KUNTHAVAI NAACHIYAR GOVERNMENT ARTS COLLEGE FOR WOMEN, THANJAVUR.

DEPARTMENT OF PHYSICS

OPTICS AND LASER PHYSICS 18K3P04

1. Dr.N.Geetha, (UNIT II \&UNIT III) Dept.of Physics,KNGAC,TNJ.
2. Dr.S.Snega (UNIT III \&UNIT IV) Dept.of Physics,KNGAC,TNJ.

UNIT-II - INTERFERENCE

Interference of Light-Coherent Sources-Phase difference and path difference-Band width-Theory of interference fringes-Interference due to reflected light-Newton's ringsDetermination of Wavelength of Sodium light and Refractive index of a liquid-Fringes produced by a wedge shaped thin film-Colour of thin film-Interferometer-Michelson's Interferometer-Determination of wavelength of monochromatic light and Difference in wavelength between two neighboring spectral lines

Introduction

The variation in light intensity due to the superposition of two or more waves is called interference. The amplitude of the resultant wave at any point in space is the vector sum of the amplitudes of the individual waves at that point. When interfering, two waves can add together to create a wave of greater amplitude than either one (constructive interference) or subtract from each other to create a wave of lesser amplitude than either one (destructive interference), depending on their relative phase. Two waves are said to be coherent if they have a constant relative phase. The amount of coherence can readily be measured by the interference visibility, which looks at the size of the interference fringes relative to the input waves (as the phase offset is varied); a precise mathematical definition of the degree of coherence is given by means of correlation functions. The coherence of two waves expresses how well correlated the waves are as quantified by the cross-correlation function. The crosscorrelation quantifies the ability to predict the phase of the second wave by knowing the phase of the first. As an example, consider two waves perfectly correlated for all times. At any time, phase difference will be constant. If, when combined, they exhibit perfect constructive interference, perfect destructive interference, or something in-between but with constant phase difference, then it follows that they are perfectly coherent. As will be discussed below, the second wave need not be a separate entity. It could be the first wave at a different time or position.

Light also has a polarization, which is the direction in which the electric field oscillates. Unpolarized light is composed of incoherent light waves with random polarization angles. The electric field of the unpolarized light wanders in every direction and changes in phase over the coherence time of the two light waves. An absorbing polarizer rotated to any angle will always transmit half the incident intensity when averaged over time.If the electric field wanders by a smaller amount the light will be partially polarized so that at some angle, the

Dr.N.Geetha	1
Department of Physics	

polarizer will transmit more than half the intensity. If a wave is combined with an orthogonally polarized copy of itself delayed by less than the coherence time, partially polarized light is created.The polarization of a light beam is represented by a vector in the Poincare sphere. For polarized light the end of the vector lies on the surface of the sphere, whereas the vector has zero length for unpolarized light.

COHERENT SOURCES:

Two sources are said to be coherent if they emit light waves of the same frequency, nearly the same amplitude and are always in phase with each other.It means that the two sources must emit radiations of the same colour(wavelength).In actual practice, it is not possible to have two independent sources which are coherent. But for experimental purposes, two virtual sources formed from a single source can act as coherent sources.

PHASE DIFFERENCE AND PATH DIFFERENCE

If the Path difference between the two waves is λ, the phase difference $=2 \pi$.Suppose for a path difference x, the phase difference is δ.For a path difference λ, the phase difference is 2π.

```
Phase difference= }\delta=2\pix/
```


THEORY OF INTERFERENCE FRINGES-INTERFERENCE DUE TO REFLECTED LIGHT

Interference fringe, a bright or dark band caused by beams of light that are in phase or out of phase with one another. Light waves and similar wave propagation, when superimposed, will add their crests if they meet in the same phase (the waves are both increasing and both decreasing); or the troughs will cancel the crests if they are out of phase; these phenomena are called constructive and destructive interference.

NEWTON'S RINGS

Newton's rings, in optics, a series of concentric light- and dark-coloured bands observed between two pieces of glass when one is convex and rests on its convex side on another piece having a flat surface. Thus, a layer of air exists between them. The phenomenon is caused by the interference of light waves-i.e., the superimposing of trains of waves so that when their crests coincide, the light brightens; but when trough and crest meet, the light is destroyed. Light waves reflected from both top and bottom surfaces of the air film between the two pieces of glass interfere. The rings are named after the English 17th-century physicist Sir Isaac Newton, who first investigated them quantitatively.Newton's rings are formed when a plano-convex lens P of large radius of curvature placed on a sheet of a plane glass $A B$ is illuminated from the top with monochromatic light as shown in the figure.

The combination forms a thin circular air film of variable thickness in all
direction around the point of contact of the lens and the glass plate. The locus of all points corresponding to specific thickness of air film falls on a circle whose centre is at 0 . The experimental arrangement for observing Newton's rings is shown in the fig. 1. Monochromatic light from an extended source \mathbf{S} is rendered parallel by lens \mathbf{L}. It is incident on a glass plate inclined at 45° to the horizontal, and is reflected normally down onto a plano-convex lens placed on a flat glass plate.

Theory - (i) Newton's rings by reflected light
In Newton's rings, the air-film in between a plano-convex lens and a glass plate using nearly monochromatic light from a sodium-source and hence to determine the radius of curvature of the plano-convex lens.

Apparatus required

A nearly monochromatic source of light (source of sodium light), a plano-convex lens, an optically flat glass plates and a convex lens \& a travelling microscope

Figure :1
When a parallel beam of monochromatic light is incident normally on a combination of a planoconvex lens L and a glass plate G, as shown in Fig.1, a part of each incident ray is reflected from the lower surface of the lens, and a part, after refraction through the air film between the lens and the plate, is reflected back from the plate surface. These two reflected rays are coherent, hence they will interfere and produce a system of alternate dark and bright rings with the point of contact between the lens and the plate as the center. These rings are known as Newton's ring.

Figure : 2
For a normal incidence of monochromatic light, the path difference between the reflected rays (see Fig.1) is very nearly equal to $2 \mu \mathrm{t}$ where μ and t are the refractive index and thickness of the air-film respectively. The fact that the wave is reflected from air to glass surface introduces a phase shift of π. Here, interference is due to reflected light.

Therefore, for bright fringe $2 \mu \mathrm{t} \cos \theta=(2 n-1) \lambda / 2 ; n=1,2,3 \ldots \ldots$
Here, θ is small, therefore $\cos \theta=1$, for air, $\mu=1$;

$$
2 t=(2 n-1) \lambda / 2
$$

and for dark fringe $2 \mu \mathrm{t} \cos \theta=\lambda$

$$
\begin{equation*}
2 t=n \lambda ; n=0,1,2,3 \tag{2}
\end{equation*}
$$

In this figure, suppose the radius of curvature of the lens is R and the air film is of thickness' t^{\prime} at a distance of $O Q=r$, from the point of contact O.

From the figure, $\mathrm{DB}=\mathrm{BE}=\mathrm{r} ; \mathrm{AB}=\mathrm{EF}=\mathrm{t}$;

$$
2 R-t=2 R \quad \text { (approximately) }
$$

$$
\begin{equation*}
r^{2}=2 R t \quad----------->t=r^{2} / 2 R \tag{3}
\end{equation*}
$$

Figure-3
Substituting the value of t in equation (1) and equation (2),

$$
r^{2}=(2 n-1) \lambda r / 2
$$

For bright rings, $r=\sqrt{(2 n-1) \lambda R} / 2$
For dark rings, $r^{2}=n \lambda R$

$$
\begin{equation*}
\mathrm{r}=\sqrt{n \lambda R} \tag{5}
\end{equation*}
$$

When $n=0$, the radius of the dark ring is zero
and the radius of the bright ring is $\sqrt{(\lambda R} / 2$. Therefore, the centre is dark.Alternately dark and bright rings are produced.

RESULT

The radius of the dark ring is proportional to (i) \sqrt{n} (ii) $\sqrt{\lambda}$ and (iii) \sqrt{R}
If D is the diameter of the dark ring, $\mathrm{D}=2 \mathrm{r}=2 \sqrt{n \lambda R}$
For the central dark ring, $\mathrm{n}=0 ; \mathrm{D}=2 \sqrt{n \lambda R}=0$.
This corresponds to the centre of the Newton's rings. While counting the order of the dark rings $1,2,3$ etc the central ring is not counted.

Therefore for the first dark ring, $\mathrm{n}=1, \mathrm{D}_{1}=2 \sqrt{\lambda R}$
for the second dark ring, $\mathrm{n}=2, \mathrm{D}_{2}=2 \sqrt{2 \lambda R}$
For the four dark ring, $\mathrm{n}=4, \mathrm{D}_{4}=2 \sqrt{4 \lambda R}$
The difference in the diameters between the fourth and first rings, $\mathrm{D}=2 \sqrt{\lambda R} \quad$.Therfore, the fringe width decreases with the order of the fringe and the fringes got closer with increase in their order.

DETERMINATION OF WAVELENGTH OF SODIUM LIGHT USING NEWTON’S RINGS

In the experimental arrangement, S is a source of sodium light. A parallel beam of light from the lens L_{1} is reflected by the glass plate B inclined at an angle of 45° to the horizontal. L is a Plano-convex lens of large focal length. Newton's rings are viewed through B by a travelling microscope M focused on the air film. Circular bright and dark rings are seen with the centre dark. With the help of a travelling microscope, measure the diameter of the $\mathrm{n}^{\text {th }}$ dark ring.

$$
\begin{equation*}
\lambda=\left(D_{n+m}\right)^{2}-\left(D_{n}\right)^{2} / 4 m R \tag{6}
\end{equation*}
$$

The radius of the curvature of the lower surface of lens is determined with the help of spherometer but more accurately it is determined by the Boy's method. Hence the wavelength of a given monochromatic source of light can be determined.

REFRACTIVE INDEX OF A LIQUID

The experiment is performed when there is an air film between the plano-convex lens and the optically plane glass plate .These are kept in a metal container C.The diameter of the $\mathrm{n}^{\text {th }}$ and $(\mathrm{n}+\mathrm{m})^{\text {th }}$ dark rings are determined with the help of a travelling microscope.

Similarly, the diameter of the $(n+m)^{\text {th }}$ ring is given by

$$
\begin{equation*}
\left[\mathrm{D}^{2}{ }_{\mathrm{n}+\mathrm{m}}\right]=\frac{4(n+m) \lambda R}{\mu} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left[\mathrm{D}_{\mathrm{n}}^{2}\right]=\frac{4(n) \lambda R}{\mu} \tag{2}
\end{equation*}
$$

Subtracting eq. (2) from eq. (1), we get

$$
\begin{equation*}
\left[\mathrm{D}^{2}{ }_{\mathrm{n}+\mathrm{m}}\right]-\left[\mathrm{D}_{\mathrm{n}}^{2}\right]=\frac{4 m \lambda R}{\mu} \tag{3}
\end{equation*}
$$

But we know that

$$
\begin{equation*}
\left[D_{n+m}^{2}\right]_{a i r}-\left[D_{n}^{2}\right]_{\text {air }}=4 p \lambda R \tag{4}
\end{equation*}
$$

(7)/(6)

$$
\begin{equation*}
\mu=\frac{\left[D_{n+m}^{2}\right]_{\text {air }}-\left[D_{n}^{2}\right]_{\text {air }}}{\left[D_{n+m}^{2}\right]_{L}-\left[D_{n}^{2}\right]_{L}} \tag{5}
\end{equation*}
$$

Thus the refractive index of the liquid is determined.

MICHELSON'S INTERFEROMETER

An interferometer is an instrument in which the phenomenon of interference is used to make precise measurements of wavelengths or distances.

Principle

In Michelson interferometer, a beam of light from an extended source is divided into two parts of equal intensities by partial reflection and refraction. These beams travel in two mutually perpendicular directions and come together after reflection from plane mirrors. The beams overlap on each other and produce interference fringes.

Construction

The schematic of a simple Michelson interferometer is shown in the figure. It consists of a beam splitter G_{1}, a compensating plate G_{2}, and two plane mirrors M_{1} and M_{2}. The beam splitter G_{1} is a partially silvered plane parallel glass plate. The compensating G_{2} is a simple plane parallel glass plate having the same thickness as G_{1}. The two glass plates G_{1} and G_{2} are held parallel to each other and are inclined at an angle of 45° with respect to the mirror M_{2}. The interference bands are observed in the field of view of the telescope T.

Working

Monochromatic light from an extended source S is rendered parallel by means of a collimating lens L and is made to incident on the beam splitter G_{1}. It is partly reflected at the
back surface of G_{1} along $A C$ and partly transmitted along $A B$. The beam $A C$ travels normally towards the plane mirror M_{1} and is reflected back along the same path and comes out along AT. The transmitted beam travels toward the mirror M_{2} and is reflected along the same path. It is reflected at the back surface of G_{1} and proceeds along AT.

The two beams received along AT are produced from a single source through division of amplitude and are hence coherent. The superposition of these beams leads to interference and produces interference fringes.

Formation of Circular Fringes:

The shape of fringes in M.I. depends on inclination of mirror M_{1} and M_{2}.Circular fringes are produced with monochromatic light, if the mirror M_{1} and M_{2} are perfectly perpendicular to each other. In this position an image of mirror M_{2}, M_{2} is formed due to half silvered polished plate G_{1}, just below the mirror M_{1}. The virtual image of mirror M_{2} and the mirror M_{1} must be parallel. Therefore it is assumed that an imaginary air film is formed in between mirror M_{1} and virtual image mirror M^{\prime}. The interference pattern can be considered as the rays of light reflected, from the surface of mirror M_{1} (real) and mirror M_{2} (virtual). Therefore, the interference pattern will be obtained due to imaginary air film enclosed between M_{1} and M^{\prime}. Circular fringes can be seen by telescope because they are formed at infinity because they are formed due to two parallel interfering rays. When d becomes zero, the whole pattern becomes dark. Since a circular fringe is formed at the same inclination so they are called fringe of equal inclination and also called Haidinger's fringes.

