Kunthavai Naachiyaar Goverment Arts College for Women, Thanjavur.
Department of Physics
WAVE MECHANICS AND NUCLEAR PHYSICS
18K5P09

1. Mrs. A. Jansi Santhosam,
Dept.of Physics, KNGAC, TNJ.

2. Mrs. A. Shalini Krubha
Dept.of Physics, KNGAC, TNJ.



Wave Mechanics

7.1 Introduction Ur\i}_-—'l &LL\‘J T\O__@C% mdﬂf,n

According to de Broglie a moving particle, whatever its nature, has
wave properties associated with it. He proposed that the wavelength A asso-
ciated with any moving particle of momentum p (mass m and velocity v ) is

given by
. ()

where /4 is Planck’s constanf Such waves associated with the matter parti-
cles are called matter waves or de Broglie waves) Bohr’s Theory of the hy-

drogen atom led de Broglie to the conception of matter waves. According to
Bohr’s theory, the stable states of electrons in the atom are governed by
“‘integer rules’’. The only phenomena involving integers in Physics are
those of interference and modes of vibration of stretched strings, both of
which imply wave motion. Hence de Broglie thought that the electrons may
also be characterised by a periodicity. So he proposed that matter, like ra-
diation, has dual nature. Eq. (1) was verified by experiments involving the

diffraction of electrons by crystals.

The de Broglie Wavelength
A photon of light of frequency v has the momentum
p = hv/c
But v = ¢/A. Therefore, the momentum of the photon can be expressed

in terms of wavelength A as
p=HNA\
The wavelength of a photon is, therefore, specified by its momentum

according to the relation
A =h/p ...... (N

de Broglie suggested that Eq.(1) is a completely general one thai ap-
plies to material particles as well as to photons. The momentum of a pariicle
of mass m and velocity v is p = mv, and its de Broglie wavelength is accord-
ingly
A=h/mv
189
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11 £ is the kinetic energy of the material particle, then
p- N (2m )

[herefore, de Broglie wavelength of particle of KLE. £y is given by

\ = h )
ok, ke

[f'a charged particle carrying charge ¢ is accelerated through a poten-
tial difference V volts,then kinetic energy £y =g V.

.. The de Broglie wavelength for charged particle of charge g and ac-
celerated through a potential difference of V' volts is

___h
A= W ... (3)

Example 1. Find the de Broglie wavelength associated with
(1) A 46 gm golf ball with velocity 36 m/s.
(ii) an electron with a velocity | 0’ m/s.

Which of these two show wave character and why? (Garhwal 1994)
Sol. (¢) Since v << ¢, we can take m = m, —> the rest mass. Hence

W 663x10%)s

~mv (0.046 kg) (36m/s)
=4.0x 103 m,
Thus the wavelength associated with golf ball is much smaller as com-

pared to its dimensions. Hence no wave aspects can be expected in its be-
haviour.

(if) Again v <<c,som =mgy =9.1x 107! kg.
b _ 663x 107
mv9.0 x 103 x 107
This wavelength is comparable with the atomic dimensions. Hence a
moving electron exhibits a wave character, .
Example 2. Show that the de Broglie wavelength associated with an
electron of energy V electron-volts is approximately (1.227 / VyYnm .

Sol. The de Broglie wavelength A associated with an electron of mass
m and energy £ is given by

=7.3x10 "' m

3 h
| 2 mE)
Here, kinetic energy E; = V eV = 1.6x 107° y}
6.62 x 10 34
S
V(2x9.1x107" x 1.6 x 107"p)
_1227x107°m 1227 d

\IV = an

Example 3 Find the kinetic energy of a proton whose de Broglie
wavelength is 1 fm. !
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Sol. pc = umv)e = he/k
(136 x 107 eVis) 3 x 10 ms ™))
. % 10 Pm
Rest energy of proton = £5=0.938 GeV.
pc > Eq .Hence a relativistic calculation is needed.
The total energy of the proton is
NE 22 ) )
E=NE[+p°c” =N(0.938GeV)” + (1.241GeV)” = 1.556 GeV.

