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UNIT-1V: BOOLEAN ALGEBRA & ARITHMETIC CIRCUITS

BOOLEAN ALGEBRA

Understanding Boolean algebra and its laws help us to simplify the Boolean
expression so that they contain lesser number of liierals. The simplified equation allows us
to use lesser number of gates. Therefore the digital circuit we design will be more efficient
and also cheaper. We also introduce De Morgan’s theorems ahd using it, we show that
NAND/NOR are universal gates. This chapter is presented under the following headings.

9.1 Laws of Boolean Algebra
9.2 DeMorgan's Theorems

5.3 NAND as Universal gate
9.4 NAND-NAND network

5.5 NOR as Universal gate

9.6 NOR-NOR network .

5.7 NOR to OR gate network
5.8 NAND to AND gate network

5.1 LAWS OF BOOLEAN ALGEBRA

Boolean algebra uses only two bits, 0 and 1 and has only two operators + (OR)
and . (AND). A NUMDEr ¢ rjles in Boolean algebra are similar to ordinary algebra but a
number of other rules are different. Here, we will introduce some of the important Boolean
laws and show how they are used to simplify Boolean expressions.

Commutative Law:

The commutative law for addition of two variables IS written as
A+B=B+A - (5.1)
This means that the order in which the variables are OR-ed makes no difference.
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Fig. (5.1) illustrates the commutative law applicable to OR gate.

A "\
B@__V‘JA-&B— = ij/__y=8ﬂ'«

/

Fig. 5.1

In a similar way, the commutative law for multiplication of two variables is
AB = BA (5.2)
Fig. (5.2) illustrates the commutative law applicable to AND gate.

Associative Law:

The associative law for addition of three variables is written as

A+B+C)=(A+B)+C (5.3)

This means that the result is the same regardless of the order in which the variables

are grouped.
Fig. (5.3) illustrates the associative law applicable to OR gate.

A v=psBic i
_ B8
. =
C Y= A"‘B"‘C
C B+C

Fig. 5.3
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rarlables
: g Lo f three
n a Similar way, the associative law for multiplication v

A(BC) = (AB)C i

. . AND gate.
Fig. (5.4) illustrates the commutative law applicable 10

} W
| B

- Fig. 5.4

Distributive Law:

The distributive law for three variables is written as
AB+C)=AB + AC (5.5)
Fig. (5.5) illustrates the distributive law.

A ‘ A(B+C o
-
(8+C) g
B = AB+AC
C B+C

Fig. 5.5

O >

Using a truth table for three variables, the distributive law can be verified.

The commutative law, associative law and dlstnbutwe law are the same as in ordmary
algebra.

Besides the three basic laws discussed above, there are some more standard rules
that are specific to Boolean algebra. In order to identify the rules, let us gwe them numbers.
in most cases, the proof is elementary in nature.



Rule 1a: A+0 = A

when A = 0,
A+0=0+0=0=A"
when A = 1,
A+0=1+0=1=A
Therefore,
A+0=A

This rule is illustrated in Fig. 5.6

Rule 1b: A1=A

When A = 0,
A1=01=0=A
When A = 1,
Al=1.1=1=A
Therefore,
A1=A

This rule is illustrated in Fig. 5.7

Rule2a: A+1 =1

When A‘= 0, .

A+1=0+1=1
When A = 1, |
CA+1=1+1=1
Therefore,
A+1=1

This rule is i[_lustrated in Fig. 5.8

Fig. 5.7
| A=_ _ 1
1
A=1 1'
1
Fig. 5.8



RU'Q 2b: A0=0

When A = 0.
. A.0=0.0=0
When A = 1, |
AO0=1.0=0
Therefore,
"A.0=0
This rule is illustrated inFi'g. 5._9

Rule 3a: A+A =A

When A = 0,
- A+A=0+0=0=A
When A = 1,
AtA=1+1=1=A .
Therefore, _ '
' A+A=A
This rule is illustrated in Fig. 5.10

Rule 3b: AA=A

When A = 0,

AA=0.0=0%A
When'A = 1, '

AA=1.1=1=A
Therefore,

AA=A

This rule is illustrated in Fig. 5.11

T

Fig. 5.9
=0@§0
A=0
=1
Fig. §5.10




Rule 4a: A+A =1

when A = 0,
A+A=0+1=1
when A =1,
A+A=1+0=1
Therefore,
A+A=1
This rule is illustrated in Fig. 5.12

Rule 4b: AA=0

When A =0,
AA=0.1=0
- When A =1,
AA=1.0=0
Therefore,
AA=0

This rule is illustrated in Fig. 5.13

Rule 5: A=A

When A = 0,

A=1; A

When A =1,
A=0; A

Therefore,

A=A

A

0

1=A

_This rule is illustrated in Fig. 5.14

Fig. 5.14

This double complement rule is also called as involution.



