dielectric used to separate the plates. The flow of electrons onto the plates is known as the capacitors Charging Current which continues to flow until the voltage across both plates (and hence the capacitor) is equal to the applied voltage Vc . At this point the capacitor is said to be "fully charged" with electrons.

The parallel plate capacitor is the simplest form of capacitor. It can be constructed using two metal or metallised foil plates at a distance parallel to each other, with its capacitance value in Farads, being fixed by the surface area of the conductive plates and the distance of separation between them. Altering any two of these
values alters the value of its capacitance and this forms the basis of operation of the variable capacitors.

Also, because capacitors store the energy of the electrons in the form of an electrical charge on the plates the larger the plates and/or smaller their separation the greater will be the charge that the capacitor holds for any given voltage across its plates. In other words, larger plates, smaller distance, more capacitance.By applying a voltage to a capacitor and measuring the charge on the plates, the ratio of the charge Q to the voltage V will give the capacitance value of the capacitor and is therefore given as: $C=Q / V$ this equation can also be rearranged to give the familiar formula for the quantity of charge on the plates as: $\mathrm{Q}=\mathrm{C} \times \mathrm{V}$. The property of a capacitor to store charge on its plates in the form of an electrostatic field is called the Capacitance of the capacitor.

Energy of a charged Capacitor

The energy of a charged capacitor is the amount of work done in charging it.Let us consider a condenser of charge q.Let V be the potential.Now an additional charge dq is given to it.The work done for adding a charge dq is given to it.The work done for adding a charge dq is given by Vdq.joule.The work that has to be done to add a finite charge q to the condenser is

$$
\begin{equation*}
\mathrm{W}=\mathrm{Vdq} \tag{1}
\end{equation*}
$$

If C is the capacitance of the condenser

$$
\begin{equation*}
V=q / C \tag{2}
\end{equation*}
$$

$$
\begin{array}{r}
W=\frac{Q 2}{2 C} \\
\mathrm{~W}=\mathrm{Q}^{2} / 2 \mathrm{C} \quad \text { Joule } \tag{3}
\end{array}
$$

The total work done in charging the conductor is stored as potential energy.Hence the energy of the condenser is

$$
\begin{equation*}
E=\frac{Q 2}{2 C} \tag{4}
\end{equation*}
$$

But $\mathrm{Q}=\mathrm{CV}$,

$$
\begin{equation*}
E=\frac{c v 2}{2 C} \text { Joule } \tag{5}
\end{equation*}
$$

Therefore, Energy of a Charged capacitor, $\mathrm{E}=\mathrm{Cv}^{2} / 2$ Joule.
Energy loss due to sharing of charges
Consider two capacitors A and B of capacity C_{1} and C_{2}. Let Q_{1}, Q_{2} be the charges and $\mathrm{V}_{1}, \mathrm{~V}_{2}$ their potentials respectively.
Energy of the capacitor, $A=C_{1} V_{1}{ }^{2} / 2 C$ Joule
Energy of the capacitor, $\mathrm{B}=\mathrm{C}_{2} \mathrm{~V}_{2}{ }^{2} / 2 \mathrm{C}$ Joule.
Now the two condensers are connected by a wire. The charge will flow from the condenser which is at a higher potential to the condenser which is at lower potential.Hence both of them will attain a common potential V.Now the total charge is,

$$
\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}
$$

Total Capacitance $\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$.
But $\mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V}_{1} \quad ; \quad \mathrm{Q}_{2}=\mathrm{C}_{2} \mathrm{~V}_{2}$

$$
E_{1}-E_{2}=C_{1} C_{2}\left(V_{1}-V_{2}\right)^{2} /\left(C_{1}+C_{2}\right)
$$

Hence due to sharing of charges, there will be always a loss of energy.This loss of energy appears in the form of heat.

Capacitors in series:

Three capacitors of capacity C_{1}, C_{2} and C_{3} are connected in series. A charge $+q$ is given to the point A. The point B is earthed as shown in the figure. The charge of each capacitor will be the same. The potential difference(p.d) across C_{1} is V_{1}, the p.d across C_{2} is V_{2} and the p.d across C_{3} is V_{3}.

Therefore the resultant potential difference between the points A and B is

$$
\begin{equation*}
V=V_{1}+V_{2}+V_{3} \tag{1}
\end{equation*}
$$

Also $\mathrm{V}_{1}=\mathrm{q} / \mathrm{C}_{1}, \mathrm{~V}_{2}=\mathrm{q} / \mathrm{C}_{2}$ and $\mathrm{V}_{3}=\mathrm{q} / \mathrm{C}_{3}$
Equivalent capacitor will have a charge ' q ' on the plates and the potential difference between the plate is V. Hence the capacity of the equivalent capacitor is

$$
\begin{equation*}
C_{s}=q / V \tag{3}
\end{equation*}
$$

Therefore $\mathrm{V}=\mathrm{q} / \mathrm{C}_{\mathrm{s}} ; \mathrm{V}_{1}=\mathrm{q} / \mathrm{C}_{1}, \mathrm{~V}_{2}=\mathrm{q} / \mathrm{C}_{2}$ and $\mathrm{V}_{3}=\mathrm{q} / \mathrm{C}_{3}$
Sub equ(4) in equ(1), we get

$$
\begin{equation*}
q / C_{s}=q / C_{1}+q / C_{2}+q / C_{3} \tag{5}
\end{equation*}
$$

Therefore $1 / C_{s}=1 / C_{1}+1 / C_{2}+1 / C_{3}$
This relationship can also be extended for any number of capacitances connected in series. When a number of capacitors are connected in series, the reciprocal of the equivalent capacitance is equal to the sum of the reciprocals of the individual capacitances.

Capacitors in parallel: Three capacitors of capacity C_{1}, C_{2} and C_{3} are connected in parallel. A charge $+q$ is given to the point A. It gets distributed among the three capacitors depending up on their capacities.

The potential difference across each =capacitor is the same. The point B is earthed as shown in the figure.

The potential difference between the points A and B is V.

$$
\begin{equation*}
q=q_{1}+q_{2}+q_{3} \tag{6}
\end{equation*}
$$

But $\mathrm{q}_{1}=\mathrm{C}_{1} \mathrm{~V} ; \mathrm{q}_{2}=\mathrm{C}_{2} \mathrm{~V} ; \mathrm{q}_{3}=\mathrm{C}_{3} \mathrm{~V}$
If C_{p} is the equivalent capacitance of the three capacitors, then

$$
\begin{equation*}
q=C V \tag{8}
\end{equation*}
$$

Sub (7) and (8) in equation (6), we get

$$
\begin{equation*}
\mathrm{C}_{\mathrm{p}} \mathrm{~V}=\mathrm{C}_{1} \mathrm{~V}+\mathrm{C}_{2} \mathrm{~V}+\mathrm{C}_{3} \mathrm{~V} \tag{9}
\end{equation*}
$$

Therefore $\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
This result can be extended for any number of capacitors connected in parallel.

When a number of capacitors are connected in parallel, the resultant capacity is equal to the sum of capacities of the individual capacitors.

கทグ вตติmம゚：

$$
\phi \vec{B} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}
$$

gioin 8

$$
\varepsilon_{0} \oint \vec{E} \cdot \overrightarrow{d s}=q
$$

$$
\oint \vec{E} \cdot \overrightarrow{d s}=0
$$

 नीசూ

$$
\begin{aligned}
& \vec{E} \cdot \overrightarrow{d s}=\frac{q}{4 \pi \varepsilon_{0} r} \cos \theta d s \\
& \text { (8) } E=\frac{q}{4 \pi \varepsilon_{0} r^{2}}
\end{aligned}
$$

$$
\begin{align*}
\oint \vec{E} \cdot \overrightarrow{d s} & =\frac{q}{4 \pi \varepsilon_{0}} \oint \frac{d \cos \theta}{r^{2}} \\
& =\frac{q}{4 \pi \varepsilon_{0}} \oint d \omega \tag{2}
\end{align*}
$$

 - 461° ज)

$$
\therefore \phi \vec{E} \cdot \overrightarrow{d s}=\frac{q}{4 \pi \varepsilon_{0}} \times 4 \pi \quad\left(\therefore \int d \omega=4 \pi\right)
$$

भ戶ாणक $\oint \vec{E} \cdot d \vec{s}=\frac{q}{\varepsilon_{0}} \ldots .(3)$

$$
\begin{aligned}
\oint \vec{E} \overrightarrow{d s} & =\frac{q_{1}}{\varepsilon_{0}}+\frac{q_{2}}{\varepsilon_{0}}+\frac{q_{3}}{\varepsilon_{0}}+\cdots \\
& =\frac{1}{\varepsilon_{0}}\left[q_{1}+q_{2}+q_{3}+\cdots\right] \\
& =\frac{1}{\varepsilon_{0}} \sum q_{1} \\
\oint_{s} \vec{E} \cdot \overrightarrow{d s} & =\frac{q}{\varepsilon_{0}}
\end{aligned}
$$

$$
\begin{equation*}
\oint_{s} \vec{E} \cdot \overrightarrow{d s}=\frac{1}{\varepsilon_{0}} \iiint e d v \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\oint_{s} \vec{E} \cdot \overrightarrow{d s}=\iiint \nabla \vec{E} \cdot d r \tag{5}
\end{equation*}
$$

$$
\iiint \nabla \vec{E} \cdot d v=\frac{1}{\varepsilon_{0}} \iiint e d v
$$

भाकाबक $\quad \iiint\left(\nabla \cdot \overrightarrow{E^{2}}-\frac{q}{\varepsilon_{0}}\right)=0$

$$
\begin{equation*}
\therefore \quad \nabla \cdot \vec{E}-\frac{P}{\varepsilon_{0}}=0 \tag{7}
\end{equation*}
$$