The kinetic energy of the proton is

KE=E-Ej=(1.556-0.938) GeV = 0.618 GeV

Example 4. Show that the de Broglie wavelength for a material parti-
cle of rest mass mp and charge q, accelerated from rest through a potential
difference of V volts relativistically is given by

- h
\lzmqu[l +—9V—Z]

2mgc

= 1.241GeV.

Solution. We use the relativistic formula to find momentum:.

Kinetic energy £; = aV.,
EZ“ 2 2+ mlc4 E=E, + 2 _ V+ 2.
=pcC ot LT Ly mOC =q moc

o " ,
So, pzc2 =E*- m 2t = gV +my c‘")2 ~ m% ¢t = q2 V4 2mycqV

78
p2=2m0 qy(l +2_q_2] or p=‘\/2m0q[/(] +_LV5}

mO € 2m0C

]
X

\/2m0qV{l +—ﬂ%}

2mOC

L
p

Special Case. If the charged particle is an electron, then g = e =
1.6 x 107'°C, my=9.1 x 10™'kg,

: 6.62 x 107 -
- ( 16x 1071V )
\j(2x9.1xlo*“xl.éxm‘”’V) | + : '“31 *3
. | 2x9.1x1077" x(3x107))
Lo ] — m
W N1 +9768 X 107V

Phase velocity (or Wave Velocity) of de Broglie Waves

A particle of mass m moving with velocity v has a wave associated

with it whose wavelength is given by

A=
mv

f the
Let E be the total energy of the particle. Let v be the frequency 0
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associated wave. We equate the quantum expression £ hv with the rela-
tivistic formula for total energy £ = mc” . So we get
hv = mc or v=mc’h.
Let v, be the de Broglie wave velocity. Then,
2 2
mc h c
\Y =\’}\: . e
P h | {mv v

But the particle velocity v is always less than c (the velocity of light).
Therefore, the de Broglie wave velocity v, must be greater than c.

".Z. Expression for Group Velocity

Consider two waves that have the same amplitude A but differ by an
mmount A o in angular frequency and an amount Ak in wave number. They
can be represented by the equations

y; =Acos (01 - kx)
Y, = A cos[(0+A0)1-(k+Ak)x]

The superposition of the two waves will vield a single wave packet or
wave group. Let us find the velocity v with which the wave group travels.

The resultant displacement y at any time ¢ and any position x is the
sum of y, and y,.

y=n+t»n
=Acos(t-k)+Acos[(0+Aw)t-(k+Ak)x]
= 2 A cos %[(Zh) +Aw)1-2k+Ak)x] cosl (Aot - Akx
A © and Ak are small‘compared with o and & respectively. Therefore,
20 + Ao =20

2k + Ak = 2k
Aw :
‘ y =2 Acos TI—TIJCOS((M—/\.T) (1)
This is the analytical expression for resultant wave (wave packet) due

to superposition of the two waves. The second cosine function is the original
wave. The coefficient of this cosine can be considered to be an amplitude
that varies with x and ¢. This variation of amplitude is called the modulation
of the wave.

14
R
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Hence Eq. (1) represents a w
mber k that has superimposed up

qum (Fig.7.1).

7 ’ Yy » ’ .
£ The velocity v of the way €\groups is

av

5 ¢ of angular frcquencx © and wa

nita modulation of anuglar frecuence
Vo, = —

When © and £ have c\fntinu%lfx -

S e

—C) Spreads, the group velocity is given by
g~ - 0)

This 1s the expression for the group velocity.

Group Velocity of de Broglie Waves

A particle moving with a velocity v s supposed to consist of 2
of waves, according to de Broglie hypothesis.

The group velocity is given by,
do

£roup
e

Vg = —
The angular frequency and wave number of the de Broglie waves zs-
sociated with a particle of rest mass mg moving with the velocity v zre i 2o
by
> v,
2namcc 2amoc

O =2AV= =
' h

2% 2mmv 27T mgv _

and k = = —J] 17
A h N1 —v27c?

