KunthavaiNaacchiyaar Govt. Arts College for Women (Autonomous),

 Thajavur-7.(Affliated to Bharathidasan University, Tiruchirappalli)

DEPARTMENT OF PHYSICS

I B.Sc., Physics

MECHANICS AND RELATIVITY

Code: 18K2P03

Prepared by,

1. Mrs. K. Saritha,
(Unit I and III)
Lecturer inPhysics, K. N. G. A. College, Thanjavur.
2. Dr. N. NishaBanu,
(Unit II and III)
Lecturer inPhysics, K. N. G. A. College, Thanjavur.

UNIT-I

Projectile and Impact of Elastic Bodies

Projectile-path and range of projectile-Impulse of a force-Laws of impact of a smooth sphere on a smooth fixed horizontal plane-Direct and oblique impact between two smooth spheres- Loss of kinetic energy due to direct and oblique impacts.

Projectile

A projectile is any object thrown by the exertion of a force. It can also be defined as an object launched into the space and allowed to move free under the influence of gravity and air resistance. Although any object in motion through space (for example a thrown baseball, kicked football, fired bullet, thrown arrow, stone released from catapult) may be called projectiles, they are commonly found in warfare and sports. Mathematical equation of motion are used to analyze projectiletrajectories.

Path and Range of the Projectile

The range of the projectile is the displacement in the horizontal direction. There is no acceleration in this direction since gravity only acts vertically. shows the line of range. Like time of flight and maximum height, the range of the projectile is a function of initial speed.

Consider a point P as the position of particle, after time t seconds with x and y as coordinates.

The equation of the path of a projectile or the equation of trajectory is given by

$$
y=x \tan a-g \cdot \frac{x 2}{2 u 2} \cos 2 a
$$

The time of flight (t) of a projectile on a horizontal plane is given by

$$
t=2 u \sin a / g
$$

The horizontal range (R) of a projectile is given by

$$
R=u 2 \sin 2 a / g
$$

When the projectile is projected on a downward inclined plane, then

$$
R=2 u 2 \sin (\alpha+\beta) \cos \alpha / g \cos 2 \beta
$$

Impulse of a force:

The product of average force_and the time it is exerted is called the impulse From the Newtons law

$$
F_{\text {average }}=m a_{\text {aerenge }}=m \frac{\Delta \nu}{\Delta t}
$$

the impulse of force can be extracted and found to be equal to the change in momentum of an object provided the mass is constant:

$$
\text { Impulse }=F_{\text {arerage }} \Delta t=m \Delta v
$$

Direct Impact between two smooth sphere

Let a smooth sphere of massm1 moving with a velocity u1 impinge directly on another smooth sphere of mass m 2 moving with velocity u 2 in the same direction. By the principle of conservation of momentum the total momentum after the impact along the common normal at the point of contact is equal to the total momentum before impact in the same direction

$$
\begin{equation*}
\mathrm{m} 1 \mathrm{v} 1+\mathrm{m} 2 \mathrm{v} 2=\mathrm{m} 1 \mathrm{u} 1+\mathrm{m} 2 \mathrm{u} 2 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
v 1-v 2=-e(u 1-u 2)- \tag{2}
\end{equation*}
$$

multiplying eqn(2) by $m 2$ and adding (1)

$$
\begin{equation*}
\mathrm{v} 1=\mathrm{m} 2 \mathrm{u} 2(1-\mathrm{e})+\mathrm{u} 1(\mathrm{~m} 1-\mathrm{em} 2) /(\mathrm{m} 1+\mathrm{m} 2)- \tag{3}
\end{equation*}
$$

multiplying eqn(2) by m 21 and subtracting from (1)
v2=m1u1(1-e+u2(m2-em1)/(m1+m2)

Equation (3) and (4) gives the velocities of two spheres after impact along the common normal.

Impact of a smooth sphere on a fixed horizontal plane

Let a smooth sphere of mass m and whose coefficient of restitution is e, impinge obliquely on a smooth fixed horizontal plane.By Newtons experimental law,

$$
\begin{gather*}
V \cos \theta-0=-e[-u \cos a-0] \tag{1}\\
V \sin \theta=u \sin a--------------- \tag{2}
\end{gather*}
$$

Divinding eqn (2)by eqn(1)

$$
\begin{equation*}
\tan \theta=\tan \mathrm{a} / \mathrm{e}- \tag{3}
\end{equation*}
$$

Oblique Impact between two smooth sphere
In an oblique impact, one or both of the particles' motion is at an angle to the line of impact. Typically, there will be four unknowns: the magnitudes and directions of the final velocities.

Plane of contact
The four equations required to solve for the unknowns are:

Conservation of momentum and the coefficient of restitution equation are applied along the line
of impact (x-axis):
$m A(v A x) 1+m B(v B x) 1=m A(v A x) 2+m B(v B x) 2$
$e=[(\mathrm{vBx}) 2-(\mathrm{vAx}) 2] /[(\mathrm{vAx}) 1-(\mathrm{vBx}) 1]$
Momentum of each particle is conserved in the direction perpendicular to the line of impact (y-axis):
$m A(v A y) 1=m A(v A y) 2$ and $m B(v B y) 1=m B(v B y) 2$

Loss of kinetic energy due to direct impact between two smooth sphere:

The sphere of mass m 1 is in the direction 0102 while the impulse of the mass on m 2 is also I but is in the direction 0102.
The change in the K. E. of $m 1=1 / 2 m 1\left(v 1^{2}-u 1^{2}\right)$

$$
\mathrm{l}=\mathrm{m} 1(\mathrm{v} 1-\mathrm{u} 1)
$$

Therefore change in K. E. of $m 1=1 / 2 I(v 1+u 1)$
The change in the K.E. of the sphere $m 2$

$$
=m 1 m 2\left(1-e^{2}\right)(u 1-u 2) 2 / 2(m 1+m 2)
$$

Loss of K. E. due to direct impact between the spheres

$$
=m 1 m 2\left(1-e^{2}\right)(u 1-u 2) 2 / 2(m 1+m 2)=1 / 2 I(u 1-u 2)\left(1-e^{2}\right)
$$

Loss of kinetic energy due to oblique impact between two smooth sphere:
Since the velocities of the spheres perpendicular to common normal remain unaltered, due to the oblique impact between two smooth sphere there can be no loss in K. E. perpendicular to the common normal. Loss of K. E. due to oblique impact

$$
=m 1 m 2\left(1-e^{2}\right)(u 1 \cos \alpha-u 2 \cos \beta / 2(m 1+m 2)
$$

UNIT - 1

णாムப்のபா கூण்கण்் :

 Qearrumonnsori (Definition)

 Berrooti' ornserrootio (angle of projection) oroiur.

 LIAMB BTOVIT Li.

 बणờர்.
6மाநசுக்காणण कीमी :

 وण्तluपां.

$$
\frac{v_{2}-v_{1}}{U_{2}-U_{1}}=-e
$$

$$
\left(m_{1}+m_{2}\right) v=m_{1} v_{1} \quad \longrightarrow(1)
$$

$$
\begin{aligned}
& v=\frac{m_{1}}{m_{1}+m_{2}} \\
& \longrightarrow(2)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=1 / 2 m_{1} \frac{m_{1}^{2} v_{1}^{2}}{m_{1}+m_{2}}\left(m_{1}+m_{2}\right) \\
=1 / 2 m_{1} \cdot \frac{m_{1}}{m_{1}+m_{2}}
\end{array} \\
& \frac{m_{1}}{m_{1}+m_{2}}<1 \text { ghதariò, }
\end{aligned}
$$

1. 以広LLOल बEnकलण कीकी:

டுL

$$
\frac{v_{2}-v_{1}}{U_{2}-v_{1}}=-e
$$

 மடர்க்ாாும்.

$$
\begin{equation*}
\therefore v_{2}-v_{1}=-e\left(u_{2}-u_{1}\right) \longrightarrow \tag{1}
\end{equation*}
$$

$$
m_{1} v_{1}+m_{2} v_{2}=m_{3} u_{1}+m_{2} u_{2} \longrightarrow(2)
$$

$$
m_{2} v_{1}-m_{2} v_{2}=-m_{2}\left(u_{2}-v_{1}\right) \rightarrow(3)
$$

(2) $-(3)$.

$$
\begin{gathered}
N_{1}\left(m_{1}+m_{2}\right)=m_{2} u_{2}(1+e)+u_{1}\left(m_{1}-e m_{2}\right) \\
v_{1}=\frac{m_{2} u_{2}(1+e)+u_{1}\left(m_{1}-e m_{2}\right)}{m_{1}+m_{2}} \longrightarrow(4)
\end{gathered}
$$

$$
m_{1} v_{2}-m_{1} v_{1}=m_{1} e\left(u_{2}-u_{1}\right) \longrightarrow(5)
$$

(2) $+(5)$

$$
\begin{gathered}
v_{2}\left(m_{1}+m_{2}\right)=m_{1} u_{1}(1+e)+\left(u_{2}\left(m_{2}-e m_{2}\right)\right. \\
v_{2}=\frac{m_{1} u_{1}(1+e)+u_{2}\left(m_{2}-e m_{1}\right)}{m_{1}+m_{2}} \longrightarrow(b)
\end{gathered}
$$