भoiण $\quad \nabla \cdot \vec{E}=\frac{e}{\varepsilon_{0}}$
 (differential form)

$$
=\frac{q}{4 \pi \varepsilon_{0}} \cdot \frac{d s_{1} \cos \left(180-\theta_{1}\right)}{r_{1}^{2}}+\frac{q}{4 \pi \varepsilon_{0}} \frac{d s_{2} \cos \theta_{2}}{\gamma_{2}^{2}}
$$

 вकाषाहांक ना नामाकि .

$$
\therefore \frac{d s_{1} \cos \theta_{1}}{r_{1}^{2}}=d \omega=\frac{d s_{2} \cos \theta_{2}}{r_{2}^{2}}
$$

$$
\begin{aligned}
\text { बएाकान जाusi० } & =\frac{q}{4 \pi \varepsilon_{0}} \frac{d s_{1} \cos \left(180-\theta_{1}\right)}{r_{1}^{2}}-\frac{q}{4 \pi \varepsilon_{0}} \frac{d s_{2} \cos \theta_{2}}{r_{2}^{2}} \\
& =\frac{q}{4 \pi \varepsilon_{0}} \frac{d s_{1} \cos \theta_{1}}{r_{1}^{2}}-\frac{q}{4 \pi \varepsilon_{0}} \frac{d s_{2} \cos \theta_{2}}{r_{2}^{2}} \\
& =\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{d s_{2} \cos \theta_{2}}{r_{2}^{2}}-\frac{d s_{1} \cos \theta_{1}}{r_{1}^{2}}\right] \\
& =\frac{q}{4 \pi \varepsilon_{0}}[d \omega-d \omega]=0
\end{aligned}
$$

 のルルBu дமை

 (Electric Field due to an uniformly (charged sphere)
 $40 i o m u r i o i ~(F i e l d ~ a t ~ a ~ p o i n t ~ o u t s i d e ~ t h e ~ c h a r g e d ~ s p h e r e) ~(~) ~$

$$
\begin{equation*}
\oint \vec{E} \cdot \overrightarrow{d s}=\oint E d s \tag{1}
\end{equation*}
$$

Бாmi s exuroilul?

$$
\begin{equation*}
E \oint d s=\frac{q}{\varepsilon_{0}} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\therefore E 4 \pi r^{2} & =\frac{q}{\varepsilon_{0}} \\
& =E \frac{q}{4 \pi \varepsilon_{0} r^{2}}
\end{aligned}
$$

 B L

（\＄昌象 $\gamma=R$

$$
\begin{equation*}
\therefore \vec{E}=\frac{q}{4 \pi \varepsilon_{0} R^{2}} \pi / \sigma \tag{4}
\end{equation*}
$$

 orniugio Lळ⿱宀八犬 400 is（Field due to a uniformly charged hollow（ylinder）

 2माणन

$$
\begin{aligned}
E \cdot 2 \pi r l & =\frac{\lambda l}{\varepsilon_{0}} \\
\therefore E & =\frac{\lambda}{2 \pi E_{0} r} \ldots \ldots(1)
\end{aligned}
$$

215 monunoor

4L8 1 -9

$$
=2 \pi r l \cdot \sigma
$$

$$
\lambda=\frac{2 \pi r l \cdot \sigma}{l}=2 \pi r \sigma \ldots(2)
$$

$$
\begin{align*}
& \vec{E}=\frac{2 \pi r \sigma}{2 \pi \varepsilon_{0} r} \\
& \therefore \vec{E}=\frac{\sigma}{\varepsilon_{0}} \tag{3}
\end{align*}
$$

HMロி515 ．

 のण゚うபri．

Eroysம் बीकी (coulomb's Law) :-

$$
\begin{align*}
& F \\
F & \propto q_{1} q_{2} \\
\therefore \quad F & \propto \frac{1 / r^{2}}{q_{1} q_{2}} \\
\text { (or) } & \ldots \ldots(1) \tag{2}\\
F & =k \frac{q_{1} q_{2}}{r^{2}} \ldots \ldots
\end{align*}
$$

 फन्वं्धुए। 1ிம்ウூ

$$
\begin{aligned}
\delta I \text { unit }, k & =\frac{1}{4 \pi \varepsilon_{0}} \\
\therefore F & =\frac{q, q, 2}{4 \pi \varepsilon_{0} r^{2}} \ldots
\end{aligned}
$$

10) Oiणg T2 8したத,

$$
\begin{equation*}
K=\frac{1}{4 \pi \varepsilon_{0} \Sigma_{1}} \tag{5}
\end{equation*}
$$

$$
K=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} \varepsilon_{1} r^{2}} \ldots \ldots(6)
$$

 (Gauss's law and its applications).
Dி नityous Lituம (Electric flux).

 OnLg \quad -

 Lrimbio .

$$
d \phi=\vec{E} \cdot d \vec{s}=E \quad d s \cos \theta
$$

$$
\oint=\oint d \phi=\oint \vec{E} \cdot d \vec{s}
$$

Bloos ©ு bl\&Lnticorion

 bron anf (Gauss's lave):

$$
\phi=q / \varepsilon_{0}
$$

 Wrritm

 கடิก

$$
\begin{aligned}
\text { मानिपणिintu } ம^{\circ}(\phi) & =\oint E d s \cos \theta \\
& =\phi E d s \quad[\theta=0 ; \cos \theta=1] \\
& =E(2 \pi r l)
\end{aligned}
$$

 virule. $\phi=E(2 \pi r l)$

$$
E(2 \pi r l)=\frac{\lambda l}{\varepsilon_{0}} \text { (or) } E=\frac{\lambda}{2 \pi \varepsilon_{0} r}
$$

 みळレமがァと

 பாாulio.

$$
\begin{aligned}
\phi & =[\phi E d s]_{p}+[\phi E d s]_{p^{\prime}} \quad(\theta=0: \cos \theta=1) \\
& =E A+E A=2 E A
\end{aligned}
$$

$$
\begin{aligned}
2 E A & =\frac{\sigma A}{\varepsilon_{0}} \\
E & =\frac{\sigma}{2 \varepsilon_{0}}
\end{aligned}
$$

$Q \propto V$

- (1)

भण응 $Q=C V$
இமifif

$$
\begin{equation*}
\therefore \quad C=Q / v \tag{3}
\end{equation*}
$$

 कीजक्ष $C=Q / V$ பाँा०.

Q1 णनnori

$$
\begin{gathered}
C_{1}=Q_{1} / v \\
Q_{1}>Q
\end{gathered}
$$

बनロロは

$$
c_{1}>c
$$

$$
\begin{aligned}
& Q_{2}>Q_{1}>Q \\
& C_{2}>c_{1}>c
\end{aligned}
$$

 あநநீீஜ்
 (Energy of charged caparitor)

 மேிकण

$$
\begin{equation*}
W=\int_{0}^{Q} V d q \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& V=q / c \\
& W=\int_{0}^{Q}(q / c) \cdot d q=1 / 2 Q^{2} / c 00^{2} 00^{\circ}-(s)
\end{aligned}
$$

 Obninso

$$
E=1 / 2 a^{2} / c \text { O800 }-(4)
$$

शbøाio $Q=C V$

$$
E=1 / 2 Q^{2} / C=1 / 2 C v^{2} 0 R_{00} 0^{\circ}-(5)
$$

Also $C=$ RIv

$$
E=1 / 2 Q^{2} / c=1 / 2 Q V \text { Joule } \quad \rightarrow(b)
$$

$$
E=1 / Q Q^{2} / C=1 / 2\left(v^{2}=1 / 2 Q v-(7)\right.
$$

 (Sharing of charges and loss of energy)