By differentiation, we obtain

d(o 27T myv
dv h(1 - Ve )’,2
dk 2n mO
& p1 -
The group velocity v, of the de Brolle waves associated with particie s
do do/ dv

eS kT vy
Hence the de Broglie wave group asscciated with a moving particle
rravels with the same velocity as the particle.
Relation between Group Velocity (vg )and Wave Velocity or Phase
Velocity (v )
We have the relations,

© "
Wave velocity , v, = Y o
do >
- — &)
Group velocity, Ve =
The wave number is given by
: 2=
k=—
8
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L ]

dh 2 ’
lj)» . 9/ 14 #4
Also o= iavs 287
o, |y 1y
"M v al

or — s o =2fy 52 s

Dividing Eq. (4) by kg, (3), we get

,.2..73 V},,y,ihlii
i‘l_)- d), B 72 4 ([/,J
). dk 27
3
dv
or o y ~h—E
d P .
dv
yyad -] (%
v, = v, — A ~ (5
2= P T, ’

Eq. (5) gives the relationship between group velocity (v, jnd phese
velocity or wave velocity (v, ). -

From this equation the following two cases zrise.

(i) For dispersive medium

vp=f(2). Usually dv,, / 7. is positive (normal dispersion .

o Vg < Vp.

This is the case with de Broglie waves.

(ii) For non-dispersive medium

dy
v 2f(). —F=0. v=vp

This result ieue for electromagnetic waves m vacuum.
7.3 Experimental study of matter waves
Davisson and Germer’s experiment.

Experimental arrangement. The experimenizl amzngement
shown in Fig. 7.2. Electrons are produced by heating 2 filament (F) by 2 low
tension battery (L.T). These electrons are restricted 1o 2 {ine paralie] penct
by thin aluminium diaphragms Dy and D;. The electrons are them acoel-
erated by passing them through an aluminium cylinder 4 10 which re-
quired high potentials (H.T) can be applied. This elecron beam falls oo 2
farge single crystal of nickel NJThe crystal is capable of retation abowt 2=
axis parallel 10 the axis of the incident beam by 2 handle H. The elecoroms
are scattered in all directions by the atoms i the crystal The elecoroms
scattered in different directions are collected by 2 Faraden cviinder C, calied e
collector. The collector is connected 10 2 sensitive gahvamometer G 2nd czo be
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moved along a gradu-
ated circular scale S,
H so-lhul it is able to re-
ceive the reflected
electrons at all angles
between 20° and 90°.
The collector has two
walls C and D, insu-
lated from each other.
A retarding potential
is applied between the
two walls of collector
so that only the elec-

Fig. 7.2.

cited by collision with atoms, may enter
face centred cubic type and i

longs to the
flecting surface parallel to the
any azimuth o
dent beam and

Experimental pr
electrons falls normally
from the surface layer 0
Fro each azimuth of the cry
on the crystal. The co
the galvanomelcr de
measure of the intensi
nometer deflection is plotte
and the beam entering th
repe
drawn (Fig. 7.3). The gra
age becomes 44 ¥V when a s
voltage is increased, the length
mum at 54V at an angle of 50

_ Direction of
incident beam

48V

f the crystal can be pres
the reflected beam entering the collector.

ocedure. Normal incidence. Here,
on the surface of the crysia
f the crystal acting
stal,
llector is moved to vario
flection at eac
ty of the diffracted bea
d against the angle |
e collector (colatitude

ated for different accelerating
ph remains

pur appears 0

trons with nearly the
incident velocity and
not the secondary
slow electrons, €X-
the collector. The nickel crystal be-
t is so cut as to present a smooth re-
1 1). By turning the handle,

piane (1
defined by the inci-

ented to the plane

lattice

the beam of
I. A diffraction effect
as a plane grating is produced.