बिnப் बrsirau:

$$
\begin{aligned}
& e=1, \quad m_{1}=m_{2} \\
& v_{1}=v_{2}, v_{2}=v_{1}
\end{aligned}
$$

2. $e=0$ णणनिंण $v_{2}=v_{1}$
 Qநீத மாก்ตம் $m_{1}\left(v_{1}-U_{1}\right)$

$$
\begin{aligned}
I & =\frac{\dot{m}\left(m_{2} U_{2}(1+l)+u_{1}\left(m_{1}+e m_{2}\right)\right.}{m_{1}+m_{2}}-U_{1} \\
& =\frac{m_{1}\left(m_{2} U_{2}(1+e)+U_{1}\left(m_{1}-e m_{2}\right)-m_{1} U_{1}-m_{2} U_{1}\right.}{m_{1}+m_{2}} \\
& =\frac{m_{1}\left(m_{2} U_{2}(1+e)-m_{2} U_{1}(1+e)\right.}{m_{1}+m_{2}} \\
I & =\frac{m_{1} m_{2}(1+e)\left(U_{2}-U_{1}\right)}{m_{1}+m_{2}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore v_{1} \sin \theta_{1} & =U_{1} \sin \alpha_{1} \\
v_{2} \sin \theta_{2} & =U_{2} \sin \alpha_{2}
\end{aligned} \quad \longrightarrow(1)
$$

$$
\begin{aligned}
& u_{0} L \text { Loi Qधחक कor illa, } \\
& v_{2} \cos \theta_{2}-v_{1} \cos \theta_{1}=-e\left(u_{2} \cos \alpha_{1}-u_{1} \cos \alpha_{1}\right) \rightarrow(3)
\end{aligned}
$$

$$
\begin{aligned}
& m_{2} v_{2} \cos \theta_{2}+m_{1} v_{1} \cos \theta_{1}=m_{2} v_{2} \cos \alpha_{2}-m_{1} v_{1} \cos \alpha_{1} \rightarrow(4) \\
& \text { FLOणनं (3) } \mathrm{XM}_{2} \\
& m_{2} v_{2} \cos \theta_{2}-m_{2} v_{1} \cos \theta=-m_{2} e\left(u_{2} \cos \alpha_{2}-u_{1} \cos \alpha_{1}\right) \rightarrow(5) \\
& \text { (4) }-(5) \\
& v_{1} \cos \theta\left(m_{1}+m_{2}\right)=m_{2} v_{2} \cos \alpha_{2}+m_{1} v_{1} \cos \alpha_{1}+m_{2} e \\
& \left(U_{2} \cos \alpha_{2}+U_{1} \cos \alpha_{1}\right) \\
& v_{1} \cos \theta_{1}=\frac{v_{1} \cos \alpha\left(m_{1}-e m_{2}\right)+m_{2} U_{2} \cos a_{2}(1+e)}{m_{1}+m_{2}} \rightarrow \text { (6) }
\end{aligned}
$$

F60ण (3) $\times \mathrm{m}_{1}$

$$
\begin{aligned}
& m_{2} v_{2} \cos \theta_{2}-m_{1} v_{1} \cos \theta=-m_{1} e\left(\alpha_{2} \cos \alpha_{2}-v_{1} \cos \alpha_{1}\right) \rightarrow(\theta) \\
& v_{2} \cos \theta_{2}\left(m_{1}+m_{2}\right)=v_{2} \cos \alpha_{2}\left(m_{2}-e m_{1}\right)+m_{1} v_{1} \cos \alpha_{1}(1+\theta) \\
& v_{2} \cos \theta_{2}=\frac{U_{2} \cos \alpha_{2}\left(m_{2}-e m_{1}\right)+m_{1} v_{1} \cos \alpha_{1}(1+e)}{m_{1}+m_{2}}
\end{aligned}
$$

$$
v_{1}=\sqrt{\frac{u_{1} \cos \alpha+\left(m_{1}-m_{2}\right)+m_{2} u_{2} \cos \alpha_{2}(1+e)^{2}+U_{1}^{2} \sin ^{2} \alpha}{m_{1}+m_{2}}}
$$

$$
\tan \theta=\frac{u_{1} \sin \alpha_{1}}{\left(u_{1} \operatorname{sos} \alpha_{1}\left(m_{1}-e m_{2}\right)+m_{2} u_{2} \cos \alpha_{2}(1+c)\right.} \rightarrow
$$

$$
V_{2}=\sqrt{\frac{u_{2} \cos \alpha_{2}\left(m_{2}-e m_{1}\right)+m_{1} v_{1} \cos \alpha_{1}(1+e)^{2}+u_{2} \sin \alpha_{2}^{2}}{m_{1}+m_{2}}} \xrightarrow{(11)}
$$

$$
\tan \theta_{2}=\frac{u_{2} \sin \alpha_{2}}{\frac{\left(u_{2} \cos \alpha_{2}\left(m_{2}-e m_{1}\right)+m_{1} v_{1}\left(\cos \alpha_{1} \theta+c\right)\right.}{m_{1}+m_{2}}} \rightarrow(12)
$$

$$
\begin{aligned}
& v_{1} \cos \theta_{1}=\frac{m_{1} v_{2} \cos \alpha_{2}(1+1)}{2 m_{1}} \\
& v_{1} \cos \theta_{1}=u_{2} \cos \alpha_{2}
\end{aligned}
$$

कத buாकing $V_{2} \cos \theta_{2}=U_{1} \cos \alpha_{1}$
2. $U_{2}=0$ णन्ण को $V_{2} \sin \theta_{2}=U_{1} \cos \alpha_{1}$. भुतथक $0=0$.

$$
I=\frac{m_{1} m_{2}(1+e)\left(u_{1} \cos \alpha_{1}-u_{2} \cos \alpha_{2}\right)}{\left(m_{1}+m_{2}\right)}
$$

1． 8 万万l9 BLOTSON ：

 19）कां V_{1}, V_{2} णन्णष्यां aहानांख्या L．

$$
v_{2}-v_{1}=-e\left(U_{2}-U_{1}\right)
$$

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} u_{1}+m_{2} u_{2}
$$

$$
=1 / 2 m_{1} u_{1}^{2}+1 / 2 m_{2} u_{2}^{2}
$$

$$
=1 / 2 m_{1} v_{1}^{2}+1 / 2 m_{2} v_{2}^{2}
$$

$$
\begin{aligned}
& =\text { mワiे } k \cdot E-m_{1} \text { की } K \cdot E \\
& =1 / 2 m_{1} u_{1}^{2}+1 / 2 m_{2} u_{2}^{2}-1 / 2 m_{1} v_{1}^{2}-1 / 2 m_{2} v_{2}^{2} \\
& =1 / 2 m_{1}\left(u_{1}^{2}-v_{1}^{2}\right)+1 / 2 m\left(u_{2}^{2}-v_{2}^{2}\right) \\
& =1 / 2 m_{1}\left(u_{1}-v_{1}\right)\left(u_{1}+v_{1}\right)+1 / 2 m_{2}\left(u_{2}-v_{2}\right)\left(u_{2}+v_{2}\right)
\end{aligned}
$$

$$
m_{2}\left(u_{2}-v_{2}\right)=m_{1}\left(v_{1}-u_{1}\right)
$$

$$
\begin{aligned}
& \text { lncb (4) (3) } \\
& =1 / 2 m_{1}\left(u_{1}-v_{1}\right)\left(u_{1}+v_{2}\right)+1 / 2 m_{1}\left(v_{1}-u_{1}\right)\left(u_{2}+v_{2}\right) \\
& =1 / 2 m_{1}\left(u_{1}-v_{1}\right)\left(u_{1}+v_{1}\right)-\left(u_{2}-v_{2}\right) \\
& =1 / 2 m_{1}\left(u_{1}-v_{1}\right)\left[\left(u_{1}-u_{2}\right)-\left(v_{2}-v_{1}\right)\right]
\end{aligned}
$$

भु⿻上丨tाdi $v_{2}-v_{1}=-e\left(u_{2}-u_{1}\right)$

$$
\begin{aligned}
& \text { rimゥம் } \\
& =1 / 2 m_{1}\left(u_{1}-v_{1}\right)\left[\left(u_{1}-u_{2}\right)+e\left(u_{2}-u_{1}\right)\right.
\end{aligned}
$$

$$
=1 / 2 m_{1}\left(u_{1}-v_{1}\right)\left(u_{1}-u_{2}\right)+(1-c)
$$

$$
v_{1}=\frac{m_{1} v_{1}+m_{2} u_{2}+e m_{2}\left(u_{2}-v_{1}\right)}{m_{1}+m_{2}} \longrightarrow(b)
$$

$$
\begin{aligned}
& =1 / 2 m_{1}\left[u_{1}-\frac{m_{1} u_{1}+m_{2} u_{2}+e m_{2}\left(u_{2}-u_{1}\right)}{m_{1}+m_{2}}\right]\left(u_{2}-u_{1}\right)(1-e) \\
& =1 / 2 m_{1}\left(\frac{m_{2}\left(u_{1}-u_{2}\right)(1+e)}{m_{1}+m_{2}}\right]\left(u_{1}-u_{2}\right)(1-e) \\
& =\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(u_{1}-u_{2}\right)^{2}\left(1-e^{2}\right)
\end{aligned}
$$

$$
=1 / 2 \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(u_{1}-u_{2}\right)^{2}
$$