மणंघதक்की A वा
$2 b$ BM $^{8} 08=1 / 2 c_{1} v_{1}^{2}$ Joule
 2bnimos $=1 / 2 c_{2} v_{2}^{2}$ Joule

$$
v=\left(a_{1}+Q_{2}\right) /\left(c_{1}+c_{2}\right)
$$

2bortroi $\quad Q_{1}=c_{1} v_{1}, Q_{2}=c_{2} v_{2}$

$$
\begin{equation*}
v=\frac{c_{1} v_{1}+c_{2} v_{2}}{c_{1}+c_{2}} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& E_{2}=l_{2}\left(c_{1}+c_{2}\right) v^{2} \\
& E_{2}=1 / 2\left(c_{1}+c_{2}\right)\left[\frac{c_{1} v_{1}+c_{2} v_{2}}{c_{1}+c_{2}}\right]^{2} \\
& E_{2}=1 / 2 \frac{\left(c_{1} v_{1}+c_{2} v_{2}\right)^{2}}{c_{1}+c_{2}} \quad \text { (3) }
\end{aligned}
$$

$$
\left.\begin{array}{l}
E_{1}-E_{2}=1_{2}\left[c_{1} v_{1}^{2}+c_{2} v_{2}^{2} \frac{\left(c_{1} v_{1}+c_{2} v_{2}\right)^{2}}{c_{1}+c_{2}}\right] \\
E_{1}-E_{2}=1 / 2\left[c_{1} v_{1}{ }^{2}+c_{2} v_{2}{ }^{2} \frac{c_{1}^{2} v_{1}^{2}+c_{2}{ }^{2} v_{2}^{2}}{c_{1}+c_{2}}\right] \\
E_{1}-E_{2}=\frac{1}{2}\left[\frac{-c_{1} v_{1}^{2} v_{1}^{2}-c_{1} c_{2} v_{1}^{2} v_{2}{ }^{2}-c_{1} c_{2} v_{1}{ }^{2}+c_{2}^{2} v_{1} c_{2} v_{1} v_{2}}{c_{1}+c_{2}}\right.
\end{array}\right]
$$

$$
\begin{aligned}
& E_{1}-E_{2}=1 / 2\left[\frac{c_{1} c_{2}\left(v_{1}^{2}+v_{2}^{2}-2 v_{1} v_{2}\right)}{c_{1}+c_{2}}\right] \\
& E_{1}-E_{2}=1 / 2 \frac{c_{1} c_{2}\left(v_{1}-v_{2}\right)^{2}}{c_{1}+c_{2}} \quad \text { Joule }-4
\end{aligned}
$$

 Donnilioi (capacitors in series and parallel)

 नाாक्षंकोण

$$
v=v_{1}+v_{2}+v_{3}
$$

Bongurt

$$
\begin{aligned}
& v_{1}=\frac{q}{c_{1}}, v_{2}=\frac{q}{c_{2}}, v_{3}=\frac{q}{c_{3}} \\
& v_{1}=\frac{q}{c_{1}}+\frac{q}{c_{2}}+\frac{q}{c_{3}}=q\left[\frac{1}{c_{1}}+\frac{1}{c_{2}}+\frac{1}{c_{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{q}{c_{3}} \\
& \frac{q}{c_{3}}=\frac{q}{c_{1}}+\frac{q}{c_{2}}+\frac{q}{c_{3}} \\
& \frac{1}{c_{5}}=\frac{1}{c_{1}}+\frac{1}{c_{2}}+\frac{1}{c_{3}}
\end{aligned}
$$

(ii) पछீक 8umண

 -कना.

$$
q_{1}=c_{1} v, \quad q_{2}=c_{2} v, \quad q_{3}=c_{3} v
$$

$$
\begin{aligned}
& q=q_{1}+q_{2}+q_{3} \\
& q=c_{1} v+c_{2} v+c_{3} v
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad c_{p} V & =V\left(c_{1}+c_{2}+c_{3}\right) \\
c_{p} V & =c_{1}+c_{2}+c_{3}
\end{aligned}
$$

CURRENT ELECTRICITY AND NUCLEAR PHYSICS

Kirchhoff's law -Wheatstone's bridge - Metre Bridge - Carey foster's bridge - Measurement of specific resistance - Potentiometer - Calibration of low range voltmeter

Nucleus - Nuclear Size - Charge - Mass and Spin - Shell Model - Nuclear fission and fusion - Liquid drop model - Binding energy - Mass defect

KIRCHHOFF'S RULES

Ohm's law is useful only for simple circuits. For more complex circuits, Kirchhoff 's rules can be used to find current and voltage. There are two generalized rules: i) Kirchhoff 's current rule ii) Kirchhoff 's voltage rule.

Kirchhoff's first rule (Current rule or Junction rule)

It states that the algebraic sum of the currents at any junction of a circuit is zero. It is a statement of conservation of electric charge. All charges that enter a given junction in a circuit must leave that junction since charge cannot build up or disappear at a junction. Current entering the junction is taken as positive and current leaving the junction is taken as negative.

$$
\begin{gathered}
\mathrm{I}_{1}+\mathrm{I}_{2}-\mathrm{I}_{3}-\mathrm{I}_{4}-\mathrm{I}_{5}=0 \\
\text { (or) } \\
\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{3}+\mathrm{I}_{4}+\mathrm{I}_{5}
\end{gathered}
$$

Kirchhoff's Second rule (Voltage rule or Loop rule)
It states that in a closed circuit the algebraic sum of the products of the current and resistance of each part of the circuit is equal to the total emf included in the circuit. This rule follows from the law of conservation of energy for an isolated system (The energy supplied by the emf sources is equal to the sum of the energy delivered to all resistors). The product of current and resistance is taken as positive when the direction of the current is followed. Suppose if the direction of current is opposite to the direction of the loop, then product of current and voltage across the resistor is negative. The emf is considered positive when proceeding from the negative to the positive terminal of the cell. I Kirchhoff voltage rule has to be applied only when all currents in the circuit reach a steady state condition (the current in various branches are constant).

Wheatstone's bridge

An important application of Kirchhoff 's rules is the Wheatstone's bridge. It is used to compare resistances and also helps in determining the unknown resistance in electrical network. The bridge consists of four resistances P, Q, R and S connected as shown in Figure 2.25. A galvanometer G is connected between the points B and D . The battery is connected between the points A and C . The current through the galvanometer is IG and its resistance is G. Applying Kirchhoff 's current rule to junction B, $I_{1}-I_{G}-I_{3}=0$; Applying Kirchhoff 's current rule to junction $\mathrm{D}, \mathrm{I}_{2}+\mathrm{I}_{\mathrm{G}}-\mathrm{I}_{4}=0$.
Applying Kirchhoff 's voltage rule to loop ABDA, $\mathrm{I}_{1} \mathrm{P}+\mathrm{I}_{\mathrm{G}} \mathrm{G}-\mathrm{I}_{2} \mathrm{R}=0$
Applying Kirchhoff's voltage rule to loop ABCDA, $\mathrm{I}_{1} \mathrm{P}+\mathrm{I}_{3} \mathrm{Q}-\mathrm{I}_{4} \mathrm{~S}-\mathrm{I}_{2} \mathrm{R}=0$

When the points B and D are at the same potential, the bridge is said to be balanced. As there is no potential difference between B and D , no current flows through galvanometer $(\mathrm{IG}=0)$. Substituting $\mathrm{IG}=0$ in equation we get $\mathrm{I}_{1}=\mathrm{I}_{3} ; \mathrm{I}_{2}=\mathrm{I}_{4} ; \mathrm{I}_{1} \mathrm{P}=\mathrm{I}_{2} \mathrm{R}$
Substituting the equations in above equation: $\mathrm{I}_{1} \mathrm{P}+\mathrm{I}_{1} \mathrm{Q}-\mathrm{I}_{2} \mathrm{~S}-\mathrm{I}_{2} \mathrm{R}=0 ; \mathrm{I}_{1}(\mathrm{P}+\mathrm{Q})=\mathrm{I}_{2}(\mathrm{R}+\mathrm{S})$
Dividing both equations we get: $\frac{P+Q}{P}=\frac{R+S}{R} ; 1+\frac{Q}{P}=1+\frac{S}{R} \frac{Q}{P}=\frac{S}{R}=\frac{P}{Q}=\frac{R}{S}$. This is the bridge balance condition. Only under this condition, galvanometer shows null deflection. Suppose we know the values of two adjacent resistances, the other two resistances can be compared. If three of the resistances are known, the value of unknown resistance (fourth one) can be determined.

Meter bridge

The meter bridge is another form of Wheatstone's bridge. It consists of a uniform manganin wire $A B$ of one meter length. This wire is stretched along a meter scale on a wooden board between two copper strips C and D. Between these two copper strips another copper strip E is mounted to enclose two gaps G1 and G2 as shown in Figure. An unknown resistance P is connected in $G 1$ and a standard resistance Q is connected in $G 2$. A jockey (conducting wire) is connected to the terminal E on the central copper strip through a galvanometer (G) and a high resistance (HR). The exact position of jockey on the wire can be read on the scale. A Lechlanche cell and a key (K) are connected across the ends of the bridge wire.

The position of the jockey on the wire is adjusted so that the galvanometer shows zero deflection. Let the point be J. The lengths AJ and JB of the bridge wire now replace the resistance R and S of the Wheatstone's bridge. Then $\frac{P}{Q}=\frac{R}{S}=\frac{R^{\prime} A J}{R^{\prime} J B}$
where R^{\prime} is the resistance per unit length of wire
$\frac{P}{Q}=\frac{A J}{J B}=\frac{l 1}{l 2}$
$\mathrm{P}=\mathrm{Q} \frac{l 1}{l 2}$;
The bridge wire is soldered at the ends of the copper strips. Due to imperfect contact, some resistance might be introduced at the contact. These are called end resistances. This error can be eliminated, if another set of readings are taken with P and Q interchanged and the average value of P is found.