2 beam of electrons is made to fall normally
us positions on the scale S and

ted. This deflection gives a
m of electrons. The galva-
setween the incident beam
). The observations are
mber of curves are
he accelerating volt-
n the curve. As the accelerating
ases, till it reaches a maxi-
in the accelerating

h position is no

voltages and a nu
fairly smooth, till t

of the spur incre
o with further increases

50°

68V

54V 60V

. Fig. 73.
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voltage, the spur decreases in length and finally disappears at 687,

The occurrence of a pronounced spur ("bump”) at 50° with the clf:c-
trons accelerated through 54¥ can be explained, as due to the constructive
interference of the electron waves, scattered in this direction, from the regu-
larly spaced parallel planes in the crystal, which are rich in. at(?ms. Accord-
ing to de Broglie's theory, the wavelength of 54V electrons is given by

12.25

l=v——A.U. =1.66 A.U.
According to experilsxfent, we have a diffracted beam at colatitude of

50°. For nickel, for the (1 1 1) reflecting plane, d = 2.15 A. U Applying the
equation for a plane reflection grating nA = d sin 8, n refemn.g here to the
first order, we get, . =2.15sin 50° = 1.65 A.U. Thus the experimental value
is in close agreement with the theoretical value. This shows that the beam of

electrons behaves like X-rays, suffers diffraction at reflecting surfaces and
thus has wavelike characteristics.

G.P. Thomson’s Experiment

Experimental arrangement. The experimental arrangement is
shown in Fig. 7.4 (i). A beam of cathode rays is produced in a discharge
tube AC by means of an induction coil. The electrons passing through a fine

o o

Fig. 7.4 (i) - Fig. 7.4 (in)

hole 4, are incident on a thin gold foil F. The thickness of the foil 1s about
10" m. The emergent beam of electrons is received on a photographic plate
P. Visual examination of the pattern is made possible by the fluorescent
screen S. A very high vacuum is maintained in the camera part P of the ap-
paratus while air is allowed to leak into the discharge tube section through a
needle valve, Thus a beam of required voltage can be continuously pro-
duced, the discharge tube being sufficiently soft.

Experimental procedure. A beam of electrons of known velocity 1s
made to fall on the photographic plate, after traversing the thin gold foil.
When the plate is developed a symmetrical pattern consisting of concentric
rings about a central spot, is obtained (Fig. 7.4 (ii)). This pattern is similar to
the pattern produced by X-rays in the powdered crystal method. When the
cathode rays in the discharge tube are deflected by a magnetic field, the en-
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tire pattern on the screen S is found to shift comrespondingly. Thus the pas-
tern is confirmed as due to diffracted electrons and not due to secondary X-
rays, generated by the electrons going through the foil. Further, on removing
the film F the pattern disappears, showing that the presence of the film is es-
sential. If the electrons behaved as corpuscles, the electrons passing through
the foil should have been scattered through a wide angle. C learly, this ex-
periment demonstrates that the electron beam behaves as waves, since dif-
fraction patterns can be produced only by waves.

Verification of the de Broglie equation. G.P. Thomson emploved
very high voltages of the order of 50000 voits to accelerate the electrons.
With very high speed electrons, relativistic correction for the mass of the
electron has to be applied. It can be shown that

3)

_12.27 1 .
YV N1+9836x10 ¥ b o
The correction factor is very small, except for very large values of 7%
To calculate A from the radii of the rings. In the polycrystalline
film there will be some crystals set at the correct angle to give 2 Bragg re-
flection. If there are enough
crystals distributed at random, ,
the result of such reflections |F
will be a series of rings, arising ‘
from the intersection of the
cones of diffraction with the =~ ——_3"___lo
photographic platc.LetABbeA_'e)/s L N
the incident beam passing i
though the film at B. BP is the :
direction of the beam which

has suffered a Bragg reflection
insomecq'stalinmeﬁlmatB.Thisreﬂectedbeamfallsaxthepoinz}’oc

the photographic plate at 2 distance R from the central point O (Fig. 73\
Let the distance BO, from the film to the plate. be L. ZPBO =28 where 8 s
the glancing angle given by the Bragg relation,
" ni = 2dsin 6.
R/L = tan 20 = 28, since 8 is small.
= 8=R2L
But 2dsin 8 =28 =nk or§=ni2d
n — R of A= Rd ~2)
2d 2L " onl
From this the wavelength is calculated.
value given by Fgn. (1). This prov ides ulumate
nature of the electrun.