A+AB=A
Method § b
LHS = A+AB
= A(1+B) | _
= A , for 1+ B =1
A ' forA.1=A
A+AB = A Al

This rule can be proved using the above rules or by truth table.

‘Method 2: Using truth table:

-Comparing columns 1 and 4, it follows that
A+AB=A '
This method of using the truth table to prove an identity is called.‘proof by perfect

~ induction’

Rule 6b: A(A+B) = A

Method 1:

L.H.S AR+ B)

AA + AB

A + AB - for AA = A
A . Rule 6a

RHS

i il I il

3

A

> "

>

-

=
\



Method 2: Using truth table:

Comparing columns 1 and 4, it follows that

A(A+B) = A

Rules 6a and 6b are also called as laws of absorption.

‘Rule 7a: A+AB = A+B

Proof 1:
LHS

Therefore,

A + AB

Proof 2.
' RHS

| i i n u

A + AB
A1+AB "
A(1+B)+TE\B
A + AB + AB
A + B(A+A)
A+B

RHS

A+B

A+ B
A + B.1
A + B(A +_K)

A +BA+B-P-\

A + AB + AB
A + AB
LHS

‘forA1= A
- for 1 +B=1

forA+A=1

>|
[

- for A +

- for AB =BA
- for A+ AB

A



P'roof
LM = A+ B)
= AA+AB |
= AB  forAA=0
= RHS F
Therefore, |
A(}_\_+ B) = AB

Rule 8a: A+BC= (A+B)(A+C)

Proof:

RHS = (A+B)A+C)
= AA+AB+AC +BC
= A+AB+AC+BC . SoF AR = A
e st e N
3 A+BC ' ‘fori1+B+C=1

Henbe A + BC

(A +B) (A +C)
Note: |

it follows

Rule 8b: - A(B+C)= AB*+AC

This is only a distributive [aw.



Rule 9a:

Proof:

Comparing LHS and RHS, we can See that the term BC on

removed to make both sides equal.

LHS

Therefore,

AB + AC + BC

| —
—

AB + AC + BC

AB + AC + BC.1

AB + AC + BC(A + A) - A+A
AB + AC + ABC + ABC

AB (1 +C)+ AC (1 +B)

the LHS is the term to be

AB + AC for1+C=1; 1+B=1

AB + AC

A number of similar equations can be formed as given below.

Rule 9b:

Proof:

AB + AC + BC
AB + AC +BC

AB + AC + BC
xY+§Z+YZ

(A+B)(A+C)B+C)=(A+ B)(A + C)

LHS

i

(A + B)(A + C)(B + C)
(AA + AB + AC + BC)(B + C)
(AB + AC + BC)(B + C)

' for AA =0

ABB + ABC + BBC +ABC + ACC + BCC

AB + ABC + BC + ABC + AC + BC
AB + ABC + ABC + BC + AC + BC
KB(‘I +C)+BC(A+1)+AC+BC

AB + BC + AC +BC

AB + AC + BC

-forAA=A,BB=B

- for 1+C =1, 1 +A =1
- for BC+BC = BC



RHS

LHS

RHS

Therefore,

(A+ B)A + C)(B + C)

DUALITY PRINCIPLE

i) | changing each OR sign to AND sign

i)

(A + B)(A + C)
AK+EB+AC+BC
KB+AC+BC

(A + B)(A + C)

-

We have seen that Rule 1 to Rule 7 (except for Rule 5) are given in pairs. They are
taken as 1a and 1b, 2a and 2b etc. If Rule 1a is given, 1b can be obtained; if Rule 2z i
given, 2b can be obtained etc.. In all these cases, if one rule is given, the other one of the
pair can be obtained by interchanging the binary operators OR and AND and by replacing?’s !
with O's and 0’s with 1's. This property is called duality' principle. For example, A+ 0 =4
is a dual of A.1 = A. Similarly A + 1 = 1 is the dual of A.0 = 0. |

Given a Boolean rule, the dual can be obtained by,

b‘hanging each AND sign to OR sign

iy complementing any O or 1 present in the expression.