To find the specific resistance of the material of the wire in the coil P , the radius r and length l of the wire is measured. The specific resistance or resistivity ρ can be calculated using the relation Resistance $=\rho l / A$

By rearranging the above equation, we get $\rho=$ Resistance $\times A / l$
If P is the unknown resistance equation becomes, $\rho=\mathrm{P} \times \pi r^{2} / l$

Carey Foster's bridge

The Carey Foster bridge is a bridge circuit used to measure medium resistances, or to measure small differences between two large resistances. It was invented by Carey Foster as a variant on the Wheatstone bridge. He first described it in his 1872 paper "On a Modified Form of Wheatstone's Bridge, and Methods of Measuring Small Resistances". In the adjacent diagram, X and Y are resistances to be compared. P and Q are nearly equal resistances, forming the other half of the bridge. The bridge wire EF has a jockey contact D placed along it and is slid until the galvanometer G measures zero. The thick-bordered areas are thick copper busbars of almost zero resistance.

1. Place a known resistance in position Y.
2. Place the unknown resistance in position X .
3. Adjust the contact D along the bridge wire EF so as to null the galvanometer. This position (as a percentage of distance from E to F) is ℓ_{1}.
4. Swap X and Y . Adjust D to the new null point. This position is ℓ_{2}.
5. If the resistance of the wire per percentage is σ, then the resistance difference is the resistance of the length of bridge wire between ℓ_{1} and ℓ_{2} : $\mathrm{X}-\mathrm{Y}=\sigma\left(l_{2}-l_{1}\right)$

To measure a low unknown resistance X, replace Y with a copper busbar that can be assumed to be of zero resistance.

In practical use, when the bridge is unbalanced, the galvanometer is shunted with a low resistance to avoid burning it out. It is only used at full sensitivity when the anticipated measurement is close to the null point.
To measure $\boldsymbol{\sigma}$: To measure the unit resistance of the bridge wire EF, put a known resistance (e.g., a standard 1 ohm resistance) that is less than that of the wire as X , and a copper busbar of assumed zero resistance as Y .

Theory: Two resistances to be compared, X and Y , are connected in series with the bridge wire. Thus, considered as a Wheatstone bridge, the two resistances are X plus a length of bridge wire, and Y plus the remaining bridge wire. The two remaining arms are the nearly equal resistances P and Q , connected in the inner gaps of the bridge.
Let ℓ_{1} be the null point D on the bridge wire EF in percent. α is the unknown left-side extra resistance EX and β is the unknown right-side extra resistance FY, and σ is the resistance per percent length of the bridge wire:
$\mathrm{P} / \mathrm{Q}=\mathrm{X}+\sigma\left(\mathrm{l}_{1}+\alpha\right) / \mathrm{y}+\sigma\left(100-l_{1}+\beta\right)$
and add 1 to each side:
$\mathrm{P} / \mathrm{Q}+1=\mathrm{X}+\mathrm{Y}+\sigma(100+\alpha+\beta) / \mathrm{y}+\sigma\left(100-1_{1}+\beta\right)$
Now swap X and Y . e_{2} is the new null point reading in percent:
$\mathrm{P} / \mathrm{Q}=\mathrm{Y}+\sigma\left(1_{2}+\alpha\right) / \mathrm{x}+\sigma\left(100-1_{2}+\beta\right)$
and add 1 to each side:
$P / Q+1=X+Y+\sigma(100+\alpha+\beta) / x+\sigma\left(100-1_{2}+\beta\right)$
Equations 1 and 2 have the same left-hand side and the same numerator on the right-hand side, meaning the denominator on the right-hand side must also be equal:
$Y+\sigma\left(100-1_{1}+\beta\right)=x+\sigma\left(100-1_{2}+\beta\right) ; x-y=\sigma\left(1_{2}-1_{1}\right)$
Thus: the difference between X and Y is the resistance of the bridge wire between ℓ_{1} and ℓ_{2}. The bridge is most sensitive when $\mathrm{P}, \mathrm{Q}, \mathrm{X}$ and Y are all of comparable magnitude.

Potentiometer

Potentiometer is used for the accurate measurement of potential differences, current and resistances. It consists of ten meter long uniform wire of manganin or constantan stretched in parallel rows each of 1 meter length, on a wooden board. The two free ends A and B are brought to the same side and fixed to copper strips with binding screws. A meter scale is fixed parallel to the wire. A jockey is provided for making contact.

The principle of the potentiometer is illustrated in Figure 2.27. A steady current is maintained across the wire CD by a battery $B t$. The battery, key and the potentiometer wire are connected in series forms the primary circuit. The positive terminal of a primary cell of emf ξ is connected to the point C and negative terminal is connected to the jockey through a galvanometer G and a high resistance HR. This forms the secondary circuit.
Let contact be made at any point J on the wire by jockey. If the potential difference across CJ is equal to the emf of the cell ξ then no current will flow through the galvanometer and it will show zero deflection. CJ is the balancing length l. The potential difference across CJ is equal to $I r l$ where I is the current flowing through the wire and r is the resistance per unit length of the wire. Hence $\xi=I r l$; Since I and r are constants, $\xi \propto l$. The emf of the cell is directly proportional to the balancing length.

Calibration of low range voltmeter:

Observations measured from voltmeter is errorful due to different reasons:
(i) In built mechanical error,
(ii) Parallex error,
(iii) Unsymmetrically in the spring of voltmeter etc. Potentiometer can increase precise value of potential difference. Checking the errors of observations of voltmeter by potentiometer is known as Calibration of Voltmeter. In figure. necessary circuit diagram is shown for calibration of voltmeter. Primary circuit is usually connected as section before. In secondary circuit positive terminal of standard cell is connected at point A (high potential end) while negative terminal is connected with the terminal 1 of two way key. In this circuit other cell ϵ, rheostate Rh 2 , key K2 and resistance box (R.B.) is connected in series as shown in figure. The high potential end of R.B. is connected at A while lower potential end is connected at the terminal 3 of two way key. The voltmeter which is to be calibrated should be connected across the ends of R.B. The middle terminal of two way key is connected with the one end of galvanometer (G) and other end of (G) is connected with jockey.

Working : Firstly we completed the primary circuit and insert the plug between terminal 1 and 2 and by the help of jockey finding balancing length 10 for the standard cell ϵS
$\epsilon S=\mathrm{kl}_{0}$ or $\mathrm{k}=\epsilon \mathrm{S} / \mathrm{l}_{0} \ldots .$. (1)
k is potential gradient.
By the standardisation of cell, then find out k .
Now eliminate the plug between 1 and 2 and insert it between 2 and 3 . Now key K2 be closed and suitable resistance out from R.B. By the help of Rh2 necessary current pass through the resistance and takes the deflection in voltmeter, which is V . It is errorful observation, corresponding to V . Find out the real value of potential difference by potentiometer. Find the balancing length 12 . Now by the principle of potentiometer the real value of potential difference
$\mathrm{V}^{\prime}=\mathrm{kl}_{2}$
$\mathrm{V}^{\prime}=\left(\epsilon \mathrm{S} / \mathrm{1}_{0}\right) 1_{2} \ldots . . .(2)$
Error in the observation of voltmeter
$\Delta \mathrm{V}=\mathrm{V}-\mathrm{V}^{\prime}$
By the help of R.B. and Rh2, observe different values of voltmeter and for it find corresponding values of potential difference by potentiometer. Now taking difference of V (observations of voltmeter) and V^{\prime} (potential difference by potentiometer) we can find error in it
$\Delta \mathrm{V}=\mathrm{V}-\mathrm{V}^{\prime}$
Calibration Curve : A graph is plotted between the readings of voltmeter and the corresponding errors. This graph is called calibration curve of the voltmeter. The graph has been no definite shape. The any graph of calibration is shown in figure.

NUCLEUS

Composition of nucleus

Atoms have a nucleus surrounded by electrons. The nucleus contains protons and neutrons. The neutrons are electrically neutral $(q=0)$ and the protons have positive charge $(q=+e)$ equal in magnitude of the charge of the electron $(q=-e)$. The number of protons in the nucleus is called the atomic number and it is denoted by Z. The number of neutrons in the nucleus is called neutron number (N). The total number of neutrons and protons in the nucleus is called the mass number and it is denoted by A. Hence, $A=Z+N$.
The two constituents of nucleus namely neutrons and protons, are collectively called nucleons. The mass of a proton is $1.67 \times 10^{-27} \mathrm{~kg}$ which is roughly 1836 times the mass of the electron. The mass of a neutron is slightly greater than the mass of the proton and it is equal to $1.67 \times 10^{-27} \mathrm{~kg}$.
To specify the nucleus of any element, we use the following general notation: ${ }^{A} X_{Z}$
Where X is the chemical symbol of the element, A is the mass number and Z is the atomic number.

Nuclear Size

The alpha particle scattering experiment and many other measurements using different methods have been carried out on the nuclei of various atoms. The nuclei are found to be approximately spherical in shape. It is experimentally found that radius of nuclei for $Z>10$, satisfies the following empirical formula $\mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3}$

Here A is the mass number of the nucleus and the constant $\mathrm{R} 0=1.2 \mathrm{~F}$, where $1 \mathrm{~F}=1 \times 10^{-15} \mathrm{~m}$. The unit fermi (F) is named after Enrico Fermi.