A

Fig. 7.5.

This agrees with the calculared
confirmation for the wave
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Example 1.

W &@0z0Tew

10 &V electrons are passed through a thin film of a met-

' 2 N . . . A1 . .
al for which the atomic spacing is 5.5 X 10°°" m. What is the angle of devia-
tion of the first order diffraction maximum ?

Wavelength of the electron = A =

h

2mVe
6.626 x 107'°

A=
V29.11x

=1.227x 10"

l30‘3‘) 10% (1.602 x 107'9)

m.

Applying Bragg’s formula for diffraction at the atomic planes,
mh=2dsinBorlx(1.227x 10 =2x(55% 10" !) sin 6

orsin8=0.1115.

6 =6°24".

Angle through which electron is deviated = 20 = 12°48"

Two slit interference pattern with electrons

The interference of electron waves can be exhibited by a double slit ex-
periment. The interference pattern so obtained resembles the pattern in case of
visible light and proves the association of wave-packets with electrons.

The experimental arrangement is shown in Fig. 7.6.

The electron gun (G) supplies a mono-energetic beam of electrons.
The electrons emerging from the gun are allowed to pass through two slits

S| and §,. The' interference
pattern is observed on a pho-
tographic film P. The entire
apparatus is enclosed in a
high vacuum chamber, so that
electrons emerging from the
gun travel to the screen with-
out collisions in the path.
When photographic film is
observed with an electron mi-
croscope, it is observed that

To pump PL
Electron gun Bl
G H |+ - Sl P
Filament i S
2 ;
Fig. 7.6

interference fringes are obtained on the film. The distribution of intersity on
the film is shown on the right. The formation of interference fringes clearly
indicates the wave nature of electrons.

Knowing the separation between S|, S»> and the distance between the
plane of §;, S and the photographic plate P, the value of wavelength associ-
ated with electrons may be calculated. This value comes out to be same as

given by de-Broglie relation.

74.

Heisenberg’s uncertainty Principle

Statement. [t is impossible to determine precisely and sirultane-
ously the values of both the members of a pair of physical variables which
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describe the motion of an atomic
N . stem. : .
canonically conjugate variables. system. Such pairs of variables are called
Example.  According to this princi
: 1is princi .
of a particle (say electron) cannot begic(enl::.e' 1(1116 Pposition and momentum
ired degree of accuracy. ined simultaneously to any de-
Taking Ax as the error in d ini
] etermining i i
Jetermining 1ts momentum at the same instfn’:s tl;;Josmon ar}c! Ap the error in
follows : , these quantities are related as
Ax Ap=h/2n
The product of the tw -
X O €ITors 1S i
planck’s constant. If Ax is small, Ap will ot e order of
that if one quantity is measured accuratel tharge and viee Vers: HAICEDS
Th . ely, the other quantity becomes less
accurate. us any instrument cannot meas th i
lv th di . ure the quantities more accu-
rately Than predicted by Hgeisenberg'’s principle of uncertainty or indetermi
_The same relati . i
nacy tion holds for the energy and time related to any given
event.
ie., AEAt=h/2n
Acczo.rdmg C:o classical idf:as, it is possible for a particle to occupy 2
fixe.d. position an have a deﬁmtt? momentum and we can predict exactly its
.sm.on ar'ld'momentun} at any time 'later. But according to the uncertainty
pnnc1ple, it is not possible to determine accurately the simultaneous values
of pqsition ar.ld morr.lentum of a particle at any time. Heisenberg’s principle
implies that In physical measurements probability takes the place of exact-
ness and as such phenomena which are impossible according to classical
ideas may find a small but finite probability of occurrence.
Ilustration (i) : Determination of position with a y-ray microscope
Suppose we try to measure the position and linear momentum of an electron
using an imaginary microscope with a
very high resolving power (Fig. 1.7).
The electron can be observed if atleast
one photon is scattered by it into the -
microscope lens. The resolving power