Ericuay elortegoi:

 お00णウமி arrb.

$$
\begin{aligned}
& \therefore \text { कुnnoi \& Lgப4 } \\
& =1 / 2 \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}\left(1-\theta^{2}\right)\left(U_{1} \cos \alpha_{1}-u_{2} \cos \alpha_{2}\right)
\end{aligned}
$$

Unit - II: Statics, Hydrostatics and Hydrodynamics

Centre of gravity of body- centre of gravity of a solid hemisphere and solid cone atmospheric pressure - variation of atmospheric pressure with altitude - height of homogeneous atmosphere- centre of pressure- determination of centre of pressure- centre of pressure with rectangular lamina- Metacenter- metacentric height- determination of metacentric height of ship.

Total energy possessed by liquid in motion- Bernoulli,s theorem- Applications of Bernoulli,s theorem of liquids, 1. Toricelli's theorem, 2. Venturimeter

Centre of gravity of body

A point through which the line of action of the weight of the body always passes in whatsoever manner the body is placed.

Centre of gravity of body of a solid hemisphere

We can cut hemisphere horizontally into circular slices of thickness dh, each slice at height h above the base

Each slice at height h has radius
$\mathrm{r}=\mathrm{sqrt}(\mathrm{R} * \mathrm{R}-\mathrm{h} * \mathrm{~h})$
area of slice $=\mathrm{pi}{ }^{*} \mathrm{r}^{*} \mathrm{r}=\mathrm{pi}{ }^{*}(\mathrm{R} * \mathrm{R}-\mathrm{h} * \mathrm{~h})$
centre of mass at h . So,
CG of hemisphere=(1/volume of h.sphere)*(integral h*pi*(R*R-h*h)*dh) h from 0 to R
$=\left(1 /\left(2 / 3^{*} \mathrm{pi}^{*} \mathrm{R} * \mathrm{R} * \mathrm{R}\right)\right)^{*} \mathrm{pi}^{*}\left(\mathrm{R}^{\wedge} 4 / 2-\mathrm{R}^{\wedge} 4 / 4\right)$
$=\mathrm{R} / 4 * 3 / 2=3 \mathrm{R} / 8$
Centroid of hemisphere radius R is at $3 \mathrm{R} / 8$.

Centre of gravity of body of a solid cone

We can cut cone vertically into circular slices of thickness dx, each slice at height x above the base

Each slice at height h has radius $r=s q r t(R * R-h * h)$
area of slice $=\mathrm{pi}^{*} \mathrm{r}^{*} \mathrm{r}=\mathrm{pi}{ }^{*}(\mathrm{R} * \mathrm{R}-\mathrm{h} * \mathrm{~h})$
centre of mass at h. So,
CG of hemisphere=(1/volume of h.sphere)*(integral h*pi*(R*R-h*h)*dh) h from 0 to R
$=\left(1 /\left(2 / 3^{*} \mathrm{pi} \mathrm{i}^{*} * \mathrm{R}^{* R}\right)\right)^{*} \mathrm{pi} *\left(\mathrm{R}^{\wedge} 4 / 2-\mathrm{R}^{\wedge} 4 / 4\right)$
$=R / 4 * 3 / 2=3 \mathrm{~h} / 4$
Centroid of hemisphere radius R is at $3 \mathrm{~h} / 4$.

Atmospheric pressure

Atmospheric pressure also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as $101,325 \mathrm{~Pa}(1,013.25 \mathrm{hPa} ; 1,013.25 \mathrm{mbar})$, which is equivalent to $760 \mathrm{~mm} \mathrm{Hg}, 29.9212$ inches Hg , or $14.696 \mathrm{psi} .^{[1]}$ The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth, that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

In most circumstances, atmospheric pressure is closely approximated by the hydrostatic pressure caused by the weight of air above the measurement point. As elevation increases, there is less overlying atmospheric mass, so that atmospheric pressure decreases with increasing elevation. Pressure measures force per unit area, with SI units of Pascals (1 pascal $=1$ newton per square metre, $1 \mathrm{~N} / \mathrm{m}^{2}$). On average, a column of air
with a cross-sectional area of 1 square centimetre $\left(\mathrm{cm}^{2}\right)$, measured from mean (average) sea level to the top of Earth's atmosphere, has a mass of about 1.03 kilogram and exerts a force or "weight" of about 10.1 newtons, resulting in a pressure of $10.1 \mathrm{~N} / \mathrm{cm}^{2}$ or $101 \mathrm{kN} / \mathrm{m}^{2}(101$ kilopascals, kPa). A column of air with a cross-sectional area of $1 \mathrm{in}^{2}$ would have a weight of about $14.7 \mathrm{lb}_{\mathrm{f}}$, resulting in a pressure of $14.7 \mathrm{lb}_{f} / \mathrm{in}^{2}$.

Height Of homogeneous atmospheric pressure

Atmospheric pressure is expressed in several different systems of units: millimetres (or inches) of mercury, pounds per square inch (psi), dynes per square centimetre, millibars (mb), standard atmospheres, or kilopascals. Standard sea-level pressure, by definition, equals 760 mm (29.92 inches) of mercury, 14.70 pounds per square inch, $1,013.25 \times 10^{3}$ dynes per square centimetre, $1,013.25$ millibars, one standard atmosphere, or 101.325 kilopascals. Variations about these values are quite small; for example, the highest and lowest sea-level pressures ever recorded are 32.01 inches (in the middle of Siberia) and 25.90 inches (in a typhoon in the South Pacific). The small variations in pressure that do exist largely determine the wind and storm patterns of Earth.

Atmospheric pressure with altitude

Although you can't derive atmospheric pressure at sea level from the total height of the atmosphere, you can calculate changes in air pressure from one height to another. This fact, along with other considerations, including the ideal gas law, lead to an exponential relationship between the sea level pressure (P0) and pressure at height $\mathrm{h}(\mathrm{Ph})$. This relationship, known as the barometric formula, is:

$$
P h=P o e^{m g h k T}
$$

$\mathrm{m}=$ mass of one air molecule
$\mathrm{g}=$ acceleration due to gravity
$\mathrm{k}=$ Boltzmann's constant (ideal gas constant divided by Avogadro's number)
$\mathrm{T}=$ temperature

centre of pressure

The centre of pressure is the point where the total sum of a pressure field acts on a body, causing a force to act through that point. The total force vector acting at the center of pressure is the value of the integrated vectorial pressure field.

Determination of centre of presure

Centre of pressure may be defined as 'the point in a plane at which the total fluid thrust can be said to be acting normal to that plane'.
As shown in figure the hydrostatic pressure exerted by a liquid of density ρ or specific weight w, at depth h below the surface, is: $p=\rho g h=w h$

This is the gauge pressure, due solely to the liquid column of height h. To obtain the absolute pressure $p a$ at depth h, we must add whatever pressure $p s$ is applied at the liquid's surface, giving: $p_{a}=p_{s}+p=p_{s}+w h$

Referring to figure (3), consider an element at start depth y, width $d y$, then force on element is given by: $=w(y \cos (\theta)-h) B d y$

The summation of moments about the pivot point 0 is given by:
$\Sigma M_{0}=0$
$W R 3-w B \int(y 2 \cos (\theta)-h y) d y=0$
$\mathrm{M}=\mathrm{W} R 3=w \int(y 2 \cos (\theta)-h y) d y$

Metacentricheight

The metacentric height (GM) is a measurement of the initial static stability of a floating body. It is calculated as the distance between the centre of gravity of a ship and its metacentre. A larger metacentric height implies greater initial stability against overturning. The metacentric height also influences the natural period of rolling of a hull, with very large metacentric heights being associated with shorter periods of roll which are uncomfortable for passengers. Hence, a sufficiently, but not excessively, high metacentric height is considered ideal for passenger ships.

Metacentric height of the ship

Consider a ship or pontoon floating as shown in figure. The center of gravity of the body is at G and the center of buoyancy is at B . For equilibrium, the weight of the
floating body is equal to the weight of the liquid it displaces and the center of gravity of the body and the centroid of the displaced liquid are in the same vertical line. The centroid of the displaced liquid is called the "center of buoyancy". Let the body now be heeled through an angle θ, B_{1} will be the position of the center of buoyancy after heeling. A vertical line through B_{1} will intersect the center line of the body M at and this point is known as the metacenter of the body when an angle θ is diminishingly small. The distance GM is known as the metacentric height. The force due to buoyancy acts vertically up through B_{1} and is equal to W . The weight of the body acts downwards through G.