The shape of localized fringes when M_{1} and M_{2} 'are inclined. Convex of curved fringes near thin edge of the wedge.

Localized fringes

In case when the mirrors are not exactly parallel, fringes can still be observed in monochromatic light for path differences not much greater than a few millimeters. The space between the mirrors is wedge-shaped, thus the two rays reaching the eye from the mirrors are no longer parallel and appear to diverge. The fringes are now semi-circles, with the centre lying outside the field of view - such fringes are often called localized fringes. The reason these fringes are almost straight is primarily because of the variation of the thickness of air in the wedge, as that is now the main reason for the variation of the path difference between the two beams across the field of view. One would expect all fringes to be perfectly straight, parallel to the edge of the wedge: however, that is not the case, as the path difference still does vary somewhat with the angle θ, especially if d is large. Depending on the magnitude of d, we can observe different interference patterns: as we change the path difference the fringes become straighter, until we hit point of zero path difference. At that point, if we were looking at circular fringes, they would fill the whole field of view, become very large circles - that means that localized fringes would become parallel lines, as if there were small sections of the circumferences of very large circles. The association "large circular fringes - parallel localized fringes" will be important in the next section, when we use it to locate white light fringes.

அலகு-II
 குறுக்கீட்டு விளைவு (Interference)

குறுக்கீடு விளைவு -அடிப்படை

முன்னுரை
நீான் பரப்பின்மீது தோன்றுகின்ற இரு அலைகள் ஒன்றையொன்று கடந்த பின்பும், அவை எந்தவித மாறுதலையும் அடையாலம் தொடா்ந்து முன்னெறிச் செல்வதைக் காணலாம். அலைகொள்கை அடிப்படையில் ஒளி அலைவடிவில் செல்கிறது என்பது தெளிவு. ஏனவே ஒளி அலையிலும் இதே போன்ற விளைவினை எதிா்பாா்க்கலாம்.இரு ஒளிக் கற்றைகள் ஓா் ஊடகத்தின் வழியாகச் செல்லும்போது, அவை ஒன்றையொன்று கடக்கும் புள்ளிகளில் செறிவு மாற்றம் தோன்றுகிறது. இச்செறிவு மாற்றம் இரு ஒளி அலைகள் மேற்பொருந்துவதால் ஏற்படுகிறது. மேற்பொருந்துதல் காரணமாக ஒரு சில புள்ளிகளில் செறிவு சிறுமமாகவ்ம இருக்கும். இவ்வாறு ஒன்றிற்கு மேற்பட்ட ஒளிக்கற்றைகள் ஒன்றைடியான்று கடக்கும்போது, அவ்விடத்தில் ஏற்படுகின்ற ஒளிச்செறிவு மாற்றம் குறுகீகட்டு விளைவு எனப்படும்.
குறுக்கீட்டு விளைவு
A,B என்பவை இரு புள்ளி ஒளி மூலங்கள். இவற்றிலிருந்து சம அலைநீளமும். சம வீச்சும், நிலையான கட்டவேறுபாடும் கொண்ட ஒளி அலைகள் தோன்றுகின்றன.இவ்விரு அலைகளும் ஒரே ஊடகத்தின் வழியாகச் செல்லும்போது, ஊடகத்திலுள்ள துகள்கள் இவ்விரு அலைகளின் விளைவிற்கு உட்படுகிறது. எனவே துகள் அடையும் இடப்பெயா்ச்சி, இரு அலைகளும் தனித்தனியாக ஏற்படுத்தும் இடப்பெயா்ச்சியின் கூடுதலாகும்.இதனை மேற்பொருந்துதல் தத்துவம் (Principle of Superposition) என்பா்.

படம் 1 ல் புள்ளிக் கோடுகள் ஒளி அலையின் அகடுகளையும் தொட்் கோடுகள் முகடுகளையும் குறிக்கின்றன. இரு அலைகளின் வீச்சுகள் சமமாக இருப்பதால், ஒரு அலையின் அகடும் மற்றதன் முகடும் சந்திக்கும்போது, துகள் அடையும் இடப்பெயா்ச்சி சுழியாகும் இவ்வாறின்றி ஒரு அலையின் அகடு மற்ற தன் அகடுடன் அல்லது ஒரு முகடு மற்றதன் முகடுடன் சந்திக்கும்போது துகள் அடையும் இடப்பெயா்ச்சி பெருமமாகும். இடப்பெயா்ச்சி சுழியாக இருந்தால், ஓளியின் செறிவு சுழியாக இருக்கும்.இதனை அழித்தல் குறுக்கீட்டு விளைவு(Destructive interference)என்பா். இவ்வாறின்றி இடப்பெயா்ச்சி பெருமமாக இருக்கும் போது, ஒளிச் செறிவு பெருமமாக இருக்கும். இதனை ஆக்கக் குறுக்கீட்டு விளைவு(Constructive interference) என்பா்.இங்கு துகள் அடையும் இடப்பெயா்ச்சி, வீச்சின் இரு மடங்காகும். ஓளியின் செறிவு இடப்பெயா்ச்சியின் இருமடிக்கு நோ் விகிதத்தில் அமையும். XY என்ற திரை வைக்கப்படும்போது, திரையில் இருள்பட்டைகளும், பொலிவுப் பட்டைகளும் தோன்றும். இவற்றை குறுக்கீட்டுப் பட்டைகள் என்பா். இந்த நிகழ்வினை குறுக்கீட்டு விளைவு என்பா். ஓளியியல் மூலங்கள்(Coherent Source):

இரு ஒளி மூலங்களிலிருந்து தோன்றும் ஒளி அலைகள் சம அலைநீளமும், சம வீச்சும் நிலையான கட்ட வேறுபாடும் கொண்டிருந்தால், அவ்விரு ஒளி மூலங்களை ஒளியியல் மூலங்கள் என்பா்.

நியூட்டன் வளையங்கள்

ஒரு சமதளக் கண்ணாடியின்மீது ஒரு குவி வில்லையை வைக்கும் போது, வில்லைக்கும், கண்ணாடிக்கும் இடையே காற்று மென்படலம் தோன்றுகிறது. வில்லையும், கண்ணாடியும் தொடும் புள்ளியில் காற்றின் தடிமன் சுழியாகும்.

இப்புள்ளியிலிருந்து வெளியய நோக்கி நகரும்போது காற்றின் தடிமன் சீராக அதிகாிக்கிறது. காற்று மென்படலத்தை ஒன்றை நிற ஒளிகொண்டு பொலிவடட்டும்போது மையத்தில் இருண்ட வளையங்களும் தோன்றுகின்றன. இதனை முதன் முதலாக ராபர்ட் உறுக் என்பவா் கண்டறிந்தாா். நீயூட்டன் இவ்வளையங்களை முறைப்படி ஆய்வு செய்து, வளையங்களின் ஆரத்தை அளவிட்டா்். எனவே இவை நியூட்டன் வளையங்கள் எனப்படுகிறது.காற்று மென்படலத்தின் மேற்பரப்பிலும், அடிப்பரப்பிலும் எதிரொளிப்படைந்த கதிர்கள் குறுக்கீட்டு விளைவுகட்கு உட்படுவதால், இவ்வளையங்கள் தோன்றுகின்றன என தாமஸ் யங் விளக்கம் தந்தாா்.

சோதனை அமைப்பு:

நியூட்டன் வளையங்கள் பெறுவதற்காக சோதனை அமைப்பு படம் 2 ல் காட்டப்படுள்ளது. L என்பது அதிக வளைவு ஆரம் கொண்ட சமதளக் குவி வில்லையாகும். இந்த வில்லையில் குவி பரப்பு, சமதளகக் கண்ணாடி $\mathrm{P}-$ ம் மீது படுமாறு வைக்கப்பட்டுள்ளது. வில்லையும், சமதளக கண்ணாடியும் O என்ற புள்ளியில் தொடுகிறது.Sஎன்ற ஒற்றை நிற ஒளிமூலம் குவிவில்லை L_{1} ன் குவியத்தில் வைக்கப்பட்டுள்ளது. வில்லையிலிருந்து வரும் இணைக்

Dr.N.Geetha

கற்றைகள் 45 º சாயாவாக வைக்கப்பட்டுள்ள கண்ணாட் எதிரொளிப்படைந்த கற்றையானது வில்லைக்கும், கண்ணாடிக்கும் இடையே உள்ள காற்றில் விழுகிறது. காற்று மென்படலத்தின் மேற்பரப்பிலும், கீழ்ப்பரப்பிலும் எதிரொளிப்படைந்த கற்றை குறுக்கீட்டு விளைவிற்கு உட்படுகிறது. எதிரொளித்த கதி்களை ஒரு நுண்ணோக்கி கொண்டு நோக்கும்போது நியூட்டன் வளையங்கள் தொிகின்றன.

(1) நியூட்டன் வளையங்கள் தோன்றுவதற்காக விளக்கம்:

வில்லை L -ல் விழும் என்ற படுகதிாிணைக் கருதுவோம். C என்ற புள்ளியில் ஒரு பகுதி எதிரொளித்து மேல் நோக்கியும், மறு பகுதி ஊடுருவி கீழ் நோக்கியும் செல்கிறது ஊடுருவிச் சென்ற கதிா் D என்ற புள்ளியில்பட்டு எதிரொளிப்படைந்து, வந்த வழியாகத் திரும்புகிறது. இவ்வாறு ஒரு படுகதிாிலிருந்து இரு கற்றைகள் தோன்றுகின்றன. இவை இரண்டும் குறுக்கீட்டு விளைவிற்கு உட்படுகிறது. இரு கற்றைகட்கிடையே உள்ள பாதைவேறுபாடு 2CD. C என்ற புள்ளியில் ஏற்படும் எதிரொளிப்பு அட்்குறை ஊடகத்தில் ஏற்படுவதால், கட்ட மாற்றம் தோன்றுவதில்லை ஆனால் D ல் ஏற்படும் எதிரொளிப்பு அடா்மிகு ஊடகத்தில் ஏற்படுவதால்,கட்ட வேறுபாடு π ஏற்படுகிறது. இதனால் ஏற்படும் பாதை வேறுபாடு $\lambda / 2 . \quad \therefore$ மொத்த பாதை வேறுபாடு $=2 . \mathrm{CD}+\lambda / 2$

ஆக்கல் குறுக்கீட்டு விளைவிற்கு

$$
\begin{align*}
& \text { 2. } \mathrm{CD}+\lambda / 2=\mathrm{n} \lambda \\
& \text { 2. } \mathrm{CD}=(2 \mathrm{n}-1) \lambda / 2 \tag{1}
\end{align*}
$$

அழித்தல் குறுக்கீட்டு விளைவிற்கு $2 . C D+\lambda / 2=(2 n+1) \lambda / 2$

$$
\begin{equation*}
\text { 2. } \mathrm{CD}=\mathrm{n} \lambda \tag{2}
\end{equation*}
$$

வில்லையும், சமதளக் கண்ணாடியும் தொடுகின்ற புள்ளியில் காற்று மென்படலத்தின் தடிமன் சுழி. எனவே இப்புள்ளி கருமையாக இருக்கும். இப்புள்ளியிலிருந்து வெளியே நோக்கி நகரும்போது, காற்று மென்படலத்தில் தடிமன் சீராக அதிகாக்கிறது மையத்திருந்து ஒரு குறிப்பிட்ட ஆரம் கொண்டு வரையப்படும் வட்டப் பகுதியில் அமையும் காற்றின் தடிமன் சமமாகும். இத்தடிமளைச் சாா்ந்து. இது ஒளி வட்டமாகவோ அல்லது இரு வட்டமாகவோ அமையும். காற்றின் தடிமன் சீராக அதிகாிப்பதால், இரு நிபந்தனைகளும் மாறி மாறி அடையும். ஆகவே இருள் வளையங்களும், ஒன்று வளையங்களும் மாறி மாறி அமையும். இவ்வாறு மையத்தில் கருமை புள்ளியும் அதளைச் சுற்றி பொலிவு வளையங்களும், இருள் வளையங்களும் மாறி மாறி அமையும்.
(2) வளையங்களின் ஆர்் படம் OFBG என்பது ஒரு கோளத்தின் குறுக்கு வெட்டு தோற்றமாகும். OFG என்ற வில்லை இக்கோளத்திலிருந்து வெட்டி எடுக்கப்பட்டதாகும். O என்ற புள்ளியில் வில்லையும் சமதள ஆடியுடன் தொடுகிறது. எனவே இப்புள்ளியில் க ாற்றின் தடிமன் சுழியாகும். படத்தில் C,D என்ற இரு புள்ளிகளள் கருதுவோம். இங்குOC=OD. அதாவது
C ற்கும், D ற்கும் மேலே உள்ள காற்று மென்படலத்தின் தடிமன் சமமாகும். அதாவது
$\mathrm{CG}=\mathrm{FD}$. மேலும் FG என்பது O ஐ மையமாக்க கொண்ட வட்டத்தின் விட்டம்.
$\mathrm{OC}=\mathrm{OD}=\mathrm{EF}$
இந்த ஆரத்தை r எனக் கொள்வோம்,வட்டத்தின் பண்பிலிருந்து
OE.EB= FE.EG
$\mathrm{OE}(2 \mathrm{R}-\mathrm{OE})=\mathrm{EG}^{2} \quad(\mathrm{BF}=\mathrm{EG})$

Dr.N.Geetha
(Or) $2 \mathrm{R} . \mathrm{OE}=\mathrm{OD}^{2} \quad(\mathrm{FE}=\mathrm{OD})$

2. $\mathrm{OE}=\mathrm{OD}^{2} / \mathrm{R}$

இங்கு R என்பது வில்லையின் வளைவு ஆரம், $\mathrm{OE}=\mathrm{FD}=\mathrm{t}$ காற்றில் தடிமன் எனக் கொண்டால், $2 \mathrm{t}=\mathrm{OD}^{2} / \mathrm{R}=\mathrm{r}^{2} / \mathrm{R}$