Microscope Objective

of the microscope is given by the re-
Jation pae z
~ " 2sind

where A X is the distance between WO
be just resolved by

points which can ) -
X microscope. This is the range 1n Whlf:h
the electron would be visible when dis-

Flg 1.7. turbed by the phOtOD- Hence Ax i
ent of the electron.

ctron through
ttered photon

uncertainty involved in the position measurerit
interact
this electron,

with the €le

Ho i i will
wever, the incoming photon (he 58

the Compton effect. To be able to 5€€
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should enter the microscope within the angle 20. The momentum imparted
by the photon to the electron during the impact is of the order of h/A. The

. h h
component of this momentum along, OA is - - sin O and that along OB is =
ain 0. Hence the uncertainty in the momentum measurement in the x-direé-

tion is
. Hai 2h
/_\pJr o h 8in O ~| === 5in 0] =-15in0,
M2k A A
Arxﬁw,ﬂizaax~xsnﬂ)uh

A more sophisticated approach will show that Ax Ap, = h/2n.

It is clear that the process of measurement itself perturbs the particle
whose properties are being measured.
F Iustration (i) : Diffraction of a beam of clectrons by a slit.
" A beam of electrons is transmitted through a slit and received on a photo-

Slit
p =
Ay ol
J— P =
p=h/i
\a (o T2
—— 0
Fig. 7.8.

graphic plate I’ kept at some distance from the slit (Fig. 7.8). We can only
say that the electron must have passed through the slit'and cannot specify its
exact location in the slit as the electron crosses it. Hence the position of any
electron recorded on the plate is uncertain by an amount cqual to the width
of the slit (Ay). Aet A be the wavelength of the electrons and 0 be the angle
of deviation corresponding to first minimum. From the theory of
diffraction in optics, Ay = 6" This is the uncertainty in determining the
position of clectron along y-axis.

[nitially the electrons are moving along X-axis and so they have no
ent of momentum along y-axis. As the electrons are deviated at the

compon : e
| path to form the pattern, they acquire an additional

slit from their initia
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- O 201
component of momentum along v-axis, I p is the momentum of the electr

on emerging from the shit. the component of momentum of electron deng ,
avis i< p s U As the eleciron may be aywhere within the pattern from
angle —0 to +0, e y-component of momentum of (he ttlc;:lr;)n may be
anywhere between o sin 0 and + p sin0. Thercfore, the uncertainty in.llzc -
component of momentum of the electron Y

along

Apy=2psin 0= ——2;:' sin 0 (sincc A= ﬁ)
P
A 2h
. A'1¥7-="—-— —_ Q1 -

i.e.. Ay Apy 2 h/2x, which is Heisenberg's uncertainty principle.

Ex?mple 1. A microscope, using photons, is employed to locate an
electron in an atom to within a distance of 0.2 A. What is the uncertainty in
the momentum of the electron located in this way ?

Here, Ax=02A=02x10"""m. Ap=1

We have, AxAp='2!':; or Ap=ﬁ
-34
Ap= 6.626 x 10

= —o- =0-274 % 107 kg ms™".
21 (0.2 x 10 0)

Example 2. An electron has a speed of 600 ms™ with an accuracy
of 0.005 %. Calculate the certainty with which we can locate the position of
the electron. h = 6.6 X 107 Jsandm = 9.1 x 107" kg.

31 -1
Momertum of the electron = mv = 9.1 x 10 3 % 600 kg ms .

bp = l-ggs“va = (5 % 1073)O.1 % 1077 x 600) kgms™!

From uncertainty principle, Ax Ap = h/2m
h 6.6 107"

—a—— —— —-—

mbp 275 % 107 x 9.1 % 107" x 600)

m——— o — . S—

Ax =

= 0.003846 m

| } )
Example 3. The lifetime of an €x ited state of an atom s apout it
. p . . $ . 4 = ,’. |‘\.
sec. Calculate the minimum uncertainty in the determination of the energ,

of the excited state.
We have, AE A1 2 h/2r.