Stability of floating objects:

- Metacenter point M: the point about which the body starts oscillating.
- Metacentric height GM : is the distance between the center of gravity of floating body and the metacenter.
- If M lies above G a righting moment is produced, equilibrium is stable and GM is regarded as positive.
- If M lies below G an overturning moment is produced, equilibrium is unstable and GM is regarded as negative.

Determination of Metacentric height

$$
W G M \sin (\theta)=x
$$

$\mathbf{G M}=\frac{P x}{W \sin (\theta)}$

Where $x=$ distance from pontoon centerline to added weight.

Where $\mathrm{W}=$ weight of the vessel including P .

$$
G M=B M+O B-O G
$$

$\mathbf{B M}=\frac{1}{V}$
$O B=0.5 \frac{V}{L \times D}$

$$
I=\frac{D L 3}{12}
$$

Where $\mathrm{V}=$ volume of displaced liquid

Show the variation of depth of submergence and position of metacentric height under different loading conditions

Discuss what will happen if the ballast weights were added at the center of gravity so that the resultant center of gravity was unchanged.

Bernoulli's Theorem:

Definition: Bernoulli's theorem states that the whole mechanical energy of the flowing liquid includes the gravitational potential energy of altitude, then the energy-related with the liquid force \& the kinetic energy of the liquid movement, remains stable. From the energy conservation principle, this theorem can be derived.

Fig. 11.11: The flow Ideal Ilquid in the tube of non uniform aroa of cross section.

According to Bernoulli's theorem, the sum of the energies possessed by a flowing ideal liquid at a point is constant provided that the liquid is incompressible and non-viseous and flow in streamline. Potential energy + Kinetic energy + Pressure energy $=$ Constant

$$
\begin{gathered}
\mathrm{P}+1 / 2 \mathrm{pv} 2+\mathrm{pgh}=\text { Constant } \\
\mathrm{gh}+1 / 2 \mathrm{v} 2+\mathrm{pP}=\mathrm{C}
\end{gathered}
$$

Where C is a constant.
This relation is called Bernoulli's theorem.
Dividing above eqn., by g , we get

$$
\mathrm{h}+\mathrm{pgP}+1 / 2 \mathrm{gv} 2=\mathrm{C}^{\prime}
$$

Where C is another constant.
For horizontal flow, h remains same throughout.
So,

$$
\mathrm{pgP}+2 \mathrm{gv} 2=\text { Constant (or) } \mathrm{P}+1 / 2 \text { pv2 }=\text { Constant }
$$

P is static pressure of the liquid and $1 / 2 \mathrm{pv} 2$ is its dynamic and velocity pressure.
Thus, for horizontal motion, the sum of static and dynamic pressure is constant. If p1v1 and p2v2 represent pressure and velocities at two points.

Then
P1 $+1 / 21$ pv12=P2 $+1 / 2$ pv22
Concepts :

- In Bernoulli's theorem P+pgh+1/2ev2= constant.
- The term ($\mathrm{p}+\mathrm{pgh}$) is called static pressure and the term 21 pv 2 is the dynamic pressure of the fluid.
- Bernoulli theorem is fundamental principle of the energy.
- The equation $\mathrm{pgP}+21 \mathrm{gv} 2+\mathrm{h}=$ constant
- the term $\mathrm{pgP}=$ pressure head
- the term $2 \mathrm{gv} 2=$ velocity head
- $\mathrm{h}=$ gravitational head.

Derivation of Bernoulli's Theorem :
The energies possessed by a flowing liquid are mutually convertible. When one type of energy increases, the other type of energy decreases and vice-versa. Now, we will derive the Bernoulli's theorem using the work-energy theorem.

Consider the flow of liquid. Let at any time, the liquid lies between two areas of flowing liquid A1 and A2. In time interval $\Delta \mathrm{t}$, the liquid displaces from A 1 by $\Delta \mathrm{x} 1=\mathrm{v} 1 \Delta \mathrm{t}$ and displaces from A2 by $\Delta \mathrm{x} 2=\mathrm{v} 2 \Delta \mathrm{t}$. Here v 1 and v 2 are the velocities of the liquid at A 1 and A 2 .

The work done on the liquid is $\mathrm{P} 1 \mathrm{~A} 1 \Delta \mathrm{x} 1$ by the force and $\mathrm{P} 2 \mathrm{~A} 2 \Delta \mathrm{x} 2$ against the force respectively.
Net work done,

$$
\begin{gathered}
\mathrm{W}=\mathrm{P} 1 \mathrm{~A} 1 \Delta \mathrm{x} 1-\mathrm{P} 2 \mathrm{~A} 2 \Delta \mathrm{x} 2 \\
\Rightarrow \mathrm{~W}=\mathrm{P} 1 \mathrm{~A} 1 \mathrm{v} 1 \Delta \mathrm{t}-\mathrm{P} 2 \mathrm{~A} 2 \mathrm{v} 2 \Delta \mathrm{t} \\
=(\mathrm{P} 1-\mathrm{P} 2) \Delta \mathrm{V}
\end{gathered}
$$

Here, $\Delta \mathrm{V} \rightarrow$ the volume of liquid that flows through a cross-section is same (from equation of continuity).

But, the work done is equal to net change in energy (K.E. + P.E.) of the liquid, and

$$
\begin{gathered}
\Delta \mathrm{K}=21 \mathrm{p} \Delta \mathrm{~V}(\mathrm{v} 12-\mathrm{v} 22) \\
\text { and } \Delta \mathrm{U}=\mathrm{p} \Delta \mathrm{~V}(\mathrm{~h} 2-\mathrm{h} 1) \\
\therefore(\mathrm{P} 1-\mathrm{P} 2) \Delta \mathrm{V}=21 \mathrm{p} \Delta \mathrm{~V}(\mathrm{v} 12-\mathrm{v} 22)+\mathrm{pg} \Delta \mathrm{~V}(\mathrm{~h} 2-\mathrm{h} 1) \\
\mathrm{P} 1+21 \mathrm{v} 12+\mathrm{pgh} 1=\mathrm{P} 2+21 \mathrm{v} 22+\mathrm{pgh} 2 \\
\text { or } \mathrm{P}+21 \mathrm{pv} 2+\mathrm{pgh}=\text { constant }
\end{gathered}
$$

This is the required relation for Bernoulli's theorem.

$$
\therefore \mathrm{A} 1 \mathrm{v} 1=\mathrm{A} 2 \mathrm{v} 2
$$

So, more the cross-sectional area, lesser is the velocity and vice-versa.
So, Bernoulli's theorem,

$$
\mathrm{P} 1+1 / 2 \mathrm{p} 1 \mathrm{v} 12=\mathrm{P} 2+1 / 2 \mathrm{p} 2 \mathrm{v} 22
$$

Torricelli's Theorem

Torricelli had interests in various aspects of physics and mathematics and torricelli's theorem was one of his biggest achievements. The law explains the relation between fluid leaving a hole and the liquid's height in that container.
The relationship can be summarized in the following manner. If you have a container filled with fluid with small holes at the bottom of the container, the fluid leaves through the hole with velocity same as it would experience if dropped from the same height to the hole level. If the liquid is dropped from a height h , it would have a velocity v and this v is the same velocity at which the liquid leaves the hole when the height of fluid h is same as liquid dropped in the container.
We also assume that it is an ideal fluid which means that the liquid is in compressible, non-viscous and laminar flow. These factors cannot be neglected since same rules cannot be applied to nonfluids as their viscosity and flow may not be same across the liquid itself.

Torricelli's Law Derivation

Assuming that the fluid is in compressible, Bernoulli's principle states that:
$\mathbf{v}^{2} / 2+\mathbf{g h} \mathbf{p} / \rho=$ constant
Where,
\mathbf{v} is speed of liquid,
\mathbf{g} denotes gravitational acceleration,
h shows liquid's height over reference point,
ρ is density.
\mathbf{P} is equal to atmospheric pressure at the top of the container.
v is considered as 0 because the liquid surface drops in height slowly compared to the speed at which liquid leaves the tank.
h is 0 and p is atmospheric pressure at opening $\mathrm{h}=0$.
gh $+p_{\text {atm }} / \rho=v^{2} / 2+p_{\text {atm }} / \rho$
$\mathrm{v}^{2}=2 \mathrm{gh}$
$V=\sqrt{2} g h$
A simple experiment to test Torricelli's law can also be performed by a soda bottle by puncturing the bottom with a small hole. As the height in the reservoir decreases, the exit velocity decreases.

Venturimeter

Venturimeter is a device that is used to measure the rate of flow of fluid through a pipe. This device is based on the principle of Bernoulli's Equation. Venturimeter is named after G.B Venturi who developed the principle of venturimeter in 1797 but this principle comes into consideration with the help of C. Herschel who developed the first venturimeterin 1887.