இங்கு குறுக்கீட்டு விளைவு எதிதொளித்த கற்றையால் ஏற்படுவதால் பொலிவு வளையத்திற்கான நிபந்தனை
$2 \mu \mathrm{t} \operatorname{cosr}=(2 \mathrm{n}-1) \lambda / 2$
இங்கு $\mathrm{n}=0,1,2,3 \ldots \ldots . . . \mathrm{t}$ ன் மதிப்பு சிறயதாக இருப்பதால் $\cos \mathrm{r}=1=1$ ஊடகம் காற்று என்பதால் $\mu=1$
\therefore பொலிவு வளையத்திற்கு $2 \mathrm{t}=(2 \mathrm{n}-1) \lambda / 2$
இருள் வளையத்திற்கு, $2 \mathrm{t}=\mathrm{r}^{2} / \mathrm{R}$
$(2 \mathrm{n}-1) \lambda / 2=\mathrm{r}^{2} / \mathrm{R}$
$\left.r^{2}=(2 n-1)\right) \lambda R / 2$
$r=\sqrt{ }(2 n-1) \lambda R / 2$
$2 \mathrm{t}=\mathrm{n} \lambda$
$\mathrm{n} \lambda=\mathrm{r}^{2} / \mathrm{R}$
$\mathrm{r}=V_{\mathrm{nR}} \lambda$
இவ்வாறு இருள் வளையத்தன்ற ஆரம். வாிசை எண்ணின் இருமடி மூலத்திற்கு நேர் விகிதத்தில் அமைகிறது.
n-ஆவது வளையத்தின் ஆரம் r_{n} எனக் கொண்டால்
$\mathrm{r}_{\mathrm{n}}{ }^{2} / \mathrm{R}=(2 \mathrm{n}-1) \lambda / 2 \quad$ (पொலிவு வளையம்)
$\mathrm{r}_{\mathrm{n}}{ }^{2} / \mathrm{R}=\mathrm{n} \lambda \quad$ (இருள் வளையம்)
இதே போன்று m - ஆவது வளையத்திம் ஆரம் r_{m} எனின்
$\mathrm{r}_{\mathrm{m}}{ }^{2} / \mathrm{R}=(2 \mathrm{~m}-1) \lambda / 2 \quad$ (ดபாலிவு வளையம்)
$\mathrm{r}_{\mathrm{m}}{ }^{2} / \mathrm{R}=\mathrm{m} \lambda \quad$ (இருள் வளையம்)

Dr.N.Geetha

$\lambda=\mathrm{r}_{\mathrm{n}}{ }^{2}-\mathrm{r}_{\mathrm{m}}{ }^{2} / \mathrm{R}(\mathrm{n}-\mathrm{m})$ \qquad
$\mathrm{d}_{\mathrm{n}}, \mathrm{d}_{\mathrm{m}}$ என்பவை முறையே n ஆவது m ஆவது வளையத்தின் விட்டங்கள் எனக் கொண்டால் எனக் கொண்டால்
$\mathrm{d}_{\mathrm{n}}{ }^{2}-\mathrm{d}_{\mathrm{m}}{ }^{2} / 4 \mathrm{R}=(\mathrm{n}-\mathrm{m}) \lambda, \quad \lambda=\mathrm{d}_{\mathrm{n}}{ }^{2}-\mathrm{d}_{\mathrm{m}}{ }^{2} / 4(\mathrm{n}-\mathrm{m}) \mathrm{R}$

குறுக்கீட்டு விளைவுமானிகள் (Interferometer)

குறுக்கீட்டு விளைவு தத்துவத்தை அழப்படையாகக் கொண்டு செயற்படும் கருவியை குறுக்கீட்டு விளைவுமானிகள் என்பா் இக்கருவியினைப் பயன்படுத்தி வாயு, திரவம் ஆகியவற்றின் ஒளிவிலகல் எண்ணை பல்வேறு அழுத்தங்களிலும் கண்டறியலாம். எனவே இக்கருவிகளை ஒளிவிலகல் எண்மானி(refractrometer) என்பா். நுட்பம் கொண்ட நிறமாலைமானிகள் பயன்படுத்தி பெறக்கூடிய முடிவுகள் மிகவுகளை விட மிக அதிக துல்லியமானது.
மைக்கல்சன் குறுக்கீட்டு விளைவுமானி (Michelson Interferometer)
மைக்கல்சன் குறுக்கீட்டு விளைவுமானியின் அமைப்பு படத்தில் காட்டப்பட்டுள்ளது. இதில்
$\mathrm{M}_{1}, \mathrm{M}_{2}$ என்ற இரு சமதள ஆடிகள் உள்ளன. P, Q என்பவை ஒரே ஒளியியல்பும், சம தடிமனும் கொண்ட சம தளக கண்ணாடிகள். இவை ஒளி செல்லும் பாதைக்கு 45 டிகிாி சாய்வாக வைக்கப்பட்டுள்ளது.

P-தட்டில் Qவை நோக்கிய பக்கம் பகுதி ரசம் பூசப்பட்டுள்ளது. M_{1} நிலையாக

Dr.N.Geetha

அமைக்கப்பட்டுள்ளது. M_{2} ஒரு நகரும் அமைப்பின்மீது வைக்கப்பட்டுள்ளது. ஒரு திருகினைப் பயன்படுத்தி M_{2} ஐ முன்நோக்கியோ அல்லது பின்நோக்கியோ நகா்த்தலாம்.Sலிருந்து வரும் ஒற்றை நிற ஒளிக்கற்றை இணையாக்கப்பட்ட பின் பகுதி ரசம் பூசப்பட்ட கண்ணாழத் தகடு P ல்
 M_{2} லும் விழுந்து,எதிரொளிப்படைந்த இரு கற்றைகளும் தொலைநோக்கி Tஐ நோக்கிச் செல்கிறது. $\quad \mathrm{M}_{2}$ ற்கு சென்று திரும்புகின்ற கற்றையானது. கண்ணாடி P வழியாக இரண்டு முறை ஊடுருவிச் செல்லவேண்டும். இதனைச் சாி செய்வதற்காக M_{1} ஐ நோக்கிச் செல்கின்ற பாதையில் Q என்ற கண்ணாடி வைக்கப்பட்டுள்ளது. Q எல்லா வகைகளிலும் P யினை ஒத்ததாகும். இப்போது M_{1} ஐ நோக்கிச் செல்கின்ற கற்றை Q ஐ இரு முறை கடந்து செல்கிறது. ஆகவே இரு கற்றைகளும் செல்லும் தொலைவுகள் சமமாகும். $\quad \mathrm{M}_{1}, \mathrm{M}_{2}$ ஆகியவற்றில் எதிரொளித்த கற்றைகளும் குறுக்கீட்டு விளைவினை ஏற்படுத்துகிறது. குறுக்கீட்டு வரிகளை தொலைநோக்கி மூலம் பாா்க்கலாம். குறுக்க்ட்டு வரிகள் தோன்றுவதற்கு $\mathrm{M}_{1}, \mathrm{M}_{2}$ ஆடிகள் ஒன்றிற்கொன்று சரியாக செங்குத்தாக இருக்க வேண்டும்.

வரிகள் தோற்றுவித்தல் (Production of Fringes)

\mathbf{P} ன் பின்பக்கத்திலிருந்து இரு ஆடிகளும் சம தூரத்தல் அமையுமாறு சரிசெய்யவேண்டும். வில்லைக்கும், ற்கும் இடையே ஒரு ஊசிக் துளையை வைத்து, அத்துளையை ஒற்றை நிற ஒளிமூலம் கொண்டு பொலிவூட்ட வேண்டும். தொலைநோக்கியில் பார்க்கும்போது ஊசித் துளையின் இரு இரட்டை பிம்பங்கள் தெரியும். ஒரு இரட்டை ன் முன் பின்பகுதியில் ஏற்படும் எதிரொளிப்பாலும், அடுத்த இரட்டைப் பிம்பம் ன் பின்பகுதியில் ஏற்படும் எதிரொளிப்பாலும் தோன்றுகிறது. ஆடியின் பின்பக்கமாக அமைந்துள்ள திருகினைச் சாிசெய்து இரு இரட்டை பிம்பங்கள் இணைந்து, ஒரு இரட்டையாகத் தோன்றச் செய்யவேண்டும். இந்த நிபந்தனை சாி செய்யப்படும்போது, குறுக்கீட்டு வரிகள் தோன்றுகின்றன.

The shape of localized fringes when M_{1} and M_{2}^{\prime} are inclined. Convex of curved fringes near thin edge of the wedge.

வட்டவாிகள் (Circular Fringes)

ஒற்றை நிற ஒளியய்ப பயன்படுத்தி வட்ட வாிகள் தோற்றுவிக்கலாம். வட்ட வாிகள் தோற்றுவிக்கலாம். வட்ட வரிகள் தோன்றுவதற்கு ஆடி M_{2} ம் M_{1} ஆல் தோன்றும் தோற்றப் பிம்பம் $\quad \mathrm{M}_{1}{ }^{\prime}$ ம் இணையாக இருக்க வேண்டும். M_{1} ம் M_{2} ற்கும் இடைப்பட்ட பகுதியை சீரான தடிமன் கொண்ட மென்படலமாகக் கொள்ளலாம். இப்போது தோன்றும் வரிகளை கைடிஞ்ச்் வாிகள்(Haidenger fringes) அல்லது சம சாய்வு கொண்ட வரிகள்(equal inclination fringes) என்பர். இவை வட்ட வரிகளாகும். M_{2} ற்கும் $\mathrm{M}_{1}{ }^{\prime} \dot{1} க ு$ இடையே ஒத்த புள்ளியில் எதிரொளித்த கற்றைகள், கொடுக்கப்பட் கோணத்தில் பெருமத்தை தோற்றுவிப்பதற்கான நிபந்தனை

$$
2 \mathrm{~d} \cos \theta=\mathrm{n} \lambda
$$

M_{2} ம் M_{1} 'ம் தொடும்போது பாதை வேறுபாடு சுழியாகும். இப்போது தோன்றும் புலம் இருளாக இருக்கும். M_{2} ஐ $\mathrm{M}_{1}{ }^{\prime}$ '் மறுபக்கம் நகர்த்தினால் மீண்டும் வாி தோன்ற மையத்திலிருந்து அதிகாிக்கிறது.
(1) வட்ட வரிகளைப் பயன்படுத்தி ஒளியின் அலைநீளம் காணலாம்.
(2) ஒளியின் கற்றை நிறத் தன்மையை ஆராயலாம்.
(3) பரப்புகளின் இணைத் தன்மையை ஆராயலாம்.
(4) விண்மீன்களின் கோண விட்டங்களை அளவிடலாம்.

உள்ளிட்ட வரிகள் ஆடிகள் M_{1} ம் M_{2} ம் சரியாகச் செங்குத்தாக இல்லாதபோது ஆடி M_{2} ம் M_{1} ஆல் தோன்றும் தோற்ற்ப் பிம்பம் μ_{1} ம் சாய்வாக அமையும். இவைகட்கு இடைப்பட்ட காற்று ஆப்பு வடிவமாகும். தோன்றுகின்ற வாிகள் காற்றின் தடிமனையும், படுகோணத்தையும் சாா்ந்தது.பலவேறுபட்ட கட்ட வேறுபாடுகட்கு தோன்றுகின்ற வாிகளின் வடிவம் படத்தில் காட்டப்பட்டுள்ளது. $\quad \mathrm{M}_{2}$ உண்மையிலேயே M_{1} ஐ மையத்தில் வெட்டும்போது முழுமையான நேர்கோ்டு வாிகள் தோன்கிறது. இரு ஆடிகளும் படத்தில் காட்டியவாறு சாய்வாக அமையும் போது, வளைவான வாிகள் தோன்றுகின்றன. வுளைவின் குவி பகுதி ஆப்பு வடிவின் முளையை நோக்கிக அமையும்.

வெள்ளொளி வாிகள்(White light Fringes)

வெள்ளொளி பயன்படுத்தப்படும்போது, பாதை வேறுபாடு மிகக் குறைவாக இருந்தால்தான் வரிகள் தோன்றும். மாறுபட்ட வண்ண வளையங்கள் ஒன்றன்மீது ஒன்று பொருந்துவதால், குறைந்த எண்ணிக்கை கொண்ட வண்ண வளையங்கள்தான் தோன்றுகின்றன. மையப் புள்ளி இருளாகவும், மற்ற வரிகள் வண்ணமாகவும் இருக்கும். சுழிப்பாதை வேறுபாட்டினை அளப்பதற்கு வெள்ளொளி வாிகள் பயன்படுகிறது.

மைக்கல்சன் குறுக்கீட்டு விளைவுமானியின் பயன்கள்(Uses of Michelson's Interferometer)

(1) ஒற்றை நிற ஒளியின் அலைநீளம் காணல்(Determination of Wavelength of Monochromatic light)
$\mathrm{M}_{1}, \mathrm{M}_{2}$ ஐ சாி செய்து, வட்ட வாிகள் தோற்றுவிக்கவேண்டும். தொலைநோக்கியை நகா்த்தி அதன் குறுக்குக் கம்பி ஒளி வரியின் மையத்தில் அமையுமாறு செய்ய வேண்டும். தொலைநோக்கியின் வழியாக வரிகளைப் பாா்த்துக் கொண்டு, ஆடி ஐ தொலைவு நகா்த்த வேண்டும். இவ்வாஐு நகர்த்தும்போது, குறுக்குக்கம்பி மையத்தை கடக்கும் வரிகளை எண்ணிக் கொள்ளவேண்டும். இதனை ' n ' எனக் கொள்வோம். M_{1} ஐ d தொலைவு நகர்த்ததும்போது, தோன்கின்ற பாதை மாற்றம் 2d ஆகும்.

$$
2 \mathrm{~d}=\mathrm{n} \lambda, \quad \lambda=2 \mathrm{~d} / \mathrm{n}
$$

இதிலிருந்து அலைநீளம் λ கணக்கிடலாம்.