We give below some Boolean rules and their duals.

1a:
2a:
3a:

4a:

ba:
7a.
8a:

9a:

A+0 = A
A+1 =1
A+A =A

A+A =1

A+AB=A

A+AB = A+B |
A+BC=(A+B)(A+C)
AB+Ec+BC=AB+KC

1b:
2b:
3b:
4b:
'.5b:
Gb:

7b:

-

8b:

9b:

Al1=A

A(A-I-B) = A
A(A+B)= AB
A(B+C)=AB+AC

(A+B)(A +C)(B +C)=(A+B)A+C)



With the help of the |
aWs 3
iven Boole nd rules we have discussed so far, it
adg an expression. Without - IS possible to simplify

f
more identities. (since it is straightforward), we can write some

For example, we have

A+ 1 = |
: R
It follows that, . ule 2a
A+B+1 - |
A+AB+1 = 1
AB+ABC + ABCD+1 = 1
A+ABC +--cuo____._ +1 . .

This means that, in q} Sum of P—rqducf expression, if one of the terms is 1, then the output
is 1.
We have,
A+ A
A+AB

A | | ‘Rule 33
A | ;Rule 6a

It can be shown easily that, | |
A+A+A

= A
A+AB+ABC = A
A + ABD + ADEF +ACEFG = A

Let us take Rule 73,
| A+AB = A+B

- We can write a number of 'similar rules.

All the above expressions can be easily proved as we have done for Rule 7a.

Let us try some examples, which make use of the Boolean rules.



5.2 De MORGAN’'S THEOREMS

De Morgan has introduced two theorems. We will take them one by one, give the
statement and prove by perfect induction.

Theorem 1:

AB=A+B
“The complement of a product is equal to the sum of ( individual) complementé.”
The proof is given using truth table.

The last two columns are equal and hence AB=A+B

Note:

The expression on the LHS, -A_B- corresponds to @ NAND gate. The equation on the

RHS can be implemented using two NOT gates and one OR gate. This is shown In

Fig. 5.17a.

@

Fig. 5.17a

The circuit in Fig.5.17a can also be modified as shown in Fig. 5.170.

w >
=
i
|
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! | oved and in thei
Here the NOT gates in front of the OR gate have Deer i " S Pl

. . is arran
JUSt bubbles are drawn, the bubble indicating inversion. ThiS s

.OR gate. Therefore, we can write,
NAND = Bubbled OR

Theorem 2:+-

| i ivi i ompl "
“The complément of a sum is equal to the product of ( individual) comp cments,

The proof is given using truth table.

The last two columns are equal and hence'nrB = A. B

Note:

The e'xpression on the LHS, A+B corresponds to a NOR gate. The"equation on the
RHS can be implemented using two NOT gates and one AND gate. This is shown in

Fig. 5.18a. | 5 _ |
A@)-‘Y=m A" T Aﬂ Vi
. . L B—PoB| J— Y=AB
' | Fig. 5.18a e
The circuit in Fig.5.18a can also be mod-iﬁed as shown In Fig. 5.18b.~

o >
e e
i
x|
| +

(98
H
wm >
e
"
»i
ol

Fig. 5.18b



Here, the NOT gates in front of the AND gate have been removed and in their place

just bubbles are drawn, the bubble indicating inversion. This arrangement is called bubbled
AND gate. Therefore, we can write,

NOR = Bubbled AND |
DeMorgan’s theorems are applicable to more than two variables also. Let us take some
examples.

From the first DeMorgan'siheorem',

AB = A+B
It follows,
ABC = A+B+C
ABCD = A+B+C+D
ABC....Z = A+B+C+...ccccee. +2Z

From the second DeMorgan’s theorem,

A+B = AB
Itfollov;s,
A+B+C . ReB)C+D)
A+B+CtD = ABC.D
ABICH. . = ABL: weinmsenye = Z

- Example 5.12

Use DeMorgan’s theorem to find the complement of A + BC.