Scanned with CamScanner



AEF RAILAN JLLALW YT I UM WA Wl LLARER UJ Al LI ILW LT i

UnikE—3  WAVE MECHANICS She c\‘m,u Ape

7.7. Basic postulates of Wave Mechanics AT W‘

In the development of Wave Mechanics, there are certain  basic postu-
lates, which are of fundamental importance. The fundamental postulates are
three in number. Other wave properties follow from them.

(1) Each dynamical variable relating to the motion of a particle can
be represented by a linear operator.

Explanation. In classical Physics, certain definite functions of suitable
variables are associated with each observable quantity. Thus (x, y, z) are as-

sociated with position, mv is associated with momentum, 5 mv* is associated

with K.E. and so on. Similarly, in wave mechanics and quantum mechanics,
certain operators are associated with observable quantities .For the x-compo-
nent of the lincar momentum of a particle which has a classical expression

dx ' _ h
px=m(97) we have a quantum mechanical operator —i(*—J £ . In the

2n | Ox
: . [ h)
vector form, this operator is —i — |V For angular momentum we can
P
| L
write the operator as (rx p)=—i ?21! (rx V). Similarly, for the observable
N :

total - " classi on is ——(p 24p 24p 2
o energy, the classical representation is > (p, P, +p, )

+V(x,y,z) and the quantum mechanical operator  is

w2 P @ s
2m La:- ayz 5.2 +V (x, y, z). An operator tells us what opera-

tion to carry out on the quantity that follows it. The operator i —-i — in-
structs us to take the partial derivative of what comes after

" it with respect to !
and multiply the result by i ["“J :

Scanned with CamScanner



Table 7.1 summarises the quantum operators for several physica!
quantitics. ‘

Table 7.1. Quantum operators

Quantity ‘Classical definition Quantum operator
Position r r
Momentum P - i—h— v

2x
Angular momentum r X p —i-z—I:t-r’ x V
Kinetic energy p2[2m _ (K%/87m) v?
Total energy- pZ/% + Epn (r) - (hz/ 8 m) v+ Ep(r)

(2) A linear eigenvalue equation can be always linked with each

operalor. 52
Example. The total energy operator is i (55)51- . Consider the eigen valve
.. h )y i : :

equation { | =" = Ey . Here v is said to be an eigenfunction of the

operator § (-Z_Tt-]gt- and E is called the corresponding energy eigenvalue.

(3) In general, when a measurement of a dynamical quantity @ is made
on a particle for which the wave function is\y, we get different values of a
during different trials. This s in conformity with the uncertainty principle.
The most probable value of a is, 31ven by
<> = I yrAy dV
0
where A is the operator associated with the quantity @ and w* is the
omplexconjugateof y. The quantity <a> 15 called the expectation vaiue ot
A (that is the value of @ obtained in the majority of the trias). The expecia-
sion value of momentum and energy may be found by using the correspond-
ing differential operator. Thus e "
<p'3 = I L (-'—%;V) y dxdy dz

T .. h3d '
<E> = j v (ine3) y dxdy d:
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78. Derivation of Time-dependent form of Schrodinger equation

The quantity that characterises the de Broglic waves is called the wave
function. 1t is denoted by W. It may be a complex function. Let us assume
that ¥ is specified in the x direction by

Y= A (1)

If v is the frequency, then @ = 2avand v= VA |
q, - Ac— :JU‘(\'I’- /A) . 2)

Let E be the total energy and p the momentum of the particle. Then
E=hv and A= h/p. Making these substitutions in Eq. (2).
Y= Ae” NE-m) .--(3)
Eq. (3)'Is a mathematical description of the wave equivalent of an un-
restricted particle of total energy £ and momentum p moving in the +x
direction.
Differentiating Eq. (3) twice with respect to x, we get

oy An'p’ »

- 5Ey i
Differentiating Eq. (3) once with respect to 7, we get

" )

At speeds small compared with that of light, the total energy E of a
particle s the sum of its kinetic energy p‘/"m and its potential energy V. Vis
in general a function of position x and time 7.