இரு அலைநீளங்கட்கிடையே உள்ள வேயுபாட்டைக் காணல் (Determination of difference in wavelength)

முதலில் வட்ட வாிகள் தோற்றுவிக்கவேண்டும். ஒளிமூலம் λ_{1}, λ_{2} என்ற இரு அலைநீளங்கள் கொண்டதாகக் கொள்வோம். $\left(\lambda_{1},>\lambda_{2}\right)$ இவை இரண்டும் சோடியம் D வாிகள் போன்று நெருக்கமாக இருப்பதாகக் கொள்வோம், இந்த இரு அலைநீலங்களும் தனித் தனியான குறுக்கீட்டு வரி அமைப்புகளைத் தோற்றுவிக்கிறது. ஆனால் λ_{1}, λ_{2} ஆகியவை மிக

நநருக்கமாகவும். காற்று மென்படலத்தின் தடிமன் சிறியதாகவும் இருப்பதால் இரு வாி அமைப்புகளும் நடைமுறையில் ஒன்றியமைகிறது. ஆடி M_{2} ஐ மெதுவாக நகா்த்தினால், இரு வரியமைப்புகளும் மெதுவாகப் பிரிகிறது. காற்று மென்படலத்தின் தடிமன் ஒரு குறிப்பிட்ட அளவாக இருக்கும்போது λ_{1} ன் கருமை வரி λ_{2} ன் பொலிவு வரியின் மீது அமைகிறது இந்நிலையில் வளைய அமைப்பு மறைந்துவிடும். இப்போது ஆழ M_{1} ஐ மேலும் நகா்த்தி அடுத்த வளைய அமைப்பு மறையும் நிலைக்குக் கொண்டுவர வேண்டும். M_{2} நகா்ந்த தூரம் d எனக் கொள்வோம். இந்த நிலையில் λ_{1} ஒளி அலை n முறைகளும், λ_{2} ஒளி அலை $(\mathrm{n}+1)$ முறையும் அமையப் பெற்றுள்ளதாகக் கொள்வோம்.

$$
\begin{aligned}
& 2 \mathrm{~d}=\mathrm{n} \lambda_{1}: \quad 2 \mathrm{~d}=(\mathrm{n}+1) \lambda / 2 \\
& \mathrm{n}=2 \mathrm{~d} / \lambda_{1} \quad(\mathrm{n}+1)=2 \mathrm{~d} / \lambda_{2} \\
& (\mathrm{n}+1)-\mathrm{n}=2 \mathrm{~d} / \lambda_{2}-2 \mathrm{~d} / \lambda_{1}=2 \mathrm{~d}\left(\lambda_{1},-\lambda_{2}\right) / \lambda_{1} \lambda_{2}
\end{aligned}
$$

அல்லது $\lambda_{1}-\lambda_{2}=\lambda_{1} \lambda_{2} / 2 \mathrm{~d}=\lambda^{2}{ }_{a v} / 2 \mathrm{~d}$

ஆடி M_{1} ஐ அடுத்தடுத்த இரு பெருமம் மறையும் நிலைகட்கு நகா்த்தி, நகா்த்தப்பட்ட தூரம் d ஐ அளவிட வேண்டும் d தொந்தால், இரு அலை நீளங்கட்கிடையே உள்ள வேறுபாட்டை கணக்கிடலாம்.

UNIT - III - DIFFRACTION

Fresnel and Fraunhofer diffraction - Diffraction at a straight edge-Fraunhofer diffraction at a single slit-Double slit-Plane transmission grating-Theory-Width of principal maxima-Dispersive power of a grating-Resolving power of a prism and grating-Comparison of Prism and grating spectra.

DIFFRACTION

Diffraction of light is defined as the bending of light around corners such that it spreads out and illuminates areas where a shadow is expected.

Fig:1 -Diffraction Effect
In the single-slit diffraction experiment, we can observe the bending phenomenon of light or diffraction that causes light from a coherent source interfere with itself and produce a distinctive pattern on the screen called the diffraction pattern. Diffraction is evident when the sources are small enough that they are relatively the size of the wavelength of light.

FRESNEL DIFFRACTION

Fresnel diffraction can be observed if the source of light and the screen at which the diffraction pattern is formed are kept at a finite distance from the diffracting obstacle. In this situation, the wavefronts falling on the obstacle are not planes.Similarly; the wavefronts leaving the obstacle are not plane.

Fraunhofer diffraction

Fraunhofer diffraction can be observed if the source of light and screen at which the diffraction pattern is formed is placed at an infinite distance from the diffracting obstacle.

This can be done by using two converging lenses.
Fresnel Vs. Fraunhofer diffraction

Fresnel Diffraction	Fraunhofer diffraction		
1. If the source of light and screen is at a finite distance			
from the obstacle, then the diffraction called Fresnel			
diffraction.			1. If the source of light and screen is at infinite
:---			
distance from the obstacle then the diffraction is			
called Fraunhofer diffraction.			

DIFFRACTION PATTERN DUE TO A STRAIGHT EDGE

Let S be narrow slit illuminated by a source of monochromatic light of wavelength, λ. The length of the slit is perpendicular to the plane of the paper. AD is the straight edge and the length of the edge is parallel to the length of the slit. XY is the incident cylindrical wavefront. P is a point on the screen and SAP is perpendicular to the screen. The screen is perpendicular to the plane of the paper.Below the point P is the geometrical shadow and above P is the illuminated portion.

Fig. 1
Let the distance AP be b. With reference to the point P , the wave front can be divided into a
number of half period strips, as shown in figure. XY is the wave front, A is the pole of the wave front and $A M_{1}, M_{1} M_{2}, M_{2} M_{3}$ etc measure of the thickness of the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ etc half period strips. With the increases in the order of the strip, the area of the strip decreases.

In the above Fig, $\mathrm{AP}=b$

$$
\mathrm{PM}_{1}=b+\frac{\lambda}{2} \text { and } \mathrm{PM}_{2}=b+\frac{2 \lambda}{2} \text { etc. }
$$

Let P^{\prime} be a point on the screen in the illuminated portion. To calculate the resultant effect at P^{\prime} due to the wave front $X Y$, join S to P^{\prime}. This line meets the wave front at B . B is the pole of the wave front with reference to the point P^{\prime} and the intensity at P^{\prime} will depend mainly on the number of half period strips enclosed between the points A and B.

The effect at P^{\prime} due to the wave front above B is same at all points on the screen whereas it is different at different points due to the wave front between B and A . The point P^{\prime} will be of maximum intensity, if the number of half period strips enclosed between B and A is odd and the intensity at P^{\prime} will be minimum if the number of half period strips enclosed between B and A is even.

FRAUNHOFFER DIFFRACTION AT A SINGLE SLIT

To obtain a Fraunhofer diffraction pattern,the incident wavefront must be plane and the diffracted light is collected on the screen with the help of a lens.Thus, the source of light should either be at a large distance from the slit or a collimating lens must be used.

In Figure, S is a narrow slit perpendicular to the plane of the paper and illuminated by monochromatic light. L_{1} is the collimating lens and $A B$ is a slit of width a. XY is the incident spherical wave front. The light passing through the silt $A B$ is incident on the lens L_{2} and the final refracted beam is observed on the screen MN. The screen is perpendicular to the plane of the paper. L1 and L2 are achromatic lenses. A plane wave front is incident on the silt AB and each point on this wave front is a source of secondary disturbance. The secondary waves travelling in the direction parallel to $O P$ viz. $A Q$ and $B V$ come to focus at P and a bright central image is observed.

The secondary waves from points equidistant from O and situated in the upper and lower halves $O A$ and $O B$ of the wave front travel the same distance in reaching P and hence the path difference is zero. The secondary waves reinforce one another and P will be a point of maximum intensity.

Now, consider the secondary waves traveling in the direction AR, inclined at an angle θ to the direction OP. All the secondary waves traveling in this direction reach the point P^{\prime} on the screen. The point P^{\prime} will be of maximum or minimum intensity depending on the path difference between the secondary waves originating from the corresponding points of the wave front.Draw $O C$ and $B L$ perpendicular to $A R$. Then, in $\triangle A B L$

$$
\sin \theta=\frac{A L}{A B}=\frac{A L}{a}
$$

$$
\begin{equation*}
A L=a \sin \theta \tag{1}
\end{equation*}
$$

Where \mathbf{a} is the width of the slit and $\mathbf{A L}$ is the path difference between the secondary waves originating from A and B.

In general, $a \sin \theta_{n}=n \lambda \quad \sin \theta_{n}=\frac{n \lambda}{a}$
Where θ_{n} gives the direction of the $\mathrm{n}^{\text {th }}$ minimum. Here n is an integer. If, however, the path difference is odd multiples of $\lambda / 2$, the directions of the secondary maxima can be obtained. In this case, $a \sin \theta_{n}=(2 n+1) \lambda / 2 \quad \sin \theta_{n}=\frac{(2 n+1) \lambda}{2 a}$

Where $\mathrm{n}=1,2,3$..,

Dr.N.Geetha

Thus, the diffraction pattern due to a single slit consists of a central bright maximum at P followed by secondary maxima and minima on both the sides. P corresponds to the position of the central bright maximum and the points on the screen for which the path difference between the points A and B is $\lambda, 2 \lambda$ etc correspond to the position of secondary minima.

FRANUHOFFER DIFFRACTION AT DOUBLE SLIT

In figure, AB and CD are two rectangular slits parallel to one another and perpendicular to the plane of the paper. The width of each slit is a and the width of the opaque portion is b. L is a collecting lens and MN is a screen perpendicular to the plane of the paper . P is a point on the screen such that $O P$ is perpendicular to the screen. Let a plane wave front be incident on the surface of XY. All the secondary waves traveling in a direction parallel to OP come to focus at P . Therefore, P corresponds to the position of the central bright maximum. In this case, the diffraction pattern has to be considered in two parts (i) the interference phenomenon due to the secondary waves emanating from the corresponding points of the two slits and (ii) the diffraction pattern due to the secondary waves from the two slits individually.
i) Interference maxima and minima

FIG-3
Consider the secondary waves traveling in a direction inclined at an angle θ with the initial direction. In the $\triangle \mathrm{ACN}$ (Fig-3), $\sin \theta=\frac{\mathrm{CN}}{\mathrm{AC}}=\frac{\mathrm{CN}}{\mathrm{a}+\mathrm{b}}$

$$
C N=(a+b) \sin \theta
$$

If this path difference is equal to odd multiples of $\lambda / 2, \theta$ gives the direction of minima due to interference of the secondary waves from the two slits.

$$
\begin{equation*}
C N=(a+b) \sin \theta_{n}=(2 n+1) \frac{\lambda}{2} \tag{1}
\end{equation*}
$$

Putting $n=1,2,3$ etc, the values of $\theta_{1}, \theta_{2}, \theta_{3}$, etc, corresponding to the directions of minima can be obtained.From equation(1)

$$
\begin{equation*}
\sin \theta_{n}=\frac{(2 n+1) \lambda}{2(a+b)} \tag{2}
\end{equation*}
$$

On the other hand, if the secondary waves travel in a direction θ^{\prime} such that the path difference is even multiples of $\lambda / 2$, then θ^{\prime} gives the direction of the maxima due to interference of light waves emanating from the two slits. $C N=(a+b) \sin \theta^{\prime}{ }_{n}=2 n \frac{\lambda}{2}$

$$
\begin{equation*}
\sin \theta^{\prime}{ }_{n}=\frac{n \lambda}{(a+b)} \tag{3}
\end{equation*}
$$

Putting $\mathrm{n}=1,2,3$, etc, $\theta^{\prime}, \theta^{\prime}{ }_{2}, \theta^{\prime}{ }_{3}$, etc corresponding to the directions of the maxima can be obtained.From equation (2), $\sin \theta_{1}=\frac{3 \lambda}{2(a+b)}, \sin \theta_{2}=\frac{5 \lambda}{2(a+b)}$

$$
\begin{equation*}
\sin \theta_{2}-\sin \theta_{1}=\frac{\lambda}{(a+b)} \tag{4}
\end{equation*}
$$

Thus, the angular separation between any two consecutive minima (or maxima) is equal to $\frac{\lambda}{(a+b)}$.The angular separation is inversely proportional to $(a+b)$, the distance between the two slits.

GRATING

A diffraction grating is a device consists of a very large number alternative narrow slits and opaque spaces.

When a wavefront is incident on a grating surface, light is transmitted through the slits and obstructed by the opaque portions. Such a grating is called a transmission grating.

THEORY OF PLANE TRANSMISSION GRATING

In Fig, XY is the grating surface and MN is the screen. Here AB is slit and BC is an opaque portion. The width of each slit is a and the opaque spacing between any two consecutive slits is b.

Let a plane wave front be incident on the grating surface. Then all the secondary waves travelling in the same direction as that of the incident light will come to focus at the point P on the screen. The screen is placed at the focal plane of the collecting lens. The point P where all the secondary waves reinforce one another corresponds to the position of the central bright maximum.Now, consider the secondary waves travelling in a direction inclined at an angle θ with the direction of the incident light (Fig.). These secondary waves come to focus at a point P_{1} on the screen. The intensity at P_{1} will depend on the path difference between the secondary waves originating from the corresponding points A and C of two neighbouring slits.

In Fig, $\mathrm{AB}=a$ and $\mathrm{BC}=b$. The path difference between the secondary waves starting from A and C is equal to $\mathrm{AC} \sin \theta$, But $\mathrm{AC}=\mathrm{AB}+\mathrm{BC}=a+b$, Path difference $=\mathrm{AC} \sin \theta=(a+b) \sin \theta$

The point P_{1} will be of maximum intensity if this path difference is equal to integral multiples of the wavelength of light. In this case, all the secondary waves originating from the corresponding points of the neighbouring slits reinforce one another and the angle θ gives the direction of maximum intensity.

In general, $\quad(a+b) \sin \theta_{n}=n \lambda$
where θ_{n} is the direction of the $\mathrm{n}^{\text {th }}$ principal maximum. Putting $\mathrm{n}=1,2,3$, etc, the angle $\theta_{1}, \theta_{2}, \theta_{3}$, etc., corresponding to the direction of the principal maxima can be obtained.