' Solution:
A+ BC

Example 5.13
Find the Complement of AB + CD and simplify...
Solution:

AB + CD

AB.
(A +

on
+

=]
I

(A + B) (C + D)



Example 5.14
Find the complement of (A + BXB + CXC * A)

A BB CIC A = Ao+ (B20°
- AB + BC + CA
Example 5.15

———————————

Find the complement of A + B + CD.

Solution:
A+B+CD = A B+CD
= A(B+CD)
= AB+C+D)
Example 5.16
Show that AB + AB = AB + AB
Solution
AB+AB = AB AB
- (i¢§xi¢§)
= (A+B)A+B)
= AA +AB + AB + BB
= AB+AB forAA=0, BB=0.

That is, complementing the XOR expression gives the XNOR expression.

Solution A I
AB+AB = AB AB
= (i+§}(3+§)
= (A+B)A+B)
- AA+AB+AB+BB
= RB"’AE -



ARITHMETIC CIRCUITS

are introduced. By combining logic circuits in the
4ct binary numbers. We will introgyc,
ly adder circuits are useq

In this chapter, arithmetic circuits

build circuits that add and subtr
uss how on

the following headings.

right way, we can '
adder and subtractor circuits. We will also disC
perform addition as ‘well as subtraction. This chapter COVErs

8.1 Binary addition
8 2 Half adder and Full adder

8.3 Four bit binary adder
8.4 BCD adder

8.5 Half subtractor and Full subtractor

8.6 Four bit adder/subtractor circuit

8.1 BINARY ADDITION

We have already discussed in detail binary arithmetic operatidns in Chapter 2

(Binary Arithmetic). Let us recollect the rules for binary addition

Four basic cases of binary addition are

0+0 =
0+1 =1
" 1+0 =1
1+41 =10



Exampfe 8.1

Add 12 and 13 in binary.

golution-
Carry: 11
12 + | 1100 +
13 110 1
_5?_ 1100 1

We see that the carry produced out of an addition in one column is taken to the next
higher column and added (similar to decimal addition).

32 HALF ADDER and FULL ADDER:

Half Adder:

Half adder is a logic circuit that adds two bits and gives the result on two output lines

25 sum (S) and carry (Cy).

Let A and B be two inputs and S and Cy the two outputs. The block diagram for a half

edder is shown in Fig. 8.1.

Fig. 8.1

Since A and' B can take values 0 or 1, the total number of possible input combinations

S four. The inputs and the corresponding outputs can be represented in a truth table as



A B | Sum | Carry

o | 0| O :

0 1 1 0

1 | 0] 1 0

1 1 0 1
Fig. 8.2

From the truth table, the sum of product expressions for sum and carry can pe Wit

dsS

AB + AB

Sum
and Carry = AB

These two expressions can be implemented using the circuit shown in Fig. 8.3.

S = AB + AB




Full Adder:

A full adder is a combinational circuit that forms the arithmetic sum of three input bits.

tconsists of three inputs and two outputs. Two of the input variables denoted by A and B




be addedf The third input C represents the ¢,
' f

are designated as S for . o
M3
'

represent the two significant bits to
the previous lower significant position.
full adder is SNOW

Cy for carry. The block diagram of a

The two outputs
nin Fig. 8.6.

A— }—S

FIA

B 1 Cy

c—

prer

Fig. 8.6

The truth table of the full adder IS givén in Fig. 8.7.

Fig. 8.7

Note'th ' S
at with three inputs, we have eight (2%) comb '
| MDbinations



We can implement a full adder using the above expressions. The required circuit
sgiven in Fig. 8.11.

¢
?_, )
1L

C _ ) /

Fig. 8.11

The full adder circuit shown in Fig 8.11 can be seen to be made up of twg half
adders and an OR gate. The block diagram representation is given in Fig. 8.12,

~ig. 8.12 .-

- The sum output of the first half adder is added with the third input using a secon

half adder. The carry outputs of the first and second half adders are combined. using an
OR gate to produce a single final carry.




| . can See
With reference to Fig 8.18, W€ bit adder. The LSB and MSB of the ad

connected to the augend inputs of the secon

inputs of the second 4-bit adder are kept in'0 S e
the X output of the circuit dIS

d only when required. For the second 4-bit adder alsg b
of the first 4-pit adder itself gives the fing "

ussed. With this arrangweﬂl
thy

together and connected to

correction factor of six is adde
Cy, input is kept in ‘0" state. The CY,u

when BCD result exceeds nine.