Nuclear charge: Effective nuclear charge (often symbolized as or) is the net positive charge experienced by an electron in a polyelectronic atom. The term "effective" is used because the shielding effect of negatively charged electrons prevents higher orbital electrons from experiencing the full nuclear charge of the nucleus due to the repelling effect of inner-layer electrons. The effective nuclear charge experienced by the electron is also called the core charge. It is possible to determine the strength of the nuclear charge by the oxidation number of the atom. Most of the physical and chemical properties of the elements can be explained on the basis of electronic configuration. Consider the behavior of ionization energies in the periodic table. It is known that the magnitude of ionization potential depends upon the following factors:
(a) Size of atom;
(b) The nuclear charge;
(c) The screening effect of the inner shells, and;
(d) The extent to which the outermost electron penetrates into the charge cloud set up by the inner lying electron.

Nuclear Spin

It is common practice to represent the total angular momentum of a nucleus by the symbol I and to call it "nuclear spin". For electrons in atoms we make a clear distinction between electron spin and electron orbital angular momentum, and then combine them to give the total angular momentum.
Liquid drop model
One of the first models which could describe very well the behavior of the nuclear binding energies and therefore of nuclear masses was the mass formula of von Weizsaecker (also called the semi-empirical mass formula - SEMF), that was published in 1935 by German physicist Carl Friedrich von Weizsäcker. This theory is based on the liquid drop model proposed by George Gamow.

According to this model, the atomic nucleus behaves like the molecules in a drop of liquid. But in this nuclear scale, the fluid is made of nucleons (protons and neutrons), which are held together by the strong nuclear force. The liquid drop model of the nucleus takes into account the fact that the nuclear forces on the nucleons on the surface are different from those on nucleons in the interior of the nucleus. The interior nucleons are completely surrounded by other attracting nucleons. Here is the analogy with the forces that form a drop of liquid.
In the ground state the nucleus is spherical. If the sufficient kinetic or binding energy is added, this spherical nucleus may be distorted into a dumbbell shape and then may be splitted into two fragments. Since these fragments are a more stable configuration, the splitting of such heavy nuclei must be accompanied by energy release. This model does not explain all the properties of the atomic nucleus, but does explain the predicted nuclear binding energies.

Similarities between liquid drop and nucleus:

The density of the liquid drop is independent of its volume, similarly the density of the nucleus is independent of its volume, i.e mass number. ... The nuclear force is short range force, similarly as that of liquid drop in which intermolecular forces are short range forces.

Shell Model

In nuclear physics and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. ${ }^{[1]}$ The first shell model was proposed by Dmitry Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following independent work by several physicists, most notably Eugene Paul Wigner, Maria Goeppert Mayer and J. Hans D. Jensen, who shared the 1963 Nobel Prize in Physics for their contributions.

The shell model is partly analogous to the atomic shell model which describes the arrangement of electrons in an atom, in that a filled shell results in greater stability. When adding nucleons (protons or neutrons) to a nucleus, there are certain points where the binding energy of the next nucleon is significantly less than the last one. This observation, that there are certain magic numbers of nucleons $(\mathbf{2}, \mathbf{8}, \mathbf{2 0}, \mathbf{2 8}, \mathbf{5 0}, 82,126)$ which are more tightly bound than the next higher number, is the origin of the shell model.

The shells for protons and for neutrons are independent of each other. Therefore, "magic nuclei" exist in which one nucleon type or the other is at a magic number, and "doubly magic nuclei", where both are. Due to some variations in orbital filling, the upper magic numbers are 126 and, speculatively, 184 for neutrons but only 114 for protons, playing a role in the search for the socalled island of stability. Some semi-magic numbers have been found, notably $Z=40$ giving nuclear shell filling for the various elements; 16 may also be a magic number. ${ }^{[2]}$
In order to get these numbers, the nuclear shell model starts from an average potential with a shape something between the square well and the harmonic oscillator. To this potential, a spin orbit term is added. Even so, the total perturbation does not coincide with experiment, and an empirical spin orbit coupling must be added with at least two or three different values of its coupling constant, depending on the nuclei being studied. Nevertheless, the magic numbers of nucleons, as well as other properties, can be arrived at by approximating the model with a three-dimensional harmonic oscillator plus a spinorbit interaction. A more realistic but also complicated potential is known as Woods-Saxon potential.

Magic Numbers

Together with the spin-orbit interaction, and for appropriate magnitudes of both effects, one is led to the following qualitative picture: At all levels, the highest j states have their energies shifted downwards, especially for high n (where the highest j is high). This is both due to the negative spinorbit interaction energy and to the reduction in energy resulting from deforming the potential to a more realistic one. The second-to-highest j states, on the contrary, have their energy shifted up by the first effect and down by the second effect, leading to a small overall shift. The shifts in the energy of the highest j states can thus bring the energy of states of one level to be closer to the energy of states of a lower level. The "shells" of the shell model are then no longer identical to the levels denoted by n, and the magic numbers are changed.
We may then suppose that the highest j states for $n=3$ have an intermediate energy between the average energies of $n=2$ and $n=3$, and suppose that the highest j states for larger n (at least up to $n=$ 7) have an energy closer to the average energy of $n-1$. Then we get the following shells (see the figure)

- 1st shell: 2 states ($n=0, j=1 / 2$).
- 2nd shell: 6 states ($n=1, j=1 / 2$ or $3 / 2$).
- 3rd shell: 12 states ($n=2, j=1 / 2,3 / 2$ or $5 / 2$).
- 4th shell: 8 states ($n=3, j=7 / 2$).
- 5th shell: 22 states ($n=3, j=1 / 2,3 / 2$ or $5 / 2 ; n=4, j=9 / 2$).
- 6th shell: 32 states ($n=4, j=1 / 2,3 / 2,5 / 2$ or $7 / 2 ; n=5, j={ }^{11} / 2$).
- 7th shell: 44 states ($n=5, j=1 / 2,3 / 2,5 / 2,7 / 2$ or $9 / 2 ; n=6, j=13 / 2$).
- 8th shell: 58 states ($n=6, j=1 / 2,3 / 2,5 / 2,7 / 2,9 / 2$ or $11 / 2 ; n=7, j=15 / 2$). and so on.

Note that the numbers of states after the 4th shell are doubled triangular numbers plus two. Spin-orbit coupling causes so-called 'intruder levels' to drop down from the next higher shell into the structure of the previous shell. The sizes of the intruders are such that the resulting shell sizes are themselves increased to the very next higher doubled triangular numbers from those of the harmonic oscillator. For example, 1f2p has 20 nucleons, and spin-orbit coupling adds $1 \mathrm{~g} 9 / 2$ (10 nucleons) leading to a new shell with 30 nucleons. 1g2d3s has 30 nucleons, and addition of intruder 1h11/2 (12 nucleons) yields a new shell size of 42 , and so on.

The magic numbers are then

- 2

- $8=2+6$
- $20=2+6+12$
- $28=2+6+12+8$
- $50=2+6+12+8+22$
- $82=2+6+12+8+22+32$
- $126=2+6+12+8+22+32+44$
- $184=2+6+12+8+22+32+44+58$
and so on. This gives all the observed magic numbers, and also predicts a new one (the so-called island of stability) at the value of 184 (for protons, the magic number 126 has not been observed yet, and more complicated theoretical considerations predict the magic number to be 114 instead).

Another way to predict magic (and semi-magic) numbers is by laying out the idealized filling order (with spin-orbit splitting but energy levels not overlapping). For consistency s is split into $\mathrm{j}=1 / 2$ and $\mathrm{j}=$ $-1 / 2$ components with 2 and 0 members respectively. Taking leftmost and rightmost total counts within sequences marked bounded by / here gives the magic and semi-magic numbers.

- $s(2,0) / \mathrm{p}(4,2)>2,2 / 6,8$, so (semi)magic numbers $2,2 / 6,8$
- $d(6,4): s(2,0) / f(8,6): p(4,2)>14,18: 20,20 / 28,34: 38,40$, so $14,20 / 28,40$
- $g(10,8): d(6,4): s(2,0) / h(12,10): f(8,6): p(4,2) \quad>\quad 50,58,64,68,70,70 / 82,92,100,106,110,112$, so 50,70/82,112
- $\quad i(14,12): g(10,8): d(6,4): s(2,0) / j(16,14): h(12,10): f(8,6): p(4,2)$

The rightmost predicted magic numbers of each pair within the quartets bisected by / are double tetrahedral numbers from the Pascal Triangle: 2, 8, 20, 40, 70, 112, 168, 240 are 2 x $1,4,10,20,35,56,84,120, \ldots$, and the leftmost members of the pairs differ from the rightmost by double triangular numbers: $2-2=0,8-6=2,20-14=6,40-28=12,70-50=20,112-82=30$, $168-126=42,240-184=56$, where $0,2,6,12,20,30,42,56, \ldots$ are $2 \times 0,1,3,6,10,15,21,28, \ldots$

Nuclear Fission

Fission occurs when a neutron slams into a larger atom, forcing it to excite and spilt into two smaller atoms-also known as fission products. Additional neutrons are also released that can initiate a chain reaction.
When each atom splits, a tremendous amount of energy is released.
Uranium and plutonium are most commonly used for fission reactions in nuclear power reactors because they are easy to initiate and control.
The energy released by fission in these reactors heats water into steam. The steam is used to spin a turbine to produce carbon-free electricity.