Let λ and $\lambda+d \lambda$ be two nearby wavelengths present in the incident light and θ and $\theta+d \theta$ be the angles of diffraction corresponding to these two wavelengths. Then, for the first order principal maxima

$$
\begin{aligned}
& (a+b) \sin \theta=\lambda \\
& (a+b) \sin (\theta+d \theta)=\lambda+d \lambda
\end{aligned}
$$

In equation (1), $\mathrm{n}=1$ gives the direction of the first order image, $\mathrm{n}=2$ gives the direction of the second order image and so on. When white light is used, the diffraction pattern on the screen consists of a white central bright maximum and on the both sides of this maximum a spectra corresponding to the different wavelength of light present in the incident beam will be observed in each order.

Secondary maxima and minima:

The angle of diffraction θ_{n} corresponding to the direction of the $\mathrm{n}^{\text {th }}$ principal maximum is given by the equation

$$
(a+b)=\frac{2.54}{15000} \mathrm{~cm}
$$

Now, let the angle of diffraction be increased by a small amount $d \theta$ such that the path difference between the secondary waves from the point A and C increases by λ / N (Fig).

Here N is the total number of lines on the grating surface. Then, the path difference between the secondary waves from the extreme points of the grating surface will be $(\lambda / N) N=\lambda$.

Assuming the whole wave front to be divided into two halves, the path difference between the corresponding points of the two halves will be $\lambda / 2$ and all the secondary waves cancel one another's effect. Thus, $(\theta n+d \theta)$ will give the direction of the first secondary minimum after the $\mathrm{n}^{\text {th }}$ primary maximum. Similarly if the path difference between the second waves from the points A and C is $2 \theta / \mathrm{N}$, $3 \theta / \mathrm{N}$ etc, for gradually increasing values of $d \theta$, these angles correspond to the direction of $2^{\text {nd }}, 3^{\text {rd }}$ etc secondary minima after the $\mathrm{n}^{\text {th }}$ primary maximum.

INTENSITY

The intensity distribution on the screen is shown in Fig. P corresponds to the position of the central maxima and 1,2 ,etc, on the two sides of P represent the $1^{\text {st }}, 2^{\text {nd }}$, etc principal maxima. a, b, etc are secondary maxima and d, e etc are the secondary minima.

DISPERSIVE POWER OF A GRATING

Dispersive power of a grating is defined as the ratio of the difference in the angle of diffraction of any two neighbouring spectral lines to the difference in wavelength between the two spectral lines.

It can also be defined as the difference in the angle of diffraction per unit change in wavelength. The diffraction of the nth order principal maximum for a wavelength λ is given by the equation, $(a+b) \sin \theta=n \lambda$

Differentiating this equation with respect to θ and $d \theta$ and $\lambda \quad$ ($a+b$ is constant and n is constant in a given order)

$$
(\mathrm{a}+\mathrm{b}) \cos \theta \mathrm{d} \theta=\mathrm{nd} \lambda
$$

or $\quad \frac{d \theta}{d \lambda}=\frac{n}{(a+b) \cos \theta} \quad$ or $\quad \frac{d \theta}{d \lambda}=\frac{n N^{\prime}}{\cos \theta}$

In the above equation, $\frac{d \theta}{d \lambda}$.Is the dispersive power, n is the order of the spectrum, N^{\prime} is the number of lines per cm of the grating surface and θ is the angle of diffraction for the n th order principal maximum of wavelength.

RESOLVING POWER

Resolving power is the ability of an imaging device to separate (i.e. to see as distinct) points of an object that are located at a small angular distance or it is the power of an optical instrument to separate far away objects, that are close together, into individual images.

RAYLEIGH CRITERION

To express the resolving power of an optical instrument as a numerical value, Lord Rayleigh proposed an arbitrary criterion. According to him, two nearby images are said to be resolved if the position of the central maximum of one coincides with the first secondary minimum of the other and vice versa. Rayleigh condition can also be stated as follows. Two images are said to be just resolved if the radius of the central disc of either pattern is equal to the distance between the centres of the two patterns.

RESOLVING POWER OF A PRISM

The term resolving power applied to the spectrographic devices (using a grating or a prism) signifies the ability of the instrument to form two separate spectral images of two neighbouring wavelengths, λ and $\lambda+d \lambda$ in the wavelength region λ.

In Fig, S is a source of light L_{1} is a collimating lens and L_{2} is the telescope objective. As two wave length λ and $\lambda+d \lambda$ are very close, if the prism is set in minimum deviation position would hold good for both the wavelengths. The final image I_{1} corresponds to the principal maximum for the wavelength λ and I_{2} corresponds to the principal maximum for the wavelength $\lambda+\mathrm{d} \lambda . \mathrm{I}_{1}$ and I_{2} are formed at the focal plane of the telescope objective L_{2}. The face of the prism limits the incident beam to a rectangular section of width a. Hence, the Rayleigh criterion can be applied in the case of a rectangular aperture.

In the case of diffraction at a rectangular aperture, the position of I_{2} will correspond to the first minimum of the image I_{1} for wavelength λ_{1} provided.

$$
\begin{equation*}
a . d \delta=\lambda \text { Or } \quad d \delta=\frac{\lambda}{a} \tag{1}
\end{equation*}
$$

Here δ is the angle of minimum deviation for wavelength λ.
From the Fig,

$$
\alpha=\left[\left(\frac{\pi}{2}\right)-\left(\frac{A+\delta}{2}\right)\right]
$$

$$
\sin \alpha=\sin \left[\left(\frac{\pi}{2}\right)-\left(\frac{A+\delta}{2}\right)\right]=\cos \left(\frac{A+\delta}{2}\right)
$$

But $\sin \alpha=\frac{a}{l} ;$

$$
\begin{equation*}
\cos \left(\frac{A+\delta}{2}\right)=\frac{a}{l} \tag{2}
\end{equation*}
$$

Also

$$
\sin \frac{A}{2}=\frac{t}{2 l}
$$

In the case of prism, $\mu=\frac{\sin \frac{A+\delta}{2}}{\sin \frac{A}{2}}$

$$
\begin{equation*}
\sin \frac{A+\delta}{2}=\mu \sin \frac{A}{2} \tag{4}
\end{equation*}
$$

Here μ and δ are dependent on wavelength of light λ.
Differentiating equation (4) with respect to λ, we get

$$
\begin{equation*}
\frac{1}{2} \cos \left(\frac{A+\delta}{2}\right) \frac{d \delta}{d \lambda}=\frac{d \mu}{d \lambda}\left(\sin \frac{A}{2}\right) \tag{5}
\end{equation*}
$$

Substituting the values of $d \delta$ from equations (2) and (3), we obtain

$$
\begin{equation*}
\frac{1}{2}\left(\frac{a}{l}\right) \frac{d \delta}{d \lambda}=\frac{d \mu}{d \lambda}\left(\frac{t}{2 l}\right) \tag{6}
\end{equation*}
$$

Substituting the value of $d \delta$ equation (1) we get

$$
\begin{equation*}
\frac{\lambda}{d \lambda}=t \cdot \frac{d \mu}{d \lambda} \tag{7}
\end{equation*}
$$

The expression $\frac{\lambda}{d \lambda}$ measure the resolving power of the prism. It is defined as the ratio of the wavelength λ to the smallest difference in wavelength $\mathrm{d} \lambda$, between this line and a neighbouring line such that two lines appear just resolve, according to Rayleigh's criterion.
So, resolving power of a prism $=t \cdot \frac{d \mu}{d \lambda}$
It means that the resolving power (i) is directly proportional to the length of the base of the prism and (ii) rate of change of refractive index with respect to wavelength for that particular material.

RESOLVING POWER OF A PLANE TRANSMISSION GRATING

The resolving power of a grating is defined as the ratio of the wavelength λ of any spectral line to the smallest difference in wavelength $d \lambda$, between this line and a neighboring line such that the two lines appear just resolved, according to Rayleigh's criterion.

So resolving power of a grating $=\frac{\lambda}{d \lambda}$

In Fig, XY is the grating surface and MN is the field of view of the telescope, P_{1} is $\mathrm{n}^{\text {th }}$ primary maximum of a spectral line of wavelength λ at an angle of diffraction $\theta_{\mathrm{n} .} \mathrm{P}_{2}$ is the $\mathrm{n}^{\text {th }}$ primary maximum of a second spectral line of wavelength $\lambda+d \lambda$ at a diffracting angle $\theta_{\mathrm{n}}+d \theta . \mathrm{P}_{1}$ and P_{2} are the spectral
lines in the $\mathrm{n}^{\text {th }}$ order. These two spectral lines according to Rayleigh, will appear just resolved if the position of P_{2} also corresponds to the first minimum of P_{1}.
The direction of the $\mathrm{n}^{\text {th }}$ primary maximum for a wavelength λ is given by,

$$
\begin{equation*}
(a+b) \sin \theta_{n}=\mathrm{n} \lambda \tag{1}
\end{equation*}
$$

The direction of the $\mathrm{n}^{\text {th }}$ primary maximum for a wavelength $\lambda+d \lambda$ is given by,

$$
\begin{equation*}
(a+b) \sin \left(\theta_{\mathrm{n}}+\mathrm{d} \theta\right)=n(\lambda+d \lambda) \tag{2}
\end{equation*}
$$

These two lines will appear just resolved if the angle of diffraction $\left(\theta_{n}+d \theta\right)$ also corresponds to the direction of the first secondary minimum after the $\mathrm{n}_{\text {th }}$ primary maximum at P_{1} (corresponding to the wavelength). This is possible if the extra path difference introduced is $\frac{\lambda}{N}$, where N is the total number of lines on the grating surface.

$$
\begin{equation*}
(a+b) \sin \left(\theta_{\mathrm{n}}+\mathrm{d} \theta\right)=n \lambda+\lambda / N \tag{3}
\end{equation*}
$$

Equating the right hand sides of equations (2) and (3),
$n(\lambda+d \lambda)=n \lambda+\lambda / N$ or $n d \lambda=\lambda / N$ or $\lambda / d \lambda=n N$
The quantity $\lambda / d \lambda=\boldsymbol{n} \boldsymbol{N}$ measures the resolving power of a grating. Thus, the resolving power of a grating is independent of the grating constant. The resolving power is directly proportional to (i) the order of the spectrum and (ii) the total number of lines on the grating surface. For a given grating, the distance between the spectral lines is double in the second order spectrum than that in the first order spectrum. The dispersive power of a grating is given by, $\frac{d \theta}{d \lambda}=\frac{n}{(a+b) \cos \theta}=\frac{n N^{\prime}}{\cos \theta}$; and the resolving power of a grating is given by, $\frac{\lambda}{d \lambda}=n N$, where n is the order of the spectrum and N is the total number of lines on the grating surface. N^{\prime} is the number of lines per cm on the grating surface. Here θ gives the direction of the $\mathrm{n}^{\text {th }}$ principal maximum corresponding to a wavelength λ. From the above equation, it is clear that the dispersive power increases with increase in the number of lines per cm and the resolving power increases with increases in the total number of lines on the grating surface (i.e. width of the grating surface).High dispersive power refers to wide separation of the spectral lines whereas high resolving power refers to the ability of the instrument to show nearby spectral lines as separate ones Comparison of Prism and Grating spectra:
(1) With a grating, a number of different orders can be obtained on the two sides of the central maximum whereas with a prism only one spectrum is obtained.
(2) The spectra obtained with a grating are comparatively purer than those with a prism.
(3) Knowing the grating element $(a+b)$ and measuring the diffraction angle, the wavelength of any spectral line can be measured accurately. The angles of deviation are dependent on the refractive index of the material of the prism, which depends on the wavelength of light.
(4) The intensities of the spectral lines with a grating are much less than with a prism.
(5) The dispersive power of a grating is $\frac{d \theta}{d \lambda}=\frac{n N^{\prime}}{\cos \theta}$ and this is constant for a particular order. Thus, the spectral lines are evenly distributed. Hence, the spectrum obtained with a grating is said to be rational. The dispersive power of a prism is $\frac{\mathrm{d} \mu}{\mu-1}$ and this has higher value in the violet region than in the red region. Hence, there will be more spreading of the spectral lines towards the violet and the spectrum obtained with a prism is said to be irrational.

அலகு-III
 விளிம்பு விளைவு

$\therefore . . ் ந ந ெ ல ் ~ வ ி ள ி ம ் ப ு ~ வ ி ள ை வ ு ம ், ~ ப ் ர ா ன ் ற ே ற ா ப ் ் ் ~ வ ி ள ி ம ் ப ு ~ வ ி ள ை வ ு ம ் ~(F r e s n e l ~ a n d ~ F r a u n h o f e r ' s ~$
diffraction) விளிம்பு விளைவினை இரு வகைகளாகப் பிரிக்கலாம் 1. ..ப்ரநநல் விளிம்பு
விளைவு 2..'.ப்ரான்ஹேறாபா் விளிம்பு விளைவு
(1) $\quad \therefore$ ப்ரநெல் விளிம்பு விளைவு: இவ்வகையான விளிம்பு விளைவில் மூலமும், திரையும் விளிம்பு விளைவினை தோற்றுவிக்கும் தடை பொருளிலிருந்து வரம்பற்றுகு உட்பட்ட தொலைவில் இருக்கவேண்டும். இந்த வகையில் கற்றைகளை இணையாக்கவோ அல்லது குவிப்பதற்கோ வில்லைகள் பயன்படுத்தப்படுவதில்லை. இதில் படு அலைமுகப்பு உருளை வடிவிலோ அல்லது கோளக வடிவிலோ இருக்கும்.
(2) \therefore ப்ரான்வேறாாப் விளிம்பு விளைவு: இவ்வகையான விளிம்பு விளைவில் மூலமும் திரையும் எண்ணிலாத் தொலைவில் அமையும். இவ்வகையில் குவிக்கும் வில்லைகள் பயன்படுத்தப்படுகிறது. எனவே தோன்றுகின்ற விளிம்பு விளைவு தெளிவாக இருக்கும். இந்த வகையில் தடை பொருளின் மீது விழும் படுஅலை முகப்பு சமதள அலைமுகப்பாகும்.