M

The AND-OR circuit, to add six can be replaced by a8 NAND-NAND circuit (carry gy

of the first 4-bit adder also need to be inverted).

8.5 HALF SUBTRACTOR AND FULL SUBTRACTOR:
Half Subtractor:
s a logic circuit that subtracts one bit from another bit and produces

Half subtractor |
The rules for binary subtraction are giver

two outputs as Difference (Diff) and Borrow (Br).

below (Refer Chapter 2).

0-0 =0

0-1 = 1 with a borrow 1
1-0 = 1 |

1-1 = 0.

With A and B as two inputs, and Diff and Br as the two outputs, the block diagram fof

a half subtractor is as shown in Fig. 8.19.

H/S

Fig. 8.19



> gre foul possible input
1

Fig. 8.20

erom the truth table, the Boolean expressions for Diff and Br are found 10 be

Diff = AB+AB

and " Br AB

s can be implemented using the circuit shown in Fig. 8.21.

These twoO expression

) . Diff= AB +AB

Fig. 8.21

e can see that the difference output can be

As in the case of half adder, here also W

aken directly from an Ex-OR gaté



The required circuit is given in Fig. 8.22

Malf Subtractor using NAND gates:

We have already seen how to get an Ex-OR using NAND gates. The outpy . .
Ex-OR arrangement gives the difference. However to get the borrow, the AND gate ,
replaced by two NAND gates. Instead the output of the NAND gate (G,) (=E-.-AT_§') S iNvery
using another NAND gate (G,) to get the borrow = AB. If the AND gate is replacac .
NAND gates, we would have required two NAND gates. This way the number of Nay

gates required is reduced by one. The half subtractor circuit using only NAND gats; ,
shown in Fig. 8.23.

Dif =A® B

Fig. 8.23

In a similar way



sition. The two ou are

. g
g SOV b e Or borrow, The block diagram of a full subtractor
A
E FIS Diff
C Br
Fig. 8.24

The truth table of the full subtractor is given in Fig. 8.25.

e represented l
t can

be implement

~ Both Diff and Brcan b ’
h ' -
™Y Can be simplified and a 109ic cir

ed for the full subtractor. Here



UNIT-I: CURRENT ELECTRICITY
OHM'S LAW & KIRCHOFF'S LAWS & THE APPLICATIONS

a. Ohm’s law;

The current f,
Wt
difference applieq. hrough a Conductqy 4
“Pends upon the potential

Ohm’s. layy Stateg

1 at w
stant, the potentia) diffmn hen the temperature remains ¢on-

d-il Ec"i" pmpﬂﬂiﬂnn Ce hEt“’ee“ th
to e ends

Potential difference o .
nt

v vl or v .
[ = constant R

~V = IR

Here R is a constant
Called the resistance i
13 : of the conductor. It is
meaciace the unit of ohm, When the p.d is measured in volt and the
current In ampere, then, '

1 ﬂhnl - 1 volt
1 ampere

From this we can define the unit of resistance. The ohm is de-
fined as the resistance of a conductor in which a potential dif-
ference of 1 volt is developed when current of 1 ampere flows
through it or simply ohm is the ratio between volt and ampere.

Verification of ohm’s law:

hm’s law can be verified
© ﬂ :}—_ —AAWVW

using a simple circuit shown in

fig3.10. The current through the cir- _:®'——

cuit can be varied with the help of a
rheostat connected in series with the

battery. The current a1 be | L—-l]—(-
Rh

measured using the ammeler. The
p.d across the resistance R can be

measured using the voltmeter V.
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3.19
nt through the circuit is Kept g .

reading is noted. Let it be y,

Then V/ is calculated. gimilarly by changing the current, for cacy
the resistance is noted. For each current vy y

he p.d ACross ; :
It is found _This verifies the Ohm’s lay,

Using the rheostat, the curre
the voltmeter

parti::ulnr value 1. Now

p. Kirchhoff"s Law
In a simple circuils consisting of battery and resistdnce in Serieg
or parallel, we can apply Ohm'’s law to calculate the current and
If the circuit is complicated we cannot y
n be used. o

tential differences.
h a circuits Kirchhoff’s law ca
In any network of conductors in 4,
braic sum of currents meeting ,,
f the currents flowing towards .
nts flowing away form it