Nuclear Fusion

Fusion occurs when two atoms slam together to form a heavier atom, like when two hydrogen atoms fuse to form one helium atom.
This is the same process that powers the sun and creates huge amounts of energy-several times greater than fission. It also doesn't produce highly radioactive fission products.
Fusion reactions are being studied by scientists, but are difficult to sustain for long periods of time because of the tremendous amount of pressure and temperature needed to join the nuclei together.

Binding energy, amount of energy required to separate a particle from a system of particles or to disperse all the particles of the system. Binding energy is especially applicable to subatomic particles in atomic nuclei, to electrons bound to nuclei in atoms, and to atoms and ions bound together in crystals.

Nuclear binding energy is the energy required to separate an atomic nucleus completely into its constituent protons and neutrons, or, equivalently, the energy that would be liberated by combining individual protons and neutrons into a single nucleus. The hydrogen-2 nucleus, for example, composed of one proton and one neutron, can be separated completely by supplying 2.23 million electron volts (MeV) of energy. Conversely, when a slowly moving neutron and proton combine to form a hydrogen2 nucleus, 2.23 MeV are liberated in the form of gamma radiation. The total mass of the bound particles is less than the sum of the masses of the separate particles by an amount equivalent (as expressed in Einstein's mass-energy equation) to the binding energy.

Mass Defect

The actual mass of the atomic nucleus is always less than the mass of protons and neutrons present in the nucleus. When a nucleus is formed, energy is released. This energy is removed in the form of a reduction in total mass. This missing mass is known as the 'mass defect' and it accounts for the energy released.

The mass defect $(\Delta \mathrm{M})$ can be calculated by subtracting the original atomic mass $\left(\mathrm{M}_{\mathrm{A}}\right)$ from the sum of the mass of protons $\left(\mathrm{m}_{\mathrm{p}}=1.00728 \mathrm{amu}\right)$ and neutrons $\left(\mathrm{m}_{\mathrm{n}}=1.00867 \mathrm{amu}\right)$ present in the nucleus.

Mass defect formula: $\Delta \mathrm{M}=\left(\mathrm{Zm}_{\mathrm{p}}+\mathrm{Nm}_{\mathrm{n}}\right)-\mathrm{M}_{\mathrm{A}}$
$\Delta \mathrm{M}$ - mass defect, M_{A} - mass of the nucleus, m_{p} - mass of a proton, i.e. $1.00728 \mathrm{amu}, \mathrm{m}_{\mathrm{n}}$ - mass of a neutron, i.e. $1.00867 \mathrm{amu}, \mathrm{Z}$ - number of protons, N - number of neutrons.

UNIT-I

$$
\begin{equation*}
\Sigma 1=0 \tag{1}
\end{equation*}
$$

$I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$ णकां $\angle \sin$ entiolisi

$$
\begin{aligned}
& I_{1}-I_{2}+I_{3}-I_{4}+I_{5}=0 \\
& \quad \therefore I_{1}+I_{3}+I_{5}=I_{2}+I_{4} \ldots .(2)
\end{aligned}
$$

(B) $\begin{aligned} \\ \text { Wlwor }\end{aligned}$

$$
I_{1} R_{1}-I_{2} R_{2}+I_{3} R_{3}-I_{4} R_{4}=-E_{2} \ldots(3)
$$

\therefore F号而 Bơ

$$
i_{2}+i g_{i g}-i_{4}=0 \ldots(2)
$$

 Ofixu

$$
\begin{aligned}
& i_{1}-i_{3}=0 \text { (21) } \quad i_{1}=i_{3} \ldots(4) \\
& i_{2}-i_{4}=0 \text { (2) } \quad i_{2}=i_{4} \ldots \text { (5) }
\end{aligned}
$$

$B C D B$ oroin Byw Hinnjoi

$$
i_{3} Q-i_{4} S-\lg G=0
$$

 の\＆゙ゆ

$$
\begin{aligned}
& i_{1} p=i_{2} R \cdots(g) \\
& i_{3 Q}=i_{4} 3 \cdots(q)
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{i_{1} P}{i_{3 Q}}=\frac{i_{2} R}{i_{4} S} \\
& i_{1}=i_{3} ; \quad i_{2} \\
& \therefore \quad i_{4} \\
& \therefore \quad \frac{P}{Q}=\frac{R}{S} \ldots(10)
\end{aligned}
$$

A, B शहईW (1pomण历 कीनें (1) A

कur orsontuloi (150mp 5
 - osstion cosrtio.

$$
\begin{aligned}
& \frac{P}{Q}=\frac{R+a+L_{1} p}{S+\beta+\left(1-L_{1}\right) p} \cdots(1) \\
& \frac{P}{Q}=\frac{S+a+L_{2} p}{R+\beta+\left(1-L_{2}\right) p} \cdots(2)
\end{aligned}
$$

\& ¢ कீunの (1) (2)

$$
\frac{R+\alpha+l_{7} p}{s+\beta+\left(1-l_{1}\right) p}=\frac{s+\alpha+l_{2} p}{R+\beta+\left(1-l_{2}\right) p} \cdots(3)
$$

$$
\begin{aligned}
& \frac{\left.R+a+L_{7} p+S+\beta+c_{1}-L_{1}\right) p}{S+\beta+\left(1-L_{1} p\right)}=\frac{s+\alpha+L_{2} p+R+\beta+\left(1-L_{2}\right) p}{R+\beta+\left(1-L_{2}\right) p} \\
& \therefore \frac{R+s+a(+\beta+p}{s+\beta+\left(1-l_{1}\right) p}=\frac{R+s+\alpha+\beta+p}{R+\beta+\left(1-L_{2}\right) p} \cdots(4)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore S+B+\left(1-L_{1}\right) P=R+P\left(1-L_{2}\right) P \\
& \therefore S-L_{1} P-R-I_{2} P \\
& \therefore R-S-P\left(l_{2}+L_{1}\right) \\
& \therefore \quad R=S+P\left(l_{2}-L_{1}\right) \ldots(S)
\end{aligned}
$$

क成 $6 R=0$

$$
\begin{aligned}
& R=S+P\left(L_{2}^{\prime}-L_{1}^{\prime}\right) \\
& R=0
\end{aligned}
$$

$$
\therefore p=\frac{S}{\left(l_{1}^{\prime}-l_{2}^{\prime}\right)} \quad \cdots(b)
$$

$\Rightarrow 210031 \frac{1}{5} \sqrt{5}$:-

 -850rtit 56°

$$
R=r_{0} A^{1 / 3}
$$

\$rits r_{0}. oy in ertofoqurt 66°
r_{0} को दy दr fil Cuf $34 r_{0}=1.4 \times 10^{-15}$ \&

$$
\begin{aligned}
& \therefore R=1.4 \times 10^{-15} \times A^{1 / 3} \&
\end{aligned}
$$

$$
\begin{aligned}
& \therefore R=1.4 \times 10^{-15} \times(12)^{1 / 3}=3.21 \times 10^{-15} 6
\end{aligned}
$$

$$
\therefore R=1.4 \times 10^{-15} \times(63)^{1 / 3}=5.97 \times 10^{-15} 18
$$

ubहातनीwi̊f\% $\quad A=238$

$$
\therefore R=1.4 \times 10^{-15} \times(238)^{1 / 3}=8.60 \times 10^{-15}(8
$$

அजिए 合

 - みeld.
(i) श1000

 * oy in orn - oy

9. \Rightarrow foropiris sion lertifin: :-

 हैन

 2-गणm w wr 56°.

0. Gormis obromin:-

Fol (b LOTfझif) :-
 2 जोन $\sqrt{1}$

$$
x
$$

Ideal Op-Amp - Op-Amp Parameters (Qualitatively): Input offset voltage, Input impedance, Output impedance, CMRR, Slew Rate - Inverrting - Non-inverting Amplifier - Adder - Subtractor Differentiator - Integrator.

Basic operational amplifier

The operational amplifier is a direct coupled high-gain differential input amplifier. Originally the operational amplifier had only one input and the output voltage was always inverted with respect to the input voltage. However common operational amplifiers which are recently available are of differential type and these amplifier have both inverting and non-inverting inputs.

An ideal operational amplifier must have the following properties.

1. Input resistance must be infinite.
2. Output resistance R_{0} should be as small as zero.
3. Voltage gain shouuld be as high as infinite.
4. Band width should be as wide as infinite.
5. Output voltage $\mathrm{V}_{0}=0$ when $\mathrm{V}_{1}=\mathrm{V}_{2}$
6. The characteristics do not change with temperature.

OP - AMP Parameters

Input offset voltage

For an ideal OP -AMP when the inverting input and non inverting input are grounded an supplied with equal voltages, we may expect the output voltage to be equal to zero. But in practice a small difference in voltage is required to make the output zero. This voltage which is required to make the output zero is called input offset voltage.

Input impedance

The input impedance of the Op-Amp is the equivalent resistance that is measured at the inverting input or non invertin input while the other input is grounded.

The input impedance can also be defined as the ratio of the change in input voltage to the change in input current measured at either of the input terminals with respect to ground. The input impedance is also referred as input resistance.

Output impedance

The output impedance of the Op-Amp is the equivalent resistance that is measured at the output terminal with respect to ground.

The output impedance can also be defined as the ratio of the change in output voltage to the change in output current. The output impedance is also referred as output resistance.