குறுக்கீட்டு வரிகளையும், விளிம்பு விளைவு பட்டைகளையும் ஒப்பிடுதல் (Comparison between interference fringes and diffraction bands)

1) குறுக்கீட்டு பட்டைகளானது இரு ஒிியல் மூலங்களிலிருந்து வரும் இரு அலைவுகள் குறுக்கிடுவதால் ஏற்படுகிறது. ஆனால் விளிம்பு விளைப்பட்டையானது ஒரு ஒளி மூலத்திலிருந்து வரும் அலைமுப்பின் பல குறுக்கிடுவதால் ஏற்படுகிறது.
2) சுத்தமான குறுக்கீட்டுப் பட்டையில் இருள் வரிகள் முழுமையான இருளாகவும், ஒளி வரிகள் முழுமையான பொலிவுடனும் அமையும். ஆனால் விளிம்பு விளைவுப் பட்டைகள் ஒன்றை நோக்க மற்றது இருளாகவும், பொலிவாகவும் தோன்றும்.
3) குறுக்கீட்டு பட்டைகளின் அகலம் சமமானது. ஆனால் விளிம்பு விளைவு பட்டைகள் சமமானதல்ல.
4) வெள்ளொளி பயன்படுத்தினாலும் ஒற்றை நிற ஒளி பயன்படுத்தினாலும் பெறுகின்ற விளிம்பு விளைவு பட்டைகள் ஒரே தன்மை கொண்டதாகும். ஆனால் வெள்ளொளி பயன்படுத்தும் போதுகிடைக்கின்ற குறுக்கீட்டு
(i) நோ் விளிம்பில் விளிம்பு விளைவு (Diffraction at Straight Edge)

S என்ற குறுகிய பிளவு காகிதத் தளத்திற்குச் செங்குத்தாக அமைத்து,ஒற்றை நிற

Dr.N.Geetha

ஒளிகொண்டு பொலிவூட்டப்படுகிறது. AB என்ற நேர் முனைபளவிற்கு இணையாக வைக்கப்பட்டுள்ளது. தடுப்பற்கு மறுபக்கத்தில் காகித்த தளத்திற்குச் செங்க்ததாக ஒரு திரை வைக்கப்பட்டுள்ளது. SAC என்பது திரைக்குச் செங்குத்து, ஒளியானது நோ்கோட்டில் சென்றால் திரையில் C ற்கு கீழ் முழுமையும் இருளாகவும்,C ற்கு மேல் சீரான பொலிவுடனும் இருக்க வேண்டும். ஆனால்C ற்கு மேல் கூர்ந்து நோக்கினால், மாறுப்டட அகலங் கொண்ட இருள்பட்டைகளும், ஒளிப் பட்டைகளும் அமைந்திருப்பது தொியும். மேலே செல்லச் செல்ல பட்டைகள் குறுகலாக சீரான பொலிவு ஏற்படுகிறது. இதே போன்று Cற்கு கீழ் பொலிவு படிப்படியாகக் குறைந்து, புள்ளியலல் செறிவு காணவேண்டும். A என்பது C யினை நோக்க அலை முகமாகும். அலைமுகப்பினை வல அரை அலைவு நேர மண்டிலங்களாகப் பிிிக்கலாம். இவற்றின் கீழ்பகுதி நோ் விளிம்பு AB ஆல் தடுக்கப் பட்டுவிடுகிறது.

Cற்கு கீழ் இதற்கு அருகாமையில் அமைந்துள்ள C_{1} என்ற புள்ளியைக் கருதுவோம். C_{1} ஐோக்க A_{1} அலைமுகமாகும். இப்போது AA_{1} என்ற பகுதியில் முதல் அலை அலைவு நேர மணடலத்தின் மேற்பகுதி அடங்கியிருப்பதாகக் கொள்வோம். ஆகவே நோ் விளிம்பானது அரை அலைவு நேர மண்டலத்தின் கீழ்பகுதி முழுவதையும் மேற்பகுதியில் முதல் மண்டலத்தையும் தடுப்பதாகக் கொள்வோம். ஆகவே C_{1} ல் ஏற்படும் இடப்பெயா்ச்சி $-d_{2} / 4$ ஆகும். எனவே செßிவு $\mathrm{d}_{2}{ }^{2} / 16 \dot{ற ் க ு ~ ந ே ர ் வ ி க ி த த ் த ி ல ் ~ அ ம ை ய ு ம ் . ~} \mathrm{C}_{1}$ என்ற புள்ளி கீழே செல்லச் செல்ல,

மேற்பகுதியில் இரண்டாம், மூன்றாம் மண்மலங்கள் வெட்டப்படுகின்றன. எனவே செறிவானது குறைந்து, பின்பு இருளாகிவிடுகிறது.மண்டலங்களாகப் பிரிக்கப்படுகிறது.

(i) ஒற்றை பிளவு (Single Slit)

AB என்பது அகலம் "a " கொண்ட பிளவாகும். இந்த பிளவு காகிதத் தளத்திற்குச் செங்குத்தாக வைக்கப்பட்டுள்ளது. பிவின் மீது ஒரு சமதள அலைமுகப்பு விழுகிறது. அலை முகப்பிலுள்ள ஒவ்வொரு புள்ளிகளும் இரண்டாம் நிலை (secondary) ஒளி மூலமாகச் செயற்பட்டு இரண்டாம்நிலைஅலைக்குட்டிகளைத் (secondary wavelets) தோற்றுவிக்கின்றன. இவற்றில் பெரும்பகுதி புள்ளிக்கொ்டால் காட்டப்பட்டுள்ள AN திசைக்கு இணையாகச் செல்கிறது. இவை ஒரு வில்லையாக P என்ற புள்ளியில் குவிக்கப்படுகிறது. P ளை அடைகின்ற உல்லா அலைமுகப்புகளும் சமக் கட்டத்தில் இருப்பதால், இப்புள்ளி பெருமச் செறிவு கொண்டிருக்கும். தோன்றுகின்ற இரண்டாம்நிலை அலைக் குட்டிகளில் ஒரு பகுதி பிளவின் விளிம்பில் வளைந்து, பல திசைகளிலும் செல்கின்றன. ஒரு குறிப்பிட்ட திசையில் செல்கின்ற கற்றைகளை ஒரு விலலையை பயன்படுத்தி ஒரு புள்ளியில் குவிக்கலாம்.படுகதிர் திசைக்கு Θ கோணம் சாய்வாகச் செல்லும் கற்றைகளை கருதுவோம். இவற்றை ஒரு வில்லை பயன்படுத்தி ${ }^{\circ} 1$ என்ற புளிளியில் குவிக்கப்படுகிறது. ${ }^{\circ} 1$ புள்ளியை அடைகின்ற கற்றைகள் எல்லாம் ஒரே கட்டத்தில் அமையாது. கட்ட வேறுபாடு கொண்டிருக்கும். பாதை வேறுபாட்டிளைக் கீழ்க்கண்டவாறு கணக்கிடலாம்.

கற்றகைகள் BD க்கு பின்பு P_{1} ஐ அடையும் வரை சமமான பாதையில் செல்கின்றது. எனவே A,B ஆகியவற்றியிலருந்து புறப்படும் இரண்டாம்நிலை அலைக்குட்ழகளை் கருதும்போது. அவற்றிற்கிடையே உள்ள பாதைவேறுபாடு. AD ஆகும் ஆனால் $\mathrm{AD}=\mathrm{AB} \cdot \sin \Theta$

புளவின் அகலம் "a" எனக்கொண்டால், பாதைவேறுபாடு $\mathrm{AD}=\mathrm{a}$. $\sin \Theta$ பாதைவேறுபாடு $\mathrm{a} \sin \Theta=$ λ எனக் கொண்டால், இது அழித்தல் குறுக்கீடு எனக் காட்டலாம். C என்பது பிளவின் மையப்புள்ளி எனின் பிளவினை AB, BC என இரு பகுதிகளாகப் பிரிக்கலாம். A, B ஆகியவற்றிற்கிடையே உள்ள பாதை வேறுபாடு $\lambda / 2$ ஆகும்.

Dr.N.Geetha

இதே போன்று AC பகுதியில் உள்ள ஒவ்வொரு புள்ளிகட்கும் ஒத்த புள்ளிகள் BC பகுதியில் அமைந்திருக்கும். இவ்விரு ஒத்த புள்ளிகட்கிடையே உள்ள பாதைவேறுபாடு $\lambda / 2$ இதனால் அழித்தல் குறுக்கீடு தோன்றுகிறது. ஆகவே P_{1} ன் செறிவு சிறுமமாக இருக்கும்.

$$
\operatorname{asin} \theta=\mathrm{n} \lambda \quad \mathrm{n}=1,2,3, \ldots
$$

இதேபோன்ற P ற்கு அடுத்த பக்கத்திலும் சிறுமங்கள் தோன்றுகின்றன. அடுத்தடுத்த சிறுமங்கட்கிடையே ஒரு பெருமம் தோன்றுகிறது. இவற்றின் துணைப்பெருமம்(secondary maxima) என்பா்.பாதை வேறுபாடு அரை அலைநீளத்தின் ஒற்றை படை எண் பபருக்கற்பலனாக இருத்தால், இந்தத் திசையில் துணைப் பெருமங்கள் தோன்றுகின்றன. பொதுவாக பெருமச் செறிவிற்கான நிபந்தனை $\quad \operatorname{asin} \Theta=(2 n+1) \lambda / 2 \quad$ இங்கு $n=0,1,2, \ldots$

இவ்வாறு ஒற்றைப் பிளவால் தோன்றுகின்ற விளிம்பு விளைவுப் பாங்கு மையத்தில் பொலிவு மிருந்த மையத் பெருமத்தையும், இதன் இரு பக்கங்களிலும் துணைப் பெருமங்களையும், சிறுமங்கலையும் மாறி மாறி கொண்டிருக்கும் ஒற்றை விளிம்பல் தோன்றும் ..ப்ரான் ழேறாபா் விளிம்பு விளைவு பாங்கின் செறிவு படம்3.16 ல் காட்டப்பட்டுள்ளது.

(ii)இரட்டைப் பிளவு (Double slit)

AB, CD என்பவை அகலம் a கொண்ட இரு சிறிய பிளவுகள் .இவ்விரு பிளவுகளும் அகலம் b கொண்ட ஒளிபுகாப் பகுதியால் பிரிக்கப்படுள்ளது. இந்த இரட்டைப் பிளவில் ஒரு சமதள அலைமுகப்பு விழுவதாக்க கொள்வோம். அலைமுகப்பிலுள்ள ஒவ்வொரு புள்ளிகளும் இரண்டாம்நிலை ஒளி மூலமாகச் செயற்பட்டு, இரண்டாம்நிலை அலைக்குட்டிகளைத் தோற்றுவிக்கிறது. படுகதிர் திசைக்கு இணையாகத் தோன்றுகின்ற எல்லா இரண்டாம்நிலை அலைக்குட்டிகள் P ல் குவிக்கப்படுகிறது. P என்ற பள்ளி மையப் பொலிவு பெருமமாகும். இந்தப் புள்ளியில் ஏற்படுகன்ற இடப்பெயர்ச்சி, ஒற்றைப் பிளவால் ஏற்படுகின்ற இடப்பெயா்்்சி போன்று இரு மடங்காகும். எனவே P ல் உள்ள செறிவு ஒற்றைப் பிளவால் ஏற்படுவதைப் போன்று நான்கு மடங்காகும்.

முதல் சிறுமம் தோன்றக்கூடிய திசைக்கு $a \sin \Theta=3 \lambda / 2$ எனத் தொியும். அடுத்த பெருமத்திற்கான திசை $\operatorname{asin} \Theta=3 \lambda / 2$ பெருமமும் சிறுமமும் மாற மாஷி அமையும். பொதுவாக பெருமம் தோன்றுவதற்கான திசைக்கான நிபந்தனை $\operatorname{asin} \Theta=(2 n+1) \lambda / 2$

சிறுமத்திற்கான நிபந்தனை $\operatorname{asin} \theta=n \lambda$. இங்கு ஏற்படும் பெருமமானது ஒற்றைப் பிளவால் ஏற்படும் பொலிவினை விட அதிகமாக இருக்கும்.மேலும் இரண்டு பிளவுகளிலிருந்து வரும் அலைமுகப்புகளால் குறுக்கீட்டு விளைவும் தோன்றும்.பாதைவேறுபாடு $(a+b) \sin \alpha=n \lambda$ எனின். ஆகக்க குறுக்கீட்டு விளைவு ஏற்படுகிறது. எனவே ஒத்த புள்ளிகளிலிருந்து வருகின்ற அலைக்குட்டிகள் ஒன்றோடொன்று இணைந்து பெருமத்தை உண்டாக்குகிறது.இவ்வாறி்றற $(\mathrm{a}+\mathrm{b}) \sin \alpha=(2 \mathrm{n}+1) \lambda / 2$ எனின் இத்திசையில் சிறுமம் தோன்றுகிறது. இவை இரட்டை பிளவால் ஏற்படும் குறுக்கீட்டு விளைவு பெருமம், சிறுமங்களாகும்

இரு பிளவுகளால் தோன்றுகின்ற ..ப்ரான்ஹேறாப்் விளிம்பு விளைவு செறிவி் பகிர்வு படம் காட்டப்பட்டுள்ளது. படத்தில் முழுக் கோடு சம இடைவெளியில் அமைந்துள்ள குறுக்கீட்டு பெருமங்களையும், சிறுமங்களையும், புள்ளிக்கோடு விளிம்பு விளைவுப் பெருங்களையும், சிறுமங்களையும் குறிக்கிறது.