Main parts of venturimeter :-

1. Covering part : It is the part of the venturimeter where the fluid converges .
2. Throat: It is the portion that lies in between the converging and diverging part of venturi. In the throat portion the cross section is much less than converging and diverging portion. When the reaches the throat, its velocity increases and pressure decreases.
3. Diverging part : It is the part of the venturimeter where the fluid gets diverges and the cross-section area increases.

$$
y=x \tan \alpha
$$

$$
\begin{aligned}
& =\pi x^{2} \tan ^{2} \alpha d x
\end{aligned}
$$

बு एकLடிण०ं णळL $=\pi x^{2} \tan ^{2} \alpha \cdot d x \cdot p$

$$
=\pi \rho x^{2} \tan ^{2} \alpha d x \cdot x
$$

$$
\begin{aligned}
& =\int_{0} x p \tan ^{2} \alpha x^{9} d x \\
& =\frac{1}{4} r p \tan ^{2} \alpha h^{4}
\end{aligned}
$$

$$
\begin{aligned}
\text { 8. மiणी कों } & =\int_{0}^{h} r \tan ^{2} \alpha x^{2} d x \\
\text { मका மor } & =\frac{1}{3} \operatorname{rtan}^{2} \alpha h^{3}
\end{aligned}
$$

$$
=\frac{1}{3} r p \tan ^{2} \alpha h^{2} \bar{x}
$$

86801.

$$
\begin{aligned}
\frac{1}{3} \operatorname{rp} \tan ^{2} \alpha h^{5} \bar{x} \frac{1}{4} & =-\operatorname{rp} \tan ^{2} \alpha h^{4} \\
\bar{x} & =\frac{3}{4} h
\end{aligned}
$$

 Fமणंजात $x^{2}+y^{2}=a^{2}$

$$
\bar{y}=0
$$

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{x=0}^{a} r y^{2} p d x \cdot x}{\sum_{x=0}^{a} r y^{2} p d x} \\
& =\frac{\int_{0} y^{2} x d x}{\int_{0}^{a} y^{2} d x}
\end{aligned}
$$

Pbart 00°.

$$
\begin{aligned}
y^{2} & =\left(a^{2}-x^{2}\right) \\
x & =\frac{\int_{0}\left(a^{2}-x^{2}\right) x d x}{\int_{0}\left(a^{2}-x^{2}\right) d x} \\
& =\frac{\left[1 / 2 a^{2} x^{2}-1 / 4 x^{4}\right]_{0}^{a}}{\left[a^{2} x-1 / 3 x^{3}\right]_{0}^{a}} \\
& =\frac{\frac{1}{2} a^{4}-\frac{1}{4} a^{4}}{a^{3}-\frac{1}{3} a^{3}}=\frac{\frac{a^{4}}{4}}{\frac{2}{3} a^{3}} \\
& =\frac{3}{8} a
\end{aligned}
$$

அげあぁ 毋ைைロ゚

भ身覀官 10 ：

$$
\text { rosiథकiण }=\frac{\text { बncorg }}{\text { ursurnol }}=\frac{F}{A}
$$

$$
\text { அ↔Ф்कம}=\frac{d F}{d A}
$$

 मơण वीun io बलbक्रिक ．

 (6)

$$
\begin{aligned}
& =\frac{a \cdot h \cdot p}{a} g \\
& =a h p g
\end{aligned}
$$

 $=h^{2}$ pgd 8 .
 का arounio.

$$
=\sum h^{2} p g d \delta \quad \text { (0r) } \int h^{2} p g d \delta
$$

 (1) प्ष

$$
\begin{aligned}
& H \int h p g d d=\int h^{2} p g d s \\
& H=\frac{\int h^{2} d s}{\int h d s}
\end{aligned}
$$

$=h p g a d h . h$
$=h^{2} p g a d h$

あ．ட゚ののぁ

$$
=\int_{0}^{b} h^{2} \mathrm{pg} a d h
$$

$=J_{0} h p g a d h$

$$
\begin{aligned}
& =H \int_{0}^{h} h g a d h \\
& \int_{0} h^{2} p g a d h=H \int_{0}^{b} h p g a d h \\
& \frac{1}{3} b^{3}=H \frac{1}{2} b^{2} \\
& H=\frac{2}{3} b
\end{aligned}
$$

Wh\$000 Eniut onwo Lo:

わorcorvinaio.

 Ftor वilconio.

 णकण व1०ं, B

णிण ஜ்
G नテin

16Lध AryLial =wGM $\sin \theta$
$W G M \sin \theta=m g \mid \cos \theta$

$$
G M=\frac{m g l}{w \tan \theta}
$$

θ. को 10 iे mompurфonioi $\tan \theta=\theta$

$$
G M=\frac{m g l}{W \theta}
$$

 (1)

$$
\begin{aligned}
& p a=(p+d p) a+a p g d x \\
& d p=-p g d x
\end{aligned}
$$

 Qai inripat P / P as iortrias anion $P=K_{\rho}$

$$
\begin{aligned}
p & =\frac{p}{k} \\
d p & =-\frac{p}{k} g d x \\
\frac{d p}{p} & =-\frac{g}{k} d x \\
\log _{e} p & =-\frac{g x}{k}+c
\end{aligned}
$$

$$
\begin{aligned}
x & =0 \text { भonio } P=P_{0} \\
\therefore c & =\log _{0} P_{0}
\end{aligned}
$$

$$
\begin{aligned}
\log \frac{P}{P_{0}} & =-\frac{g}{k} x \\
\frac{P}{P_{0}} & =e^{-G / k} x \\
P & =P_{0} e^{-G / k} x
\end{aligned}
$$

$$
\begin{aligned}
& P_{0} \propto P_{0}: P \alpha p \\
& \therefore P=P_{0} e^{-9 / k} x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P_{1}}{P_{2}}=e^{-g / k}: \frac{P_{2}}{P_{3}}=e^{-g / k} \\
& \therefore \frac{P_{1}}{P_{2}}=\frac{P_{2}}{P_{3}}=\frac{P_{3}}{P_{4}}=\cdots=\text { gal pringool }
\end{aligned}
$$

 \& onm

$$
\begin{aligned}
\text { riconp } & =\frac{d a_{1} d \delta_{1} p_{1}}{\delta t} \\
& =d a_{1} v_{1} p_{1} \quad \therefore \quad \frac{d \delta}{\delta t}=v_{1}
\end{aligned}
$$

$$
\begin{aligned}
\text { Tिbonp } & =\frac{d a_{2} d s_{2} p_{2}}{8 t} \\
& =d a_{2} v_{2} p_{2}
\end{aligned}
$$

कीयn (1)
 rbleanp $A-\infty$ urioqurcoort.

 $B \circ$ urio auricion gli robom qifio

$$
\begin{aligned}
& =a_{0} d a_{2} v_{2} P_{2} \\
& =a_{2} v_{2} P_{2}
\end{aligned}
$$

or) $\quad a_{1} v_{1} p=a_{2} v_{2} P_{0}$
or) $a_{1} v_{1}=a_{3} v_{2}$
av all writar.

 அवा० पும. \& कतaाका.
तौन

 A, B எळ்ப

(2) க்ํ.

$$
\begin{aligned}
& =P_{2} v-P_{1} v \\
& =v\left(P_{2}-P_{1}\right)
\end{aligned}
$$

$$
=m g\left(h_{1}-h_{2}\right)(m \rightarrow \text { कीcopp })
$$

$$
\begin{aligned}
& v\left(P_{2}-P_{1}=m g\left(h_{1}-h_{2}\right)+\frac{1}{2} m\left(v_{1}{ }^{2}-v_{a}{ }^{2}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{m}{P} \\
& \frac{m}{P}\left(P_{2}-P_{1}\right)=m g\left(h_{1}-h_{a}\right)+\frac{1}{2} m\left(v_{1}^{a}-v_{0}^{2}\right) \\
& \frac{P_{2}}{P}-\frac{P_{1}}{\rho}=g h_{1}-g h_{2}+\frac{1}{2} v_{1}{ }^{2}-\frac{1}{2} v_{a}{ }^{2} \\
& \frac{p_{2}}{p}+g h_{2}+\frac{1}{2} v_{2}^{2}=\frac{p_{1}}{p}+g h_{1}+\frac{1}{2} v_{1}{ }^{2}
\end{aligned}
$$

$$
\frac{p}{g p}+h+\frac{v_{a}}{g g}=\text { gबा Lाकीकण }
$$

 वु(

$$
\frac{v^{2}}{2 g}+\frac{p}{g r} \text { कg(1) प्ताकीका (or) }
$$

$\frac{v^{2}}{2}+\frac{p}{p}$ कुता एत कीजि

のळாட゙டியிக் பரிレா

$$
\begin{aligned}
& =0+g h+0 \\
& =g h
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} v^{2}+0+0 \\
& =\frac{1}{2} v^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} v^{2} & =g h \\
v^{2} & =2 g h \\
v & =\sqrt{2 g h}
\end{aligned}
$$

$$
\begin{aligned}
v^{2}-0 & =2 g h \quad \text { (or) } \\
v^{2} & =2 g h \\
v & =\sqrt{2 g h}
\end{aligned}
$$

的しい東。

Unit- III: Dynamics and Friction

Moment of Inertia and radius of gyration (Definition only) - Parallel axes theorem and perpendicular axes theorem - Kinetic energy of a body rotating about an axes through its center of mass - compound pendulum -Bifilar pendulum (Parallel threads)

Forces of friction - Laws of friction - angle of friction, Resultant reaction and cone of friction- Equilibrium of a body on a rough inclined plane (with and without force) to the horizontal - Friction clutch.