Common - Mode Rejection Ratio (CMRR)

In an ideal DIFF-AMP, the output signal may be given by the equation

$$
\begin{equation*}
V_{0}=A_{d}\left(V_{1}-V_{2}\right) \tag{1}
\end{equation*}
$$

Where Ad is the gain of the differential amplifier. If $V_{1}=V_{2}$, then $V_{0}=0$. That is the signals common to both inputs gets cancelled and produces no output voltage. This is true only for an ideal OPAMP. But a practical OP-AMP exhibits some small response to the common mode components of the input voltage too. The output depends not only upon the difference signal Vd of the two signals, burt also upon the average level called common mode signal Vc.

The common mode signal

For differential amplifier, the gain at the ouutput with respect to the positive terminal is slightly different in magnitude to that of the negative terminal. So even with the same voltage applied to both inputs, the outpuut is not zero. The output can be expressed as a liner combination of the two input voltages.

$$
\begin{equation*}
V_{0}=A_{1} V_{1}+A_{2} V_{2} \tag{3}
\end{equation*}
$$

Where A_{1} is the voltage amplification from input 1 to the output under the condition that the input 2 is grounded and A_{2} is the voltage amplification from input 2 to the output under the condition that the input 1 is grounded. We know that

$$
\begin{align*}
V_{C} & =\frac{1}{2}\left(V_{1}+V_{2}\right) \\
V_{d} & =\left(V_{1}-V_{2}\right) \tag{4}\\
2 V_{C} & =\left(V_{1}+V_{2}\right)
\end{align*}
$$

From equation (4)

$$
\begin{align*}
& V_{1}=\left(V_{c}+V_{d} / 2\right) \tag{5}\\
& V_{2}=\left(V_{2}-V_{d} / 2\right) \tag{6}\\
& V_{0}=A_{d} V_{d}+A_{c} V_{c} \tag{7}\\
& d A=1 \tag{8}\\
& d_{2}^{1}\left(A-A_{2}\right) \tag{9}\\
& A_{C}=\left(A_{1}+A_{2}\right)
\end{align*}
$$

The voltage gain for the difference signal is Ad and that for the common-mode signal is Ac.
The relative sensitivity of an OP-AMP to a difference signal ad compared to a common - mode signal is called Common -Mode rejection ratio (CMRR). It gives the signal figure merit ρ for the differential amplifier.

$$
\mathrm{CMRR}=\rho=\left|\frac{A_{d}}{A_{c}}\right|-----------------(10)
$$

Slew Rate

When a step voltage is applied at the input an ideal Op-Amp responds instantaneously. But for practical Op-Amps, it takes some time (few micro seconds). This property is called the Slew rate of the Op-Amp.

Slew rate of an Op-Amp is defined as the maximum rate of change of output voltage in response to a step input

$$
\text { i.e., Slew rate }=\frac{d V}{d t}
$$

Inverting operational amplifier

The basic inverting amplifier is shown in figure. The non-inverting terminal has been grouunded where as R_{1} connects the input signal V_{1} to the inverting input. A feedback resistor R_{f} has been connected from the output to the inverting input.

The input voltage is V_{1} and the output voltage is V_{0}. The gain of the operational amplifier is very large. So the voltage V at the inverting input terminal is very small. In fact, it will be close to the ground potential. It means that the point G is held virtually at ground potential irrespective of the magnitude of the potential V_{1} and V_{0}. The input impedence of OP-AMP is infinite. So the current i will flow through R_{f} and not into the OP-AMP. Applying Kirchhoffs current law at the point G, we can write,

$$
\begin{equation*}
\left(\mathrm{V}_{1}-\mathrm{V}\right) / \mathrm{R}_{1}=\left(\mathrm{V}-\mathrm{V}_{0}\right) / \mathrm{R}_{\mathrm{f}-\cdots} \tag{1}
\end{equation*}
$$

Since the point G is at a virtual ground, ie $\mathrm{V}=0$, we get from equation (1)

$$
\begin{align*}
& V_{1} / R_{1}=-V_{0} / R_{f} \tag{2}\\
& V_{0} / V_{1}=-R_{f} / R_{1} \tag{3}\\
& \text { Gain } A_{v}=-R_{f} / R_{1} \tag{4}
\end{align*}
$$

Thus the voltage gain is given by the ratio of the feedback resistance R_{f} to the input resistance R_{1}. The negative sign indicates that the output voltage is inverted with respect to the input voltage.

$$
\begin{align*}
\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1} & =\mathrm{K} \\
\mathrm{~V}_{0} / \mathrm{V}_{1} & =-\mathrm{K} \\
\mathrm{~V}_{0} & =-K \mathrm{~K}_{1} . \tag{5}
\end{align*}
$$

Hence the closed loop gain of the inverting amplifier depends on the ratio of the two external resistors R_{f} and R_{1} and it is independent of amplifier parameters.

Non - oinverting operational amplifier

The non - inverting amplifier is shown in figure. In this case, the input voltage V_{2} is applied to the non - inverting terminal. So this circuit is called non - inverting amplifier.

The gain of OP-AMP is infinite. So the potential of the point G is also Vs. The output voltage is V_{0}. The voltage across R_{1} is V_{2} and that across R_{f} is $\left(V_{0}-V_{2}\right)$.

$$
\begin{equation*}
\mathrm{I}_{1}=\mathrm{V}_{2} / \mathrm{R}_{1} \quad \text { and } \quad \mathrm{I}_{2}=\left(\mathrm{V}_{0}-\mathrm{V}_{2}\right) / \mathrm{R}_{\mathrm{f}} \tag{1}
\end{equation*}
$$

Applying Kirchhoff's current law ot the junction G, we get,

$$
\begin{align*}
& \left(-\mathrm{I}_{1}\right)+\left(\mathrm{I}_{2}\right)=0 \tag{2}\\
& \mathrm{~V}_{2} / \mathrm{R}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{2}\right) / \mathrm{R}_{\mathrm{f}}=0 \tag{3}\\
& \left(\mathrm{~V}_{0}-\mathrm{V}_{2}\right) / \mathrm{V}_{2}=\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1} \\
& \left(\mathrm{~V}_{0} / \mathrm{V}_{2}\right)-1=\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1} \\
& \mathrm{~V}_{0} / \mathrm{V}_{2}=1+\left(\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1}\right) \\
& \mathrm{A}_{\mathrm{V}}=1+\left(\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{t}}\right) \tag{4}
\end{align*}
$$

In this case, the gain is 1 plus the ratio of the two resistances R_{f} and R_{1}. Also the output voltage is in phase with the input voltage. This circuit offers a high input impedence and a low output impedence.

If $\mathrm{R}_{\mathrm{f}}=0$ and $\mathrm{R}_{1}=\infty$, the gain of the amplifier is unity. Thus this circuit is referred as voltage follower or a unit gain buffer. This circuit can be used air an impedence matching device between a highimpedence source and a low impedence load.

Adder or Summing Amplifier

An adder or a summing amplifier using on OP-AMP is shown in figure. Since the current flowing into the virtual ground is equal to that flowing out of it, we can write.

$$
\begin{align*}
& \mathrm{I}_{1}+\mathrm{I}_{2}+\ldots \ldots .+\mathrm{I}_{\mathrm{n}}=\mathrm{I}_{0} \tag{1}\\
& \left(\mathrm{~V}_{1} / \mathrm{R}_{1}\right)+\left(\mathrm{V}_{2} / \mathrm{R}_{2}\right)+\ldots \ldots \ldots \ldots+\left(\mathrm{V}_{\mathrm{n}} / \mathrm{R}_{\mathrm{n}}\right)=-\left(\mathrm{V}_{0} / \mathrm{R}_{\mathrm{f}}\right) \tag{2}\\
& V=-\frac{R_{f}}{R_{1} 1} V+\frac{R_{f}}{R_{2}} V+\cdots+\frac{{ }^{R_{f}}}{R_{n} n} \tag{3}
\end{align*}
$$

Let $\mathrm{R}_{1}=\mathrm{R}_{2}=$. \qquad

$$
=\mathrm{R}_{\mathrm{n}}=\mathrm{R}
$$

$$
\begin{equation*}
V_{0}=-\frac{R_{f}}{R}\left(V_{1}+V_{2}+\cdots \ldots+V_{n}\right) \tag{4}
\end{equation*}
$$

If $\mathrm{R}_{\mathrm{f}}=\mathrm{R}$, then,

$$
\begin{equation*}
\mathrm{V}_{0}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}+\ldots \ldots \ldots \ldots .+\mathrm{V}_{\mathrm{n}}\right) \tag{5}
\end{equation*}
$$

ie., the output voltage V_{0} is numerically equal to the algebraic sum of the output voltages.

Difference Amplifier (Subtractor)

A circuit that amplifiers the difference between two signals is called difference amplifier or subtractor. This type of amplifier is very useful in instrucmentation circuit. A basic differential amplifier employing operational amplifier is shown in figure.

Here V_{1} and V_{2} are the input signal voltages and V_{0} is the output voltage. Since the gain of the OP-AMP is infinite the potential of the points 1 and 2 will be the same say V_{3}.