 भterbe5xille

$$
\text { की (1) } n=0,1,2
$$

$(a+b) \sin \left(\theta_{n} \pm \Delta \theta_{n}\right)=n x \pm \frac{\lambda}{N}$
Ontrix) $\sin \left(\theta_{n} \pm \Delta \theta_{n}\right)=\sin \theta_{n} \cos \Delta \theta_{n} \pm \cos \theta_{n} \sin \Delta \theta_{n} \approx \sin \theta_{n} \pm \Delta \theta_{n} \cos \theta_{n}$
$\therefore(a+b)\left[\sin \theta_{n} \pm \Delta \theta_{n} \cos \theta_{n}\right]=n \lambda \pm \frac{\lambda}{N}$
$(a+b) \sin \theta n \pm(a+b) \Delta n \cos \theta n=n \lambda \pm \frac{\lambda}{N}$
$n \lambda \pm(a+b) \Delta \theta n \cos \theta n=n \lambda \pm \frac{\lambda}{\mathrm{N}}$
$(a+b) \Delta \theta_{n} \cos \theta_{n}=\frac{\lambda}{N} \Rightarrow \quad \therefore \theta_{n}=\frac{\lambda}{N(a+b) \cos \theta_{n}}$

 \square

 \square

$$
\frac{d \theta}{d \lambda}=\frac{n}{(a+b) \cos \theta}=\frac{N_{n}}{\cos \theta}
$$

(1). DிPL

 Smbayis.

 Ormbufiniis λ ondrmil plplatano ब्याजिए n

 \qquad आबए धारim $(\lambda+d \lambda)$ याक्ष, $(a+b) \sin (\theta n+d \theta)=n(\lambda+d \lambda)$

$$
\begin{equation*}
(a+b) \sin (\theta n+d \theta)=n \lambda+\lambda / N \tag{4}
\end{equation*}
$$

Obण्णाष $(a+b) \sin (\theta n+d \theta)=n(\lambda+d \lambda)$

$$
n(\lambda+d \lambda)=n \lambda+\lambda / N \quad \Rightarrow \quad \therefore \frac{\lambda}{d \lambda}=n N
$$

 प्रूकी

$$
\begin{equation*}
P A+A Q=\mu \cdot B C \tag{1}
\end{equation*}
$$

 (3)mol R

 Qorf 20001008 णष000 $(\mu-d \mu) \quad P A+A Q^{\prime}=(\mu-d \mu) \cdot B C \longrightarrow(2)$ WமWiUT(D) (1) B (2) ar(A)BQ日 Bl马ीBD $\Rightarrow A Q-A Q^{\prime}=d \mu \cdot B C$ ODO्यागि $B C=t \quad \therefore Q Q^{\prime}=t \cdot d \mu$ \qquad

 आताय18 जाणातथायाठ, $Q Q^{\prime}=d \cdot d \theta \longrightarrow(5)$

$$
d \cdot d \theta=t \cdot d \mu \quad \Rightarrow \quad d \theta=\frac{t}{d} \cdot d \mu
$$

$$
\begin{align*}
& \lambda=t \cdot d \mu \\
& \frac{\lambda}{d \lambda}=t \cdot \frac{d \mu}{d \lambda} \tag{8}
\end{align*}
$$

(4)LVIOLD BDLATO

 OImL

 ODलाञ (D)

 Cxय2imbi .

(4). Biximan inmirron Lifoyis (alvulu OYBMD

 माitoxn mmonio crus.

INTRODUCTION - DOUBLE REFRACTION - NICOL PRISM - NICOL PRISM AS POLARIZER \& ANALYZER - QUARTER AND HALF WAVE PLATE - PRODUCTION AND DETECTION OF PLANE, ELLIPTICALLY AND CIRCULARLY POLARIZED LIGHT - OPTICAL ACTIVITY - SPECIFIC ROTATION LAURENT'S HALF SHADE POLARIMETER.

INTRODUCTION

The phenomena of interference and diffraction demonstrated that light is propagated in the form of waves. They did not specify whether the light waves are transverse or longitudinal. The phenomena of interference and diffraction are possible in both transverse and longitudinal waves. The phenomenon of polarization distinctly proves that light waves are only transverse in nature. Light is propagated in the form of electromagnetic waves.

POLARIZATION

The phenomenon of restricting the vibrations of light (electric or magnetic field vector) to a particular direction perpendicular to the direction of propagation of wave is called polarization of light.

POLARIZER AND ANALYZER

Let us consider an unpolarized beam of light. The vibrations can be in all possible directions all of them being perpendicular to the direction of propagation as shown in fig. When this light passes through Polaroid $P 1$ the vibrations are restricted to only one plane. The emergent beam can be further passed through another Polaroid P2. If the Polaroid $P 2$ is rotated about the ray of light as axis, for a particular position of $P 2$ the intensity is maximum. When the Polaroid $P 2$ is rotated from this position the intensity starts decreasing. There is complete extinction of the light when $P 2$ is rotated through 90°. On further rotation of $P 2$ the light reappears and the intensity increases and becomes a maximum for a further rotation through 90°. The light coming out from polaroid $P 1$ is said to be plane polarized.

The Polaroid (here $P 1$) which plane polarizes the unpolarized light passing through it is called a polarizer. The polaroid (here $P 2$) which is used to examine whether a beam of light is polarized or not is called an analyzer.

If the intensity of the unpolarised light is I then the intensity of plane polarised light will be $I / 2$. The other half of intensity is restricted by the polariser.

BREWSTER'S LAW

It states that at any particular angle of incidence, reflected ray is completely polarized; and the angle between reflected and refracted ray is 90°.
when reflected wave is perpendicular to the refracted wave, the reflected wave is a totally polarised wave. The angle of incidence in this case is called Brewster's angle and is denoted by i_{B}. We can see that i_{B} is related to the refractive index of the denser medium. Since we have $i_{\mathrm{B}}+r=\pi / 2$, we get from Snell's law
$\mu=\frac{\sin i_{B}}{\sin r}=\frac{\sin i_{B}}{\sin \left(\frac{\pi}{2}-i_{B}\right)}==\frac{\sin i_{B}}{\cos i_{B}}=\tan i_{\mathrm{B}}$. This is known as Brewster's law.

MALUS LAW

When a completely plane polarized light is incident on an analyzer. The intensity of emergent light varies as the square of the cosine of the angle between the polarizer and analyzer. (i.e), $\mathrm{I}=\mathrm{I}_{0} \operatorname{Cos}^{2} \theta$.

DOUBLE REFRACTION

Erasmus Bartholinus, a Danish physicist discovered that when a ray of unpolarised light is incident on a calcite crystal, two refracted rays are produced. Hence, two images of a single object are formed. This phenomenon is called double
refraction as shown in fig. Double refraction is also called birefringence. This phenomenon is also exhibited by several other crystals like quartz, mica etc.

When an ink dot on a sheet of paper is viewed through a calcite crystal, two images will be seen. On rotating the crystal, one image remains stationary, while the other rotates around the first. The stationary image is known as the ordinary image O, produced by the refracted rays which obey the laws of refraction, called as ordinary rays. The other image is extraordinary image E, produced by the refracted rays which do not obey the laws of refraction, called as extraordinary rays. The extraordinary ray is found to be plane polarised. Inside a double refracting crystal the ordinary ray travels with same velocity in all directions and the extra ordinary ray travels with different velocities along different directions. A point source inside a refracting crystal produces spherical wavefront corresponding to ordinary ray and elliptical wavefront corresponding to extraordinary ray. Inside the crystal, there is a particular direction in which both the rays travel with same velocity. This direction is called optic axis. Along the optic axis, the refractive index is same for both the rays and there is no double refraction along this direction.

TYPES OF OPTICALLY ACTIVE CRYSTALS

Crystals like calcite, quartz, tourmaline and ice having only one optic axis are called uniaxial crystals.
Crystals like mica, topaz, selenite and aragonite having two optic axes are called biaxial crystals.

HUYGEN'S EXPLANATION OF DOUBLE REFRACTION IN UNIAXIAL CRYSTALS

Huygens explained the phenomenon of double refraction with the help of his principle of secondary wavelets. A point source of light in a double refraction medium is the origin of two wavefronts.

For the ordinary ray, for which the velocity of the light is the same in all directions, the wavefront is spherical.
For the extraordinary ray, the velocity varies with the direction and the wavefront is an ellipsoid of revolution.
The velocities of the ordinary and extraordinary rays are the same along the optic axis.

(a)

(b)

Consider a point source of a light S in a calcite crystal fig (a). The sphere is the wave surface for the ordinary ray and the ellipsoid is the wave surface for extraordinary ray.

The ordinary wave surface lies within the extraordinary wave surface. Such crystals are known as negative crystal. For positive crystals like quartz, the extraordinary wave surface lies within the ordinary wave surface fig (b)

For the negative uniaxial crystals, $\mu_{0}>\mu_{\mathrm{E}, \text {, the }}$ thelocity of the extraordinary ray varies as the radius vector of the ellipsoid. It is least and equal to the velocity of the ordinary ray along the optic axis, but it is maximum at right angle to the direction of the optic axis.

For the positive uniaxial crystals, $\mu_{\mathrm{E}}>\mu_{0}$, the velocity of the extraordinary ray is least in a direction at right angle to the optics axis. It is maximum and is equal to the velocity of the ordinary ray along the optic axis. Hence, from Huygen's theory, the wavefronts in uniaxial crystals are a sphere and an ellipsoid and there are two points where these two wavefronts touch each other. The direction of the line joining these two points (where the sphere and ellipsoid touch each other) is the optic axis.

UNIAXIAL CRYSTALS

The crystals for which the velocities of the ordinary and the extraordinary rays are the same along a single optic axis, are called the uniaxial crystals. For negative uniaxial crystals, $\mu_{o}>\mu_{\mathrm{E}}$, for positive uniaxial crystals, $\mu_{\mathrm{E}}>\mu_{\mathrm{o}}$.

NICOL PRISM

A Nicol prism is made from calcite crystal. It was designed by William Nicol in 1820. A rhomb of calcite crystal about three times as long as it is thick, is obtained by cleavage from the original crystal. The ends of the rhombohedron are ground until they make an angle of 68° instead of 71 with the longitudinal edges. This piece is then cut into two along a plane perpendicular both to the principal axis and to the new edge surfaces.

The two parts of the crystal are then cemented together with Canada balsam, whose refractive index lies between the refractive indices of calcite for the o-ray and e-ray. $\mu_{0}=1.66, \mu_{e}=1.486$ and $\mu_{\text {Canada balsam }}=1.55$. The position of optic axis AB is as shown in the figure. The refractive index for e-ray depends upon the direction in which e-ray is propagating in the crystal.

Uses of Nicol prism

(i) It produces plane polarised light and functions as a polariser
(ii) It can also be used to analyse the plane polarised light i.e used at an analyser.

Drawbacks of Nicol prism

(i) Its cost is very high due to scarity of large and flawless calcite crystals
(ii) Due to extraordinary ray passing obliquely through it, the emergent ray is always displaced a little to one side.
(iii) The effective field of view is quite limited.
(iv) Light emerging out of it is not uniformly plane polarised.

Nicol Prism: Unpolarized light is made to fall on the crystal as shown in the figure at an angle of about 15°. The ray after entering the crystal suffers double refraction and splits up into o-ray and e-ray.

NICOL PRISM AS POLARIZER AND ANALYSER

Nicol prism is widely used for the production and detection of linearly polarised light.

When two Nicol prisms P and A are placed adjacent to each other as shown in the figure, one of them acts as a polarizer and other acts as an alyser.

If an unpolarized ray of light is incident on the Nicol prism P, a linearly polarized e-ray emerges from P with its vibration direction lying in the principal section of P. The state of the polarization of the light emerging from polarizer P can be examined with another polarizer A, called an analyser.

Let now this ray be incident on the second Nicol prism A, whose principal section is parallel to that of P . The vibration direction of the ray will be in the principal section of A and hence it is transmitted unhindered through the analyser A.

If the Nicol prism A is gradually rotated, the intensity of the e-ray decreases in accordance with Malus law. When its principal section becomes perpendicular to that of the Nicol prism P, the vibration of the ray, emerging form P and incident on A, will be perpendicular to the principal section of A. In this position ray behaves as o-ray inside the prism A and is totally internally reflected by the Canada balsam layer. Hence no light is transmitted by the prism A.

In this configuration, the two Nicol prisms P and A are said to be crossed. If the Nicol prism A is further rotated through another 90°, the intensity of light emerging from A will go on increasing. The intensity will become maximum when its principal section is again parallel to that of the prism P . Thus, the prism P produce linearly polarised light while the prism A detects it. Hence, the prism P is called a polarizer and the prism A an analyser.

QUARTER AND HALF WAVE PLATE

Quarter wave plate

A quarter wave plate is a thin plate of birefringent crystal having the optic axis parallel to its refractive faces and its thickness adjusted such that it introduces a quarter wave $\lambda / 4$) path difference (or a phase difference of 90°) between the e-ray and o-ray propagating through it.

When a plane polarized light wave is incident on a birefringent crystal having optic axis parallel to its refracting face, the wave splits into e-wave and o-wave. The two waves travel along the same direction but with different velocities. As a result, when they emerge from the rear face of the crystal, an optical path different would be developed between them. Thus, for a quartz wave plate,

$$
\left(\mu_{e}-\mu_{o}\right) d=\frac{\lambda}{4}, d=\frac{\lambda}{4\left(\mu_{e}-\mu_{o}\right)}
$$

A quarter wave plate introduces between e-ray and o-ray a phase difference δ is given by, $\delta=(2 \pi / \lambda) \Delta=\pi / 2=90^{\circ}$

Applications

(i) A quarter wave plate is used in producing elliptically or circularly polarized light.
(ii) It converts plane polarized light into elliptically or circularly polarized light depending upon the angle that the incident light vector makes with optic axis of the quarter wave plate.
(iii) Circularly polarized light incident on a wave plate is converted into linearly polarized light.

Half wave plate

A half wave plate is a thin plate of birefringent crystal having the optic axis parallel to its refractive faces and its thickness adjusted such that it introduces a half wave ($\lambda / 2$) path difference (or a phase difference of 180°) between the e-ray and oray propagating through it.