Moment of inertia

Moment of inertia is defined as the quantity expressed by the body resisting angular acceleration which is the sum of the product of the mass of every particle with its square of a distance from the axis of rotation. ... Moment of Inertia is also known as the angular mass or rotational inertia. $I=\frac{L}{\omega}$

> I=inertia
$\mathrm{L}=$ angular momentum
$\omega=$ angular velocity

Radius of Gyration

The moment of inertia of a body about an axis is sometimes represented using the radius of gyration. Now, what do you mean by the radius of gyration? We can define the radius of gyration as the imaginary distance from the centroid at which the area of cross-section is imagined to be focused at a point in order to obtain the same moment of inertia. It is denoted by k.

Radius of Gyration Formula
The formula of moment inertia in terms of the radius of gyration is given as follows:
$I=m k^{2}$
where I is the moment of inertia and m is the mass of the body
Accordingly, the radius of gyration is given as follows
$\mathrm{k}=\sqrt{ }$ Im
The unit of the radius of gyration is mm . By knowing the radius of gyration, one can find the moment of inertia of any complex body equation (1) without any hassle.

Consider a body having n number of particles each having a mass of m. Let the perpendicular distance from the axis of rotation be given by $r_{1}, r_{2}, r_{3}, \ldots, r_{\mathrm{n}}$. We know that the moment of inertia in terms of radius of gyration is given by the equation (1). Substituting the values in the equation, we get the moment of inertia of the body as follows

$$
\begin{equation*}
I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+\ldots+m_{n} r_{n}^{2} \tag{3}
\end{equation*}
$$

If all the particles have the same mass then equation (3) becomes

$$
\begin{aligned}
I & =m\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+\ldots+r_{n}^{2}\right) \\
& =\frac{m n\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+\ldots+r_{n}^{2}\right)}{n}
\end{aligned}
$$

We can write mn as M which signifies the total mass of the body. Now the equation becomes

$$
\begin{equation*}
I=M \frac{\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+\ldots+r_{n}^{2}\right)}{n} \tag{4}
\end{equation*}
$$

From equation (4), we get

$$
\begin{aligned}
& M K^{2}=M\left(\frac{r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+\ldots+r_{n}^{2}}{n}\right) \\
& \text { or, } K=\sqrt{\frac{r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+\ldots+r_{n}^{2}}{n}}
\end{aligned}
$$

From the above equation, we can infer that the radius of gyration can also be defined as the root-mean-square distance of various particles of the body from the axis of rotation.

Parallel axis theorem

The moment of inertia of a body about an axis parallel to the body passing through its center is equal to the sum of moment of inertia of body about the axis passing through the center and product of mass of the body times the square of distance between the two axes.

Parallel axis theorem statement can be expressed as follows:
$\mathrm{I}=\mathrm{Ic}+\mathrm{Mh}^{2}$

Where,

I is the moment of inertia of the body
Ic is the moment of inertia about the center

M is the mass of the body
h^{2} is the square of the distance between the two axes
Parallel Axis Theorem Derivation
Let Ic be the moment of inertia of an axis which is passing through the center of mass (AB from the figure) and I be the moment of inertia about the axis A'B' at a distance of h .

Consider a particle of mass m at a distance r from the center of gravity of the body. Then,

Distance from $A^{\prime} B^{\prime}=r+h$
$\mathrm{I}=\sum \mathrm{m}(\mathrm{r}+\mathrm{h})^{2}$
$\mathrm{I}=\sum \mathrm{m}\left(\mathrm{r}^{2}+\mathrm{h}^{2}+2 \mathrm{rh}\right)$
$\mathrm{I}=\sum \mathrm{mr}^{2}+\sum \mathrm{mh}^{2}+\sum 2 \mathrm{rh}$
$\mathrm{I}=\mathrm{Ic}+\mathrm{h} 2 \sum \mathrm{~m}+2 \mathrm{~h} \sum \mathrm{mr}$
$\mathrm{I}=\mathrm{Ic}+\mathrm{Mh}^{2}+0$
$\mathrm{I}=\mathrm{Ic}+\mathrm{Mh}^{2}$
Hence, the above is the formula of parallel axis theorem.

Perpendicular Axis Theorem

For any plane body the moment of inertia about any of its axes which are perpendicular to the plane is equal to the sum of the moment of inertia about any two perpendicular axes in the plane of the body which intersect the first axis in the plane.

Perpendicular axis theorem is used when the body is symmetric in shape about two out of the three axes if the moment of inertia about two of the axes are known the moment of inertia about the third axis can be found using the expression:
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}$

Say in an engineering application we have to find the moment of inertia of a body, but the body is irregularly shaped, and the moment of in these cases we can make use of the parallel axis theorem to get the moment of inertia at any point as long as we know the center of gravity of the body, this is a very useful theorem in space physics where the calculation of moment of inertia of space-crafts and satellites, making possible for us to reach the outer planets and even the deep space. The theorem of perpendicular axis helps in applications where we don't have access to one axis of a body and it is vital for us to calculate the moment of inertia of the body in that axis.

Kinetic energy of a body rotating about an axes through its center

A rotating object also has kinetic energy. When an object is rotating about its center of mass, its rotational kinetic energy is $\mathrm{K}=1 / 2 \mathrm{I} \omega^{2}$. Rotational kinetic energy $=1 / 2$ moment of inertia * (angular speed) ${ }^{2}$. When the angular velocity of a spinning wheel doubles, its kinetic energy increases by a factor of four.

Energy in rotational motion is not a new form of energy; rather, it is the energy associated with rotational motion, the same as kinetic energy in translational motion. However, because kinetic energy is given by $K=1 / 2 \mathrm{mv}^{2}$, and velocity is a quantity that is different for every point on a rotating body about an axis, it makes sense to find a way to write kinetic energy in terms of the variable $\omega \omega$, which is the same for all points on a rigid rotating body. For a single particle rotating around a fixed axis, this is straightforward to calculate. We can relate the angular velocity to the magnitude of the translational velocity using the relation $\mathrm{v}_{\mathrm{t}}=\omega \mathrm{r}$,
where r is the distance of the particle from the axis of rotation and v_{t} is its tangential speed. Substituting into the equation for kinetic energy, we find
$\mathrm{K}=1 / 2 \mathrm{mv}_{\mathrm{t}}^{2}=1 / 2 \mathrm{~m}(\omega \mathrm{r})^{2}=1 / 2\left(\mathrm{mr}^{2}\right) \omega^{2}$.
In the case of a rigid rotating body, we can divide up any body into a large number of smaller masses, each with a mass mj and distance to the axis of rotation rj, such that the total mass of the body is equal to the sum of the individual masses: $\mathrm{M}=\sum \mathrm{jmj}$. Each smaller mass has tangential speed vjvj, where we have dropped the subscript t for the moment. The total kinetic energy of the rigid rotating body is
$K=\sum \mathrm{j} 1 / 2 \mathrm{mjvj}^{2}=\sum \mathrm{j} 1 / 2 \mathrm{mj}(\mathrm{rj} \omega \mathrm{j})^{2}$
and since $\omega \mathrm{j}=\omega \omega \mathrm{j}=\omega$ for all masses,
$\mathrm{K}=1 / 2\left(\sum \mathrm{jmjr}{ }^{2} \mathrm{j}\right) \omega^{2}$.

Compound Pendulum

In this experiment we shall see how the period of oscillation of a compound, or physical, pendulum depends on the distance between the point of suspension and the center of mass. The compound pendulum you will use in this experiment is a one metre long bar of steel which may be supported at different points along its length, as shown in Fig. 1.