(1)

Ohm’s law. For suc
(i) Kirchhoff’s First Law:
electrical circuit, the alge

any point is zero or sum ©

-point is equal to the sum of curre

si= 0

For example let a number of

conductors meet al a junction as
shown in fig3-11. Let Ii, I2, I3, 14
and Is be currents flowing. General-
ly the currents flowing towards the
points are taken as positive whereas
the currents flowing away from the
points are taken as negative. Ac-

cording to first law,

11—12413-—14.{.]5:.10 ey
: Fig 3.11

or L+L+Is = L+ (2)
Tl:m first law is based on the principle that in an electric circuit, a
any point the charge cannot be accumulated.

(ii) Kirchhoff’s Second Law: In a closed path of netw
conductors, the algebraic sum of the pmducts of res

orks of
jstance



Consider
the Circuit

circuit ABCDA as shown in f; 3-12.1
el the current which flows in the B :
4S positive

clockwise direction is taken
WS 1n the anticlockwise direction

Applying Kirchhoff’'s second law 1o the circuit in fig3-12, we get

11R1—12R2+I3R3—14R4 = El'-EQ (3)

C. Whealtstone Bridge:

Wheatstone bridge consists of
four resistances P, Q,R and S connected
as shown in fig 3-13. A galvanometer
of a resistance G is connected b:_etween
the points B and D and a-cell is con-
nected between the points A and C
Two keys are also connected in the cir-
cuit as shown.

When the keys are closed, :1;;1:*“
fent flows in the circuit. Cur;e:s -
the cell is divided into two P



3.21

flows through P and the current i, flows througp

The current i; through Q flows from B to C apg
through S flows form D to C.

The Current i1
galvanometer.
current i4

At the junction B, according to Kirchhoff’s first law,
il-ig-i3=a (1)

At the junctionD,  j-1;-iy = 0 . (2

The bridge is said to be balanced if there is no flow of Cl-lrrent]

through the galvanometer. For this the resistances are adjusted such
that there is no deflection in the galvanometer.

"= 0 | 3)
Hence from equation (1) and (2) _
ij~ig= 0 - ‘or i =i - (4)
ip—ig= 0  or i = ig (5)
' Appl}’ing Kirchho

ff’s second law to the closed path ABDA,
Wwe gf:t' ;

(6)
In the closed path BCDB, e
3Q-1S-1G = ¢ | R (7)
When ig=0, €quation (6) and (7) reduce to
LW1P= iR - (8)
| 3Q = ;s - ©)
Dividing the equations (8) and (9) we get
4F LR
i3 Q ig S
But iy = i3 and ii =5 Ry

5 Rty




o 1 l“
‘,llut ﬂf !h-c MIHIH“C‘:S a hﬁlnn
calculated. Thus g, . .:ZJ and R "recli: Wheatstone bridge. If the
. . O ¢
Jetermunation of Unkng n o _nl‘ 'wlltn qtu:[: » the valye of S can be
4nd Carey Foster's Bridge TeSiStances * 8 bridge is used for the
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WOrk on gpie - T Bridge, pogy office Box
.,

d. Carey Foster's Bridg, * Princip)

Carey Foster’ : ;
sensitive Us- Sridge jg the iy
more © USing this, e Proved fory o
Ih:E '-:lluc ﬂf the other €an be ¢ I‘anuc of one
climinated in Calculatjon This Swated. In gy

accurately a given very joy, rmiq?: -
S1ances,

I Metre Bridge. It is
¢ difference between
resistance is known,
» end resistances are
€an alsp be used 1o measure

n
Ces. If the

q I.’ [llr
o[ L ®

l—-l _1; 1-2,
A

Fig 3-14

It consists of a straight uniform wire of manganin exactly one
metre long (AB). The wire is stretched on a wooden board. The ends
A and B are j‘DillC‘d to thick copper strips of low resistance as shown is
fig 3-14. Between in these two copper strips, three copper strips are
fixed such that there are four gaps in the wooden board. A meter scale

is fixed on the board parallel to the wire.