When a plane polarized light wave is incident on a birefringent crystal having optic axis parallel to its refracting face, the wave splits into e-wave and o-wave. The two waves travel along the same direction but with different velocities. As a result, when they emerge from the rear face of the crystal, an optical path different would be developed between them.

$$
\left(\mu_{e}-\mu_{o}\right) d=\frac{\lambda}{2}, d=\frac{\lambda}{2\left(\mu_{e}-\mu_{o}\right)}
$$

A quarter wave plate introduces between e-ray and o-ray a phase difference δ is given by, $\delta=(2 \pi / \lambda) \Delta=\pi=180^{\circ}$

Rotation of the plane of polarization of linearly polarized light by a half wave plate

Applications

A half wave plate rotates the plane of polarization of the incident plane polarized light through an angle $2 \boldsymbol{\theta}$. The half wave plate can be used to invert the handedness of elliptical or circular polarized light, changing right to left and vice versa.

PRODUCTION OF LINEARLY POLARIZED LIGHT

A Polarizer is associated with a specific direction called the transmission axis of the polarizer. If natural light is incident on a polarizer, only those vibrations that are parallel to the transmission axis are allowed through the polarizer whereas the vibrations that are in perpendicular directions are totally blocked. Therefore, the transmitted light contains waves oscillating in the same plane as illustrated in fig. Thus, the transmitted beam is linearly polarized.

DETECTION OF LINEARLY POLARIZED LIGHT

An analyzer is an optical element, which is used to identify the plane of vibration of plane polarized light. To examine light coming from some direction either after emission or reflection etc, we use a Polaroid sheet. The Polaroid sheet used to determine the plane of polarization of light is known as analyzer. There is no difference between a polarizer and analyzer in fabrication but they differ in their roles. Both the polarizer and analyzer are characterized by a transmission axis.

When the transmission axis of the analyzer A is set up parallel to that of polarizer P , light transmitted by the polarizer, passes unhindered through the analyzer (Fig. a).

If the transmission axes are set at an angle q, light is partially transmitted (Fig. b). As the angle rotates from 0° to 90°, the amount of light that is transmitted decreases. When the axes are perpendicular to each other, the polarized light from P is extinguished by the analyzer A (Fig. c). The polarizer and analyzer are said to be crossed in this configuration.

PRODUCTION OF ELLIPTICALLY POLARIZED LIGHT

To produce elliptically polarized light, the two waves vibrating at right angles to each other having unequal amplitudes should have a phase difference of $\pi / 2$ or a path difference of $\lambda / 4$.

In this case, the vibrations of the plane polarized falling on the quarter wave plate should not make an angle 45° with the optic axis.

DETECTION OF ELLIPTICALLY POLARIZED LIGHT

The light beam is allowed to pass through an analyser. If on rotating the analyzing polaroid sheet or Nicol, the intensity of the emerging beam varies from a maximum to a minimum value, but is never zero, then the incident light is elliptically polarized.

A similar result would be obtained if the incident light is partially polarized. The two cases may be distinguished by inserting a quarter wave plate in the path of light before it falls on the analyser.

If the original light is elliptically polarized, it may be considered as resultant of two coherent plane polarized waves that is e-ray and o-ray, which are out of phase by 90°. If the light passes through the quarter wave plate, an additional phase difference of 90° is introduced between the e-ray and o-ray. Therefore, the total phase difference becomes 180° between the eray and o-ray. On emerging from the quarter wave plate is examined with an analyzer, light will be extinguished twice in one full rotation of the polarizer as shown in fig.

PRODUCTION OF CIRCULARLY POLARIZED LIGHT

To produce circularly polarized light, the two waves vibrating at right angles to each other having the same amplitude and time period should have a phase transformation of $\pi / 2$ or a path difference of $\lambda / 2$.

A parallel beam of monochromatic light is allowed to fall on a nicol prism N1. The nicol prism N 2 is placed at some distances from N1 so that N 1 and N 2 are crossed. A quarter wave plate P is mounted on a tube A and rotated such that the mark S is made to coincide with 45° mark on A . The polarized light is split up into two rectangular components (ordinary and extraordinary) having equal amplitude and time period and on coming at of the quarter wave plate, the beam is circularly polarized.

DETECTION OF CIRCULARLLY POLARIZED LIGHT

The light beam is allowed to pass through an analyser. If on rotating the analyzing polaroid sheet or Nicol, the intensity of the emerging uniform, then the incident light is circularly polarized. A similar result would be obtained if the incident light is ordinary unpolarized light. The two cases may be distinguished by inserting a quarter wave plates in the path of light before it falls on the analyser. If the given light is circularly polarized, it may be considered as resultant of two coherent plane polarized waves that is e-ray and o-ray, which are out of phase by 90°. If the light passes through the quarter wave plate, an additional phase difference of 90° is introduced between the e-ray and o-ray. Therefore, the total phase difference becomes 180° between the e-ray and o-ray. On emerging from the quarter wave plate, the e- and o- rays combine to produce plane polarized light. Therefore, if the light coming out of quarter wave plate is examined with an analyzer, light will be extinguished twice in one full rotation of the polarizer as shown in fig .

ANALYSIS OF PLANE, CIRCULARLY AND ELLIPTICALLY POLARIZED LIGHT

OPTICAL ACTIVITY

When a beam of plane polarized light propagates through a quartz crystal along the optic axis, the plane of polarization steadily turns about the direction of the beam, as shown in fig .

The ability to rotate the plane of polarization of the plane polarized light by certain substances is called optical activity.

Substances, which have the ability to rotate the plane of the polarized light passing through them, are called optically active substances.

Examples of optically active crystals: Quartz and cinnabar.
Examples of optically active solutions: Solutions of sugar, tartaric acid.
Optically active substances are classified into two types.
(i) Dextrorotatory substances: substances which rotate the plane of polarization of the light towards the right are known as right-handed or dextrorotatory.
(ii) Laevorotatory substances: Substances which rotate the plane of polarization of the light towards the left are known as left-handed or laevorotatory.

SPECIFIC ROTATION:

The specific rotation is defined as the rotation produced by a decimeter $(10 \mathrm{~cm})$ long column of the liquid containing 1 gram of the active substance in one cc of the solution. Therefore,

$$
S_{\lambda}^{1}=\frac{10 \theta}{l C}
$$

where S_{λ}^{1} represents the specific rotation at temperature $t^{0} \mathrm{C}$ for a wavelength λ, θ is the angle of rotation, l is the length of the solution in cm through which the plane polarized light passes and C is the concentration of the active substance in g / cc in the solution.

The angle through which the plane of polarization is rotated by the optically active substance is determined with the help of a polarimeter.

A polarimeter is an instrument used to find the optical rotation of solutions.

Construction:

A polarimeter consists of a glass tube for holding the solution under test held between crossed Nicol prisms, N_{1} and N_{2} (Fig.a).

G is a glass tube which contains the optically active solution. Light from a monochromatic source is rendered parallel by the lens L and is incident on the polarizer, N_{1}.

Working

Fig. (b)

Fig (c)

To find the specific rotation of a solution, the analyser is first adjusted such that the field of view is completely dark.

- Then the glass tube is filled with the solution and is held in position. The field of view becomes illuminated.
- The field of view can be again be made dark by rotating the analyser through certain angle which gives the optical rotation of the solution.
- The practical difficulty in this method is in determination of the exact position for which complete darkness is achieved. This difficulty is overcome by using what is known as a Laurent's half-shade device(figb).
- It consists of semicircular half wave plate ACB of quartz cemented to a semicircular plate ADB of glass.
- The optic axis of the wave plate is parallel to the line of separation AB. The half wave plate introduces a phase difference of 180° between e-ray and o-ray passing through it.
- The thickness of the glass plate is such that it transmits the same amount of light as done by the quartz half wave plate. One half of the light passes through the quartz plate ACB and the other half through the glass plate ADB .
- The light after passing through the polarizer is incident normally on the half shade plate and has vibration along OP. On passing through the glass, half the vibrations will remain along OP but on passing through the quartz, the vibrations will split into e- and o-rays. The o-vibrations are along OD and e- \square vibrations are along OA. The half wave plate introduces a phase difference of rad between the two vibrations. The vibrations of o-ray will occur along OC instead of OD on emerging from the plate. Therefore, the resultant vibration will be along OQ whereas the vibrations of the beam emerging from glass plate will be along OP.
- In effect, the half wave plate turns the plane of polarization of the incident light through an angle 2θ.
- If the principal plane of the Nicol N_{2} is aligned parallel to OP, the plane polarized light emerging from the glass tube will pass through the glass plate of the half shade plate and that part appears brighter. On the other hand light coming out of the quartz plate is partially obstructed and corresponding field of view appears less bright.
- If the principal plane of N_{2} is aligned parallel to OQ the quartz half will appear brighter than the glass half. Thus, the two halves of the plate are unequally illuminated.
- When the principal plane of N_{2} is parallel to AB , the two halves appear equally bright and it is parallel to CD , the two halves appear equally dark.
- To find the specific rotation of a solution, the analyser is first set in the position for equal darkness without solution in the tube G. The reading on circular scale is noted.
- Next, the tube is filled with optically active solution of known concentration. The field of view is now partially illuminated. The analyser is rotated till the field of view becomes equally dark. The reading on circular scale is noted again. The difference between the two scale readings gives the angle of rotation of the plane of polarization caused by the solution. Knowing the values of $\theta, 1$ and c , the specific rotation is obtained using the following formula

$$
[S]_{\lambda}^{t}=\frac{\theta}{l \times C}=\frac{\text { rotation in degrees }}{\text { length in decimetres } \times \text { conc.in } \frac{g m}{c . c} \text {. }}
$$

- In actual experiment, different concentrations of solution are taken and the corresponding angles of rotation are determined. A graph is plotted between concentration C and the angle of rotation θ. The graph is a straight line (fig. c).

Model Questions

1. What is polarization?
2. What is meant by plane polarized light?
3. Define the terms plane of vibration and plane of polarization.
4. State Brewster's law.
5. Distinguish between polarized and un-polarized light.
6. What is polarizer?
7. What is analyzer?
8. Write a note on Law of Malus.
9. What is double refraction?
10. What is an optic axis?
11. What are uniaxial crystals?
12. What are negative and positive uniaxial crystals? Give examples.
13. What is a quarter wave plate?
14. What is a half wave plate?
15. Write an application of quarter wave plate.
16. Write any two applications of half wave plate.
17. Define optical activity.
18. What are dextrorotatory substances?
19. What are laevorotatory substances?
20. Define specific rotation.
21. Describe the construction of a Nicol prism.
22. Explain the production of (i) linearly (ii) Circularly and (iii) elliptically polarized light
23. Describe the detection of Elliptically polarized light and Circularly polarized light
24. What is quarter- wave plate? Deduce its thickness for a given wave length in terms of its refractive indices.
25. What is half- wave plate? Deduce its thickness for a given wave length in terms of its refractive indices.
26. What do you understand by double refraction? Explain Huygen's theory of double refraction in a uniaxial crystal.
27. Describe the construction and working of Nicol prism and show how it can be used as a polarizer or as an analyser.
28. Give the construction and theory of (i) quarter-wave plate and (ii) half-wave plate.
29. Explain the construction and working of Laurent's half shade polarimeter.
30. Discuss the production and detection of plane, circularly and elliptically polarized light.

Fomoshonomy (POLARISATION)

parmblonomi - 84414veri

(a). aqPM

50rtonmorrayino 9001 :

port oscurnmy ${ }^{\circ}$ कortio:

1proudin any (Law o\% Malus):

(154)

Boricorn oyortossoveros (Double Refraction):

 Simocoll aynllanoutwoi' ज0ुL IT.

 (1) पa゙क्mL

 Qरणी

 L®BLTणणा+ pormonmonafin inplTomा हि

80). बाTmo errovep plobl:

$$
\lambda / 4=\left(M_{0}-\mu_{E}\right) \cdot t \longrightarrow 0
$$

 Giदgnciorlung वchpoumb.

$$
\begin{equation*}
(2 n+1)^{\lambda / 4}=\left(\mu_{0}-\mu_{E}\right) \cdot t \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
t=\frac{(2 n+1) \lambda}{4\left(\mu_{0}-\mu_{E}\right)} \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
(2 n+1) \lambda / 2=\left(\mu_{0}-\mu_{E}\right) \cdot t \\
t=\frac{(2 n+1) \lambda}{2\left(\mu_{0}-\mu_{E}\right) \cdot t} \longrightarrow \text { (3) } \tag{B}
\end{gather*}
$$

(8). ELophor Wormanonorrupin omf (Plane polarised light):

(2). O日寸

 mipimiss LleLopimy

(2). avolib monnoyin Trif (circularly Polarised leght):

Qporminaticimoi:

Benmighaniథppo :

Worturwis manar (optical Activity):

 Active substances) बलिँபiा.

(ID). BLLoio Eingixplwin (Leavo-rotatory or left - handed):

(100i Elyinfीจ फीxyoi (Specific rotatory Power):

 Ex mosmio

 $\theta \propto C \cdot l$

$$
\rho=10 \theta / \mathrm{c} \cdot \mathrm{l}
$$

कामिक l - नहsing sielnopis, C. की

10,

Books for Reference

1. Dr. N. Subrahmanyam and Brijlal 2004,A TextBook of Optics,S.Chand \& Company LTD,New Delhi.
2. Dr. N. Subrahmanyam, Brijlal and Dr.M.N.Avadhanulu 2008, A TextBook of Optics,S.Chand\& Company LTD,New Delhi.
3. David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, 6th Edition,John Wiley \& Sons Inc., (2004).
4. H.C. Verma, Concepts of Physics [Part-1], 1st Edition, Bharathi Bhawan Publishers \& Distributers Pvt. Ltd., (2008).
5. Roger A. Freedman, Hugh D. Young, Sears and Zemansky's University Physics, 12th Edition, Pearson, (2011).

Books for Scanned Images

1. Dr. N. Subrahmanyam, Brijlal and Dr.M.N. Avadhanulu 2008, A TextBook of Optics,S.Chand\& Company LTD,New Delhi.
2. H.C. Verma, Concepts of Physics [Part-1], 1st Edition, Bharathi Bhawan Publishers \& Distributers Pvt. Ltd., (2008).