If we denote the distance between the point of suspension, O , and the center of mass, by l, the
period of this pendulum is:
$T=2 \pi\left(\frac{k^{2}+l^{2}}{g l}\right)^{1 / 2}$
where k is the radius of gyration of the bar about an axis passing through the centre of mass.
You should derive this expression.
The period of a simple pendulum of length l^{\prime} is:
$T=2 \mathrm{p}(l \phi \square \mathrm{~g})^{1 / 2}$
By equating Eqs (1) and (2) and solving for l, we may find the values of l such that the compound pendulum has the same period as that of a a simple pendulum of length l^{\prime} :
$\left.l=l \phi \pm\left(l \phi^{2}-4 k^{2}\right)^{1 / 2} / 2\right)$

As you can see, there are two values of l, which we will label $l 1$ and $l 2$, for which the period of
the compound pendulum is the same as that of the given simple pendulum.
There is a value of l for which the compound pendulum has a minimum period. The minimum
period may be found from Eq. (1) by setting:
$d T / d l=0$
One finds:
$T \mathrm{~min}=2 \mathrm{p}(2 \mathrm{k} / \mathrm{g})^{1 / 2}$

Bifilar Pendulum

The bifilar suspension is used to determine the moment of inertia of a body about an axis passing through its centre of gravity. The body is suspended by two parallel cords of length " l ", at a distance " d " apart. If the mass of the body is " M ", then the tension in either cord is $\mathrm{Mg} / 2$. If the system is now displaced through s small angle \square at its central axis, then an angular displacement ϕ will be produced at the supports

If both angles are small, then $\ell \phi=\left(\frac{d}{2}\right) \theta$
The restoring force at the point of attachment of the thread B and B_{1} will be -

$$
\frac{M g}{2} \sin \phi=\frac{M g}{2} \phi(\text { for } \operatorname{sinall} \phi)
$$

Since $\phi=\left(\frac{d \theta}{2 \ell}\right)$, the restoring force $=M g \frac{d \theta}{4 \ell}$, and the restoring couple is thus $-M g d \frac{d \theta}{4 \ell}$.
Giving an equation of motion $I \ddot{\theta}=\frac{-M g d^{2} \cdot \theta}{4 \ell}$ i.e., $\ddot{\theta}+\frac{M g d^{2} \theta}{4 I \ell}=0$
Therefore, the motion is S.H.M of periodic time, $T=2 \pi \sqrt{\frac{4 l \ell}{M g d^{2}}}$
Therefore, $I=\frac{m g d^{2} T^{2}}{16 \pi^{2} \ell}$
Alternatively, T may be expressed as: $T=2 \pi \cdot \frac{2 K}{d} \sqrt{\frac{\ell}{g}}$, since $K^{2}=\frac{I}{M}$
where d is the distance between the wires (m)
ℓ is the length of suspension (m)
K is the radius of gyration of the body about its centre of gravity.

Friction

Forces that resists the sliding or rolling of one solid object over another. Frictional forces, such as the traction needed to walk without slipping, may be beneficial, but they also present a great measure of opposition to motion. About 20 percent of the engine power of automobiles is consumed in overcoming frictional forces in the moving parts.

Laws of friction:

There are five laws of friction and they are:
$>$ The friction of the moving object is proportional and perpendicular to the normal force.
$>$ The friction experienced by the object is dependent on the nature of the surface it is in contact with.
$>$ Friction is independent of the area of contact as long as there is an area of contact.
$>$ Kinetic friction is independent of velocity.
$>$ The coefficient of static friction is greater than the coefficient of kinetic friction.

Angle of friction, Resultant reaction and cone of friction:

For the maximum angle of static friction between granular materials, see Angle of repose.
For certain applications, it is more useful to define static friction in terms of the maximum angle before which one of the items will begin sliding. This is called the angle of friction or friction angle. It is defined as:

$$
\tan \theta=\mu_{\mathrm{s}}
$$

where θ is the angle from horizontal and μ_{s} is the static coefficient of friction between the objects. ${ }^{[47]}$ This formula can also be used to calculate μ_{s} from empirical measurements of the friction angle.

Let $O N$ represent the normal reaction offered by a surface on a body (Fig.14.1). If $O X$ is the direction in which the body tends to move then the force of friction acts in the opposite direction i.e, along $O E$. If the body be in limiting equilibrium the resultant R makes an angle λ with the normal $O N$.

Suppose the body is at the point of sliding in other direction, it is easily seen that the resultant reaction will make the same angle λ with the normal. Hence, when limiting friction is offered the line of action of the resultant reaction should always lie on the surface of an inverted right circular cone whose semi-vertex is λ. This cone is called the cone of friction.

Equlibrium of a body on a inclined plane:

For a body in equilibrium on a rough inclined surface that is acted on only by the weight of and the normal reaction force on the body, it is the case that $m g \theta=m g \mu \theta, \sin \cos$ where θ is the angle the surface makes with the horizontal, μ is the coefficient of static friction between the body and the surface, m is the mass of the body, and g is acceleration due to gravity.

When an applied force acts on a body in equilibrium on a rough inclined plane, parallel to the plane, the magnitude of the friction must equal the sum of the net force on the body due to its weight and the normal reaction on it and the applied force.

A force that acts on a body in equilibrium on a rough inclined surface that does not act parallel to the surface changes the normal reaction force and frictional force on the body. Changing the normal reaction force necessitates that the perpendicular components of the applied force be equated with perpendicular components of the weight of the body, the normal reaction force on the body, and the frictional force on the body to determine any of these forces other than the weight of the body.

The magnitude of the resultant of the weight of a body on a rough inclined plane and the normal reaction on the body can be greater than the limiting friction between the body and the plane. If no external force acts on the body, the body cannot be in equilibrium.

An external force acting upward parallel to the plane can maintain the equilibrium of the body. There are two possible values for the magnitude of this force. These are given by $F=F+L$ maxand $F=F-L$, minwhere F is the magnitude of the resultant of the weight of the body and the normal reaction force on it and L is the magnitude of the limiting friction.

FRICTION CLUTCH

A clutch is a mechanical device that engages and disengages the power transmission , especially from driving shaft to driven shaft. In the simplest application, clutches connect and disconnect two rotating shafts (drive shafts or line shafts). In these devices, one shaft is typically attached to an engine or other power unit (the driving member) while the other shaft (the driven member) provides output power for work.

MAIN PARTS OF A CLUTCH

It consists of (a) a driving member, (b) a driven member, and (c) an operating member. Driving member has a flywheel which is mounted on the engine crankshaft. A disc is bolted to flywheel which is known as pressure plate or driving disc. The driven member is a disc called clutch plate. This plate can slide freely to and fro on the clutch shaft. The operating member consists of a pedal or lever which can be pressed to disengaged the driving and driven plate.

TYPES OF CLUTCHES

1) Positive contact clutches i. jaw clutches ii.toothed clutches 2) Friction clutches i.Disc clutches ii.Cone clutches iii.centrifugal clutches

PRINCIPLE OF CLUTCH

It operates on the principle of friction. When two surfaces are brought in contact and are held against each other due to friction between them, they can be used to transmit power. If one is rotated, then other also rotates. One surface is connected to engine and other to the transmission system of automobile. Thus, clutch is nothing but a combination of two friction surfaces.

Mechanical clutches 1)Positive contact clutches i. jaw clutches ii.toothed clutches 2)Friction clutches i.Disc clutches ii. Cone clutches iii.centrifugal clutches.

System Components Flywheel: Transfers engine power to the clutch Input shaft: Transfers power from clutch to the transmission Clutch Disk (clutch): Splined to input shaft; transfers power from engine to the input shaft Pressure Plate Assembly: Spring pressure tightly holds the clutch to the flywheel

 भना णुका की का.

 (6)

 அ先

 \＆odroio $\quad v_{1}=\gamma, \omega$

$$
=1 / 2 m_{1} \gamma_{1}^{2} \omega^{2}
$$

$$
=1 / 2 m_{2} r_{2}^{2} \omega^{2}
$$

कावयं 4 安

$$
\begin{aligned}
& =1 / 2\left(m_{1} r_{1}^{2} \omega^{2}+m_{2} r_{2}^{2} \omega^{2}-m_{3} r_{8}^{2} \omega^{2}+\ldots m_{n} r_{n}^{2} \omega^{2}\right) \\
& =1 / 2 \omega^{2}\left(m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+\ldots m_{n} r_{n}^{2}\right)
\end{aligned}
$$

rकतबक का $E_{R}=1 / 2 \omega^{2}\left[\sum_{i=1}^{n} m_{i} r_{1}^{2}\right]$

 ताव⿱亠䒑⿱日十

$$
I=\text { rbbon } \times(\text { apnocoo } 1)^{2}
$$

சゅव் இயண்क Obறिएवं $1 / 8 \omega^{2} I$
 भஸ்० क $I=2 E R$

$$
I=\sum_{i=1} m_{1} r_{1}^{2}=m_{1} \gamma_{1}^{2}+m_{2} \gamma_{2}^{2}+\ldots m_{n} r_{n}{ }^{2}
$$

$$
\begin{aligned}
I & =m r_{1}^{2}+m r_{2}^{2}+m r_{3}^{2}+\ldots m r_{n}^{2} \\
& =m\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+\ldots r_{n}^{2}\right) \\
I & =n m\left[\frac{r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+\cdots+r_{n}^{2}}{n}\right]
\end{aligned}
$$

$$
\therefore I=M K^{2}
$$

$$
\begin{aligned}
& k^{2}=\frac{r_{1}{ }^{2}+r_{2}{ }^{2}+r_{3}^{2}+\ldots+r_{n}^{2}}{n} \\
& k=\sqrt{\frac{r_{1}{ }^{2}+r_{2}^{2}+r_{3}^{2}+\ldots+r_{n}^{2}}{n}}
\end{aligned}
$$