Two equal resistance P and Q are connected in the inner gaps and
the resistances R and S are connected in the outer gaps. The cell and
galvanometer are connected as shown in fig. Using a jockey,. contact
can be made at any point on the'wire AB. | |

i t the ends A and B respective-
nd B be the end resistances a . pes
ly ulf:.,ﬂb: thf resistance per unit length. The resistance R is in left
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£ap and S in the right gap. Now
let /; be the balancing length. In
this condition, the equivalence
Wheatstone bridge is as shown in
fig 3-15 When the bridge is
balanced.

P R+a +I]. P (1)

Q  S+p+(-L)p "

Now R and S are inter-
changed and let the balancing
length be L.

_3_' S+a+l2p |
"Q'R+|i'-+(1—!z)P(2)

Comparing equation(1) and
(2) we get

R+a+lp S+a+bLp
S+B+(1-L)p ~ R+B+(1-b)p (2)

Adding 1 on both side, we get

R+a+l; p+S+B+(Q-4L)p
S+B+(1-4)p -

S+a+l p+R+B+(1-1)p
R+p+(1-4)p

'.-I-{+S+c1+|3+p _ R+S+a+B+p 2
S+B+(-L)p - R+P+(-D)p o

= S+B+(1-h)p= R+B+(1-bL)p.

or S-L p = R-Lp
R-S = p(f:.—fl)
“R = S+ p(l-1)) ()
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Knuwing P, land &, (R - S) can be caleulated.[f § is known, R
can be Calculated.

Determ tnation of p:

R = 54 Pl - ")

Here R = o
fi=ia P = ———S_.___
(' - 1)

The CXperimeny jg e
€ of pis calculated.
Slance R can be calcul

valu
resi

Peated for different values of S. The mean

Using the value of p in equation (5), the
ated.

Segment of a uniform wire of
metre long. The segments are
horizontal wooden board. The

I connection. Using a movable
nt of the wire. A metre scale is
the segment of the wire.

Principle of potentiometer:

The principle of the potentiometer can be explained t-:sing_ the
circuit shown in fig 3-16. In the figure AB represents the wire of the
potentiometer. A and B are connected to a battery of steady emf. Wh?n
the key in this circuit is closed a steady current ﬂt:.rws lhn?ugl? the wire
- of the potentiometer. This circuit is called the primary circuit.
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D.C

Fig 3-16.

The positive end of the Daniel_cell is cungecti:: l? the ¢ng i
the potentiometer. The negative end is connecte 'ttn's :; JI[I‘C:GF throy,
a high resistance and a ga]vanumetﬂr: This c:rcuc: 1 lha €d the Stegy,
dary circuit. The positive end of cell is connected to ¢ end A, g,
‘the current due to this circuit flows in a direction opposite to th
current due to the primary circuit. Hence the E,m.-f of the cel] o
the p.d between the ends of the putentiumeter wire,
makes contact at any point.of the wire.

Of the

PPoses
when the jnckcy

Using the juékc}", let the contact be made at the
potentiometer. If the p.d between the points A and J is
e.m.f of the cell in the secondary, the deflection of
will be in the righthand side. On the otherhand,
points A and J is less, the deflection will be in t
jockey is moved on the potentiometer wire such
tion in the galvanometer. In this case the p.d between the point A and
the point of contact of jockey on the wire is exactly equal to the c.m.f
of the cell in the secondary. In that case the point J is called the
balancing point and the length AJ is callled balancing length.. Let the
balancing length be . If; is the current through the potentiometer wire
and p is the resistance Per unit length, the P.d across AJ is i p /.

If E is the e.m.f of the Secondary cell, then

point J on e
greater than the
the galvanometer
if the p.d between (he
he lefthand side. The
that there is no deflec.

E = ipl (1)
Since p and i are constants,
E o/ (2

Thus is the principle of the Potentiometer.
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a ﬁffﬂ&'ﬂrﬂm{!ﬂf Df current

For the measurement of cur-
rent using a potentiometer the
circuit is as shown is fig 3-17.