Application of Kirchhoff's current law at points 1 and 2 gives

$$
\begin{align*}
& \frac{V_{1}-\frac{V_{3}}{\underline{2}}=\frac{V_{3}-V_{0}}{R_{1}}}{R_{1}} \tag{1}\\
& \underline{V_{2}} \underline{-V_{3}}=\frac{V_{3}}{R_{2}} \tag{2}\\
& R_{1}
\end{align*}
$$

Subtraction of (1) from (2) we get

$$
\begin{gather*}
V_{0}=\frac{R_{2}}{R_{1}}\left(V_{1}-V_{2}\right) \\
\frac{V_{0}}{V_{1}-V_{2}}=\frac{R_{2}}{R_{1}} \\
A_{d}=\frac{R_{2}}{R_{1}} \tag{3}
\end{gather*}
$$

Thus is gain of DIFF - AMP is $\mathrm{R}_{2} / \mathrm{R}_{1}$.

Such a circuit is very useful in detecting very small difference is signals, since the gain R_{2} / R_{1} can be chosen to be very large. For example if $R_{2}=100 R_{1}$, then a small difference $\left(V_{1}-V_{2}\right)$ is amplified 100 times.

Differentiators

Differentiation is the inverse of integration and may be obtained by interchanging R and components of the integrator circuit. The differentiator is shown in figure.

If we neglect the current through the amplifier and Vs is taken to be negligibly small, we get

$$
\begin{align*}
& \mathrm{I}_{\mathrm{C}}=\mathrm{I} \text {-------------------------(1) } \\
& C \frac{d\left(V_{1}-V_{\mathcal{S}}\right)}{d t}=\frac{V_{\mathcal{S}}-V_{0}}{R} \tag{2}
\end{align*}
$$

Neglecting Vs we get,

$$
\begin{align*}
C \frac{d V_{1}}{d t} & =-\frac{V_{0}}{R} \\
V_{0} & =-C R \frac{d V_{1}}{d t} \tag{3}
\end{align*}
$$

The input voltage V_{0} is equal to a constant $C R$ times the time derivative of the input voltage V_{1}.

Integrator

Integration is the reverse process of differentiation. And the integrator circuit is obtained by simply interchanging the resistor, R and capacitor, C in the differentiator circuit.

The feedback resistor R_{f} is replaced by a condenser C. The input resistor R_{1} is now called as R.
As in the case of differentiator, the values of voltages and currents are to be taken as instantaneous values.
Let Vi be the input voltagee applied to the inverting input through the resistor, R .
$\mathrm{q}=\mathrm{CV}$

$$
\begin{aligned}
& I=\frac{d q}{d t}={ }^{d} \frac{C V}{d t}=C^{d V} \overline{d t} \\
& I_{f}=-C \frac{d V_{0}}{d t}
\end{aligned}
$$

Since $\mathrm{If}=\mathrm{I}_{\mathrm{i}}$, we can write

$$
-\mathrm{C} \frac{d V_{0}}{d t}=\frac{V_{i}}{R}
$$

The output is given by,

$$
\begin{aligned}
V_{0} & =-\frac{1}{R C} \int_{i} V_{i} \mathrm{dt} \\
V_{0} & \propto-\int V_{i} d t
\end{aligned}
$$

Unit . III

$89, ~ 13005$.
 कोजितिकिए

क्ञाज
 180ीण्णमीकीजिए $V_{0}^{\circ}=0$

OP. AMP - तौE

$$
v_{0}=A d\left(v_{1}-v_{2}\right)
$$

 णनींड इड

 किBDEDNUT 0°.

$$
V_{0}=A_{1} V_{1}+A_{2} V_{2}
$$

$$
\begin{aligned}
& v_{c}=1 / 2\left(v_{1}+v\right) \\
& v_{d}=\left(v_{1}-v_{2}\right) \\
& 2 v_{c}=\left(v_{1}+v_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
v_{1} & =v_{c}+v_{d / 2} \\
v_{2} & =v_{c}-v_{d / 2} \\
v_{0} & =A_{d} V_{d}+A_{c} V_{c} \\
A_{d} & =V_{2}\left(A_{1}-A_{2}\right) \\
A_{c} & =A_{1}-A_{2}
\end{aligned}
$$

 एकीजिBB जाइ®

$$
i_{1}=\frac{v_{1}-v}{R_{1}} \quad \rightarrow \text { (1) }
$$

$$
\begin{equation*}
\frac{v_{1}-v}{R_{1}}=\frac{v-v_{0}}{R f} \tag{2}
\end{equation*}
$$

यिभिक्त G यntwir Frontsone.

$$
\begin{align*}
& \frac{V_{1}}{R_{1}}=\frac{V_{0}}{R P} \tag{3}\\
& \frac{V_{0}}{V_{1}}=\frac{-R_{Y}}{R_{1}} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
-\frac{R_{4}}{R_{1}} & =K \text { ovoras gurwomary } \frac{v_{0}}{\sqrt{1}}=-4 \\
V_{0} & =-K V_{1}
\end{aligned}
$$

 Fifle

$$
i_{1}=\frac{v_{2}}{Q_{1}}, \quad i_{2}=\frac{v_{0-v_{2}}}{Q_{1}}
$$

$$
\begin{align*}
&\left(-i_{1}\right)+i_{2}=0 \tag{1}\\
& \frac{-V_{2}}{R_{1}}+\frac{V_{D}-V_{2}}{R_{f}}=0 \\
& \frac{V_{0}-v_{2}}{V_{2}}=\frac{R_{f}}{R_{1}} \\
& \frac{V_{0}}{V_{2}}-1=\frac{R f}{R_{1}} \\
& \frac{V_{0}}{V_{2}}=1+\frac{R f}{R_{1}} \\
& A_{V}=1+\frac{R_{f}}{R_{1}}
\end{align*}
$$

 Эर्भीक

$$
i_{1}=\frac{v_{1}}{R_{1}}, \quad i_{2}=\frac{v_{2}}{R_{2}}, \quad i_{3}=\frac{v_{3}}{R_{3}} \quad i=\frac{-V_{0}}{R_{Q}}
$$

$$
\begin{aligned}
& \text { iftis ti? } 4(-i)=0 \\
& \frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{3}}+\frac{\sqrt{3}}{V_{3}}-\left(-\frac{4 \%}{\theta_{5}^{5}}\right)=0 \\
& V_{0}=-\left(\frac{R y}{K_{1}}+\frac{R_{2}}{R_{2}}+2+\frac{R \%}{R 3} *\right) \\
& R_{1}=R_{2}=R_{3}=R \text { जलगत曻, } \\
& v_{0}=\frac{-P 3}{r}\left(v_{1}+v_{2}+v_{3}\right) \quad-(3) \\
& v_{0}=-x\left(v_{1}+40+43\right) \\
& R \frac{R}{t}=R \quad \text { बलtm } \\
& v_{0}=(1+4+2+13) \\
& R_{t}=R_{12} \text { armoit, } \\
& v_{0}=-1 / 3(v+10+13)-(6) \text {, }
\end{aligned}
$$

$$
v_{0}=v_{0}^{\prime}+v_{0}{ }^{\prime \prime}
$$

$$
v_{0}=-\frac{R 2}{R} v_{1}
$$

$$
\begin{equation*}
v_{0}{ }^{u}=\left(1+\frac{R \dot{\psi}_{5}}{R_{1}}\right) \div 2 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { vo rit } \frac{\text { vi }}{\text { vo }}\left(v_{1}\right) \\
& \left.=K(V) V_{1}\right) \quad=(G)
\end{aligned}
$$

 O200

$$
\begin{array}{cc}
i_{1}=r_{2} & \quad-0 \\
\frac{v_{1}-v_{g}}{R}=c & d \frac{\left(v_{B}-v_{0}\right)}{d t} \quad
\end{array}
$$

$V_{B} 28106$ tis anomodirmporeco,

$$
c \frac{d v_{0}}{d t}=-\frac{v_{1}}{R} \text { goanmol } v_{0}=-1 / C R S v_{1} d t
$$

जहाँ कn

$$
c \frac{d}{d t}\left(v_{1}-v_{3}\right)=\frac{-v_{3}-v_{0}}{R}
$$

v_{3} सמऊिएकणीधिक

$$
\begin{align*}
& c \frac{d v_{1}}{d t}=\frac{-v_{0}}{R} \tag{3}\\
& v_{0}=-C R \cdot \frac{d v_{1}}{d t} \tag{4}
\end{align*}
$$

Books for Reference:

1. Dr.Brijlal and Subrahmanyam 1995, A TextBook of Electricity and Magnetism, S.Chand \& Company LTD,New Delhi.
2. A.Sundaravelusamy 2014,A TextBook of Applied Physics Paper-I, Priya Publications,Karur.
3. A.Sundaravelusamy 2011, A TextBook of Allied Physics Paper-I, Priya Publications, Karur.
4. A.Sundaravelusamy 2014, A TextBook of Applied Physics Paper-II, Priya Publications,Karur.
5. A.Sundaravelusamy 2014,A TextBook of Allied Physics Paper-II, Priya Publications,Karur.

Books for Scanned images

1. https://www.electronicshub.org/kirchhoffs-laws/
2. https://www.toppr.com/ask/content/concept/meter-bridge-209636/
3. https://en.wikipedia.org/wiki/Carey_Foster_bridge
4. https://sites.google.com/site/puenggphysics/home/unit-iii/nuclear-models