 Fb 1 の

Ogai Oس।

 $m x^{2}$ भb분．
 कーロ かं ．

$$
I_{0}=\sum m r^{2}
$$

$\triangle O P A \circ$

$$
\begin{aligned}
P O^{2} & =O A^{2}+A P^{2} \\
r^{2} & =(x+h)^{2}+A P^{2} \\
r^{2} & =x^{2}+2 x h+h^{2}+A P^{2}
\end{aligned}
$$

$\triangle G P A \circ$

$$
\begin{aligned}
G P^{2} & =G A^{2}+A P^{2} \\
y^{2} & =h^{2}+A P^{2}
\end{aligned}
$$

$$
r^{2}=x^{2}+2 x h+y^{2}
$$

$$
\begin{aligned}
I_{0} & =\sum m\left(x^{2}+2 x h+y^{2}\right) \\
& =\sum m x^{2}+\sum 2 m x h+\sum m y^{2} \\
& =M x^{2}+M y^{2}+2 x \sum m h
\end{aligned}
$$

$$
\begin{aligned}
\sum(m g)(h) & =0 \quad 810000 \quad \sum m h=0 \\
I_{0} & =M x^{2}+I_{G}
\end{aligned}
$$

 वृतण L

$$
\therefore r^{2}=x^{2}+y^{2}
$$

 का पूषण $=m r^{2}$
 फुरकण , $I_{x}=\sum \mathrm{mr}^{2}$
 क'िक्ण, $I_{x}=\sum m y^{a}$ カ8क 8 unळing $I y=\sum m x^{2}$

$$
\begin{aligned}
& I_{z}=\sum m x^{2}=\sum m\left(x^{2}+y^{2}\right) \\
& I z=\sum m x^{2}=\sum m y^{2}=I_{y}+I_{x} \\
& \therefore I_{z}=I_{y}+I_{x}
\end{aligned}
$$

$v_{1}=r, \omega$ बळibio

$$
\begin{aligned}
& =\left(m, r_{1} \omega\right) \times r_{1}
\end{aligned}
$$

 क्रुक ori ortioi 8бпण
 ऊ2． 6∞ ．
－東の兩。

$$
\begin{aligned}
L & =m_{1} r_{1}^{2} \omega+m_{e} r_{2}^{2} \omega+m_{e} r_{3}^{2} \omega \ldots m_{n} r_{n}^{2} \omega \\
L & =\omega\left[m_{1} r_{1}^{2}+m_{e} r_{2}^{2}+m_{3} r_{3}^{2}+\ldots m_{n} r_{n}^{2}\right] \\
& =\omega\left[\sum_{i=1}^{n} m_{i} r_{1}^{2}\right] \\
\therefore L & =\omega I
\end{aligned}
$$

B.

 ஆ\% धமレாळाம.

$$
J M=J R+R M=l+\frac{K^{2}}{l}=l
$$

 कत, $T=2 \pi \sqrt{\frac{L}{g}}$

$$
g=\frac{4 \pi^{2} L}{l^{2}}
$$

$$
\therefore A G=A, G, \angle G A A_{1}=\angle G A_{1} A=90 \ldots
$$

 のமாmoion contio.

$$
\begin{aligned}
A_{1} E^{\prime} & =A E^{2}+A A_{1}^{2}-2 A E \times A A_{1} \cos \left(90-\frac{\theta}{2}\right) \\
& =A E^{2}+a^{2} \theta^{2}-2 A B a \theta \frac{0}{2} \\
& =A E^{2}+a^{2} \theta^{2}-A E a \theta^{2}
\end{aligned}
$$

$$
A, E^{2}=A E^{2} \text { or } A, E=A E
$$

$$
A C=B D=l \text { नकाषं } \sin \phi=\frac{a-b}{l}: \cos \phi=\frac{\sqrt{l^{2}-(a-b)^{2}}}{l}
$$

 -nw ロ்

QT $\cos \phi=m g$.

$$
\begin{aligned}
& \angle G A, E=\alpha \text { नoin } \quad \triangle G H, H \dot{\infty} \\
& \frac{b}{\sin \alpha}=\frac{a-b}{\sin \theta} \text { (or) } \sin \alpha=\frac{b \sin \theta}{(a-b)} \\
& \text { aGiin } 8 \sin \text { ais } \\
& G H=a \sin \alpha \\
& G H=\frac{a b}{a-b} \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& =T \sin \theta \times \frac{2 a b}{a-b} \sin \theta \\
T & =\frac{m g}{2 \cos \phi}
\end{aligned}
$$

$$
=\frac{m g}{2 \cos \phi} \sin \phi \frac{2 a b}{(a-b)} \sin \phi
$$

$$
\begin{aligned}
& \frac{m g a b}{\sqrt{l^{2}-(a-b)}} \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { ancoin (2arL }=I \frac{d^{2} \theta}{d t^{2}} \\
& \qquad \begin{aligned}
& \frac{d^{2} \theta}{d t}=-\frac{m g a b}{\sqrt{l^{2}-(a-b)}} \theta \\
& \frac{d^{2} \theta}{d t^{2}}=-\frac{m g a b}{I \sqrt{l^{2}-(a-b)}} \theta \\
& I \frac{m g a b}{\sqrt{l^{2}-(a-b)}} \\
& \frac{d^{2} \theta}{d t^{2}} \propto \theta
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& T=2 \pi \frac{I \sqrt{l^{2}(a-b)}}{m g a b} \\
& \operatorname{\Delta r}(\theta) \infty 0)=\frac{m g a b}{I \sqrt{l^{2}-(a-b)}}
\end{aligned}
$$

$$
\begin{aligned}
& T=2 \pi \frac{I l}{m g a^{2}}
\end{aligned}
$$

UNIT - III
Drriad [Friction]

 фurgén

 மकृitan गercforgs.

2rntion ospatioi [Laws of friction]
F放

"

 фurrmip firiLigáron.

$$
\tan x=\frac{F}{R}
$$

ஆणनात०० $\frac{f}{R}=\mu$

$$
\tan r=\mu
$$

$$
\begin{aligned}
& S^{2}=F^{2}+R^{2} \\
& S=\sqrt{F^{2}+R^{2}}
\end{aligned}
$$

$$
\lambda=\tan ^{-1} \mu
$$

 Broribiscu \$w0000
a. G10 Fanaxuisi enior Ouncoit:

 aeroinutbine

$$
\begin{align*}
& F=\omega \sin \theta \tag{1}\\
& R=\omega \cos \theta \tag{2}\\
& F / R=\tan \theta \tag{3}
\end{align*}
$$

$$
F / R=\tan \lambda=\mu
$$

 सा०Fform

- ajt ouncorrtoot वy 85लixycumbios

 विक्न R.

 OणाणेंBontio.

$$
\begin{gather*}
P+\mu R=W \sin \alpha \tag{1}\\
R=W \cos \alpha \tag{2}\\
P=(1) \\
P=\frac{W \sin \alpha-\mu(\alpha)}{\cos \lambda} \\
P_{1}=\frac{W \sin \cos \alpha}{\cos \gamma}
\end{gather*}
$$

 astrev p asmor .

$$
\begin{align*}
& P-\mu R=W \sin \alpha \\
& R=W \cos \alpha \\
&=\frac{W(\sin \alpha \cdot \cos \lambda+\sin \lambda \cos \alpha)}{\cos \lambda} \\
& P_{2}=\frac{W \sin (\alpha+\lambda)}{\cos \lambda} \tag{10}
\end{align*}
$$

\qquad
 चமா冂ை

$$
\frac{W \sin (\alpha-\lambda)}{\cos \lambda} \text { கீ(ுமம}
$$

 EL RT0000

$$
\begin{array}{r}
P \cos \theta+\mu R=W \sin \alpha \\
P \sin \theta+R=W \cos \alpha \\
P=\frac{W \sin (\alpha-\lambda)}{\cos (\theta+\lambda)} \\
P_{1}=\frac{W \sin (\alpha-\lambda)}{\cos (\theta+\lambda)} \\
P \cos \theta-\mu R=W \sin \alpha \tag{5}\\
P \sin \theta+R=W \cos \alpha
\end{array}
$$

Emiun Errioy

$$
\begin{gather*}
P_{2}=\frac{W \sin (\alpha+\lambda)}{\cos (\theta-\lambda)} \\
\frac{W \sin (\alpha+\lambda}{} \tag{8}
\end{gather*}
$$

\qquad

थिप्राaiou हिorriver;

 घு000ण0रण Liccoinormor.

E वi Bonvō口any

Books for study andreference

1. Dynamics - M. Narayanamurthi,N. Nagarathnam, The National Publishing Co. 2002
2. Statics, Hydrostatics and Hydrodynamics - M. Narayanamurthi,N. Nagarathnam, The National Publishing Co. 1990
3. Enthiravyil- Sundravelusamy, Priya Publicationns 2002