The ends of the PDtCﬂ-
iometer A and B are connected
to an accumulator By, through a
key Ki, and a rheostat Rhi. This

is the primary circuit. 6 5 s

In the secondary, a six ter- * B =
minal key is used. Using this, the
two p.d may be included with the IILF-—(')—M‘“‘J"—ll—-k
_potentiometer circuit separately. Bao Ko

The middle pair of terminal 2 and Fig 3.17
5 are connected to the end A and

the jockey through a galvanometer G and a high resistance. A Daniel
cell of e.m.f.1.08 volt. is connected across the terminals 1 and 6. A
l_}atter}' B2, key K2, rheostat Rhz and a standard resistance R are con-
nected in series. The positive end of the standard resistance is con-
- nected to the terminal 3 and the negative end to 4 as shown in figure.

First including the Daniel cell in the potentiometer, the balancing
length is determined. Let the balancing length be [, According to the
principle of potentiometer.

1.08 o I, .y (1)
standard resistance R is included in the

Next the p.d across the
main circuit and the balancing length [ is determined. If i is the current
the p.d across R is iR.

flow through the standard resistance,

2 ARl 2)
Dividing equation (2) by equal (1), we get
iR _ £ 3)

1.08 ks
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1.08 1
S 1 o= R "I
. . ’ [‘1}
Using equation (4), the current in the circyjy can b,
. ca]{]].“ate
b. Measurement of resistance 8, ! q
To compare the given two | ——.

'resistances, the circuit js a5
shown in fig 3.18. If one of the ,

resistance is known, the other
Tesistance can be calculated.

In the Secondary circuit, 3
SiX terming] key is used. Using
this, the two P-d may be inc] uded
Wwith the Potentiometer Separate-
!}': The middle Pair of the ter.

Minals 2 and S are Connected to
the end

(1)
ngth js

7. €TSS Rz is ine v
fnund- Let it be {2, Uded and the hﬂlanc‘tng le

1R, o L (2)
Dividing €quation (1) by (2) we get _
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pecated. For cach ¢y

frent §
TENL Ry /R, g e, SCCONds

R3 ig Calculateq led ag described above. Then

res; F

R‘/R::s}?:?e ﬁ KIOWN, the othe
—_ 2‘ z

& the relaiop, 115 known,

IT one of the
using relatiop, T can be determined
calculateq usi

the resistance Rz can be

ly (4)

c.m.f. The POsitive end of
the Daniel cell is connected 4
10 the end A and the nega-
tive to the jockey through a T
galvanometer and 5 high
resistance. Now the balanc.

ing length is found. Let it be lo- The fall of potential per unit length of
the potentiometer wire is 1.08/1, volt.

0of——

Fig 3.19

The secondary circuit is replaced by a voltmeter. The pnﬁsilivc end
of the voltmeter is connected to the end A and the n'cgalwct:; 1:;
jockey (fig 3-19). The jockey is pressed along the ’-‘:’II’E:JOi; —a
voltmeter gives a reading V volt. The length of the wire

x [ volt.
lo

Let it be /. The p.d between A and J is equal to

1.08
. correction = (!a !-V)
be repeated for different value of the

' i ion
R R For each voltmeter reading correcti

e SO [ o8
voltmeter such as 0.1,0.2
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may be calculated. By taking the voltmeter reading 4.,

3 —— g the
. libration graph A
and correction along Y-ax:s » 8 cCa 8raph may y,, dn“'fn' "'*h-!

d. Calibration of a high range voltmeter
An accumulator of steady

e.m.f is connected to the ends A [-——-Il—-...(MM

and B of the potentiometer,
through a key and rheostat. In the A
sccondary by connecting a cell of
e.m.l E, the balancing length is
found. Let it be lo. Hence the fall
of potential per unit length is
E/l,. -

For the calibration of high
range voltmeter, the circuit is as
shown in fig 3-20. The primary is
the same that used in the above,

The p.d s measured by the Voltmeter.

Resistance of 100 ohm ang 9900 o

It is required that (P + Q) is made very large so gy only s smal |
current flows through the resistance boxes even though, , high poten.
tial is applied between these ends, _ 4

By adjusting the rheostat, the volimeter js
and the balancing length is found. Ley jy be Ll N
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p is equal 10 El/lo. Hence the total p.d at the end P and Q is

{
Icﬂﬂ 0 1
\OQ : X -—'I\ volt. But the voltmeter reading is V.

el

P b

., Correction = \P ;Q -EI—'[_ V\

(V]

The experiment is repeated for different values of the voltmc:tcr
such as 5, 10, 15 ... etc. For each voltmeter reading, the correction
may be calculated and a calibration graph may be drawn.
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