2
. - 2
% E= om +V ...(6)
Multiplying both sides of Eq. (6) by v we get
_ v
Ey= om + Wy (7
From Eqgs. (5) and (4) we see that
- _h ov
£y = 2 ot -+-(8)
__K dy
and Y= - Fe) {9)

Substituting these expressions forﬁ\y and p*y into Eq. (7) we obtai

h oy _
T2mi o 87r2m a}z*"‘l’
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or ;’c %g— - 8rr1m %4— Vy ...(10)
Eq. (10) is the time-dependent form of Schrodinger’ s equation.
In three dimensions the time-dcpcndent form of Schrodinger’s equation is
ih oy _ [31\11 Py 82 Ty
m A gelm ax* ayl a7 J
Schrodmger s equation : Steady-state form
In a great many situations the potential energy of a particle does not
depend upon time explicitly. The forces that act upon it, and hence V, vary
with the position of the particle only. When this is true, Schrodinger’s equa-

tion may be simplified by removing all reference to 1. The one-dimesional
wave function y of an unrestricted particle may be written in the form

W= Ae” (2%i/h) (E1= px)
= Ao~ (WHE/Ry  #(22ip/h)x
y= yoe FEN! A1)

Here, yo = Ae" Z?’P* That is, ¥ is the product of a position depend-
ent function ¥, and a time-dependent function e~ s
Differentiating Eq. (1) with respect to 1, we get
2riE -
_Ba\y_t___ - o £ QxiE/h)t .2
Differentiating Eq. (1) twice with respect to x, we get
az‘{/ az‘VO - (Zn'E/h) ] _.(3 )
D 4
We can substitute these values in the time-dependent form of
Schrodinger’s equation

ih oy _
2n-or 81c2m ox* FVY-
Eyg & @M = — A o~ EME
; 8Tm o

i X /3
+ "Vc e CxE =)t

Dividing through by the common exponential factor, we get

o |

™ (E - . (%)
Eq. (5) is the steady-state form of Schrodinger’s equation.
In three dimensions it is N\ | [ f
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Usually it is written in the form

VW+8f

m
2 (E"' V)‘V = 0
h
7.0 Properties of the wave function

Physical significance of ‘Y. The probability that a particle will be
‘ound at a given place in space at a given instant of time is characterised by
the function ¥ (x,y,z0). It is called the wave function. This function can be
either real or complex. The onlzy quantity having a physical meaning is the
square of its magnitude P =I¥ I = ¥V *where W* is the complex conjugate
of Y. The quantity P is the probabilil%/ density. The probability of findin ga
particlc in a volume dx, dy, dz, is | W I dx dy dz. Further, since the particle is
cerizinly to be found somewhere in space

)jf M dx . dy. dz=1

the triple integrai extending over all possible values of x, y, z. A wave
function (V) satisfying this relation is called a normalised wave function.

Orthogonal and normalised wave functions. If the product of a
function ¥, (x) and the complex conjugate ¥,* (x) of a function ‘¥, (x)

varishes when integrated with respect o x over the interval a< x <p that 1S,
if

[v:" @ ¥ (9 dx = 0

then y,(x) and vy, (x) are said to bz orthogonal in the interval (a, b).
We know that the probability of finding 2 particle in the volume ele-
ment dVis given by'¥ ¥ * dV. The total probability of finding the particle in
the entire space is, of course, unity, i.c.,
Ji¥rav = 1.
where the integration extends over all space. The above equation can
also be written as
JYY* v = 1
Any wave function salisfying the above equation is said to be nor-
malised (0 unity or simply normalised
Very often YW is not a normalized wave function. We know that it is
possible o muitply ¥ by a constant A, 10 give a new wave function. AY,
which is also a solution of the wave equation. Now the problem is to choose
the proper value of A such that the new wave function is a normalized func-
tion. In order that it is a normalized function, it must meet the requirement

[(AY) A dedy d: =
or, AP [yy * dxdy dz =]
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N Cdv dy d:
| A 1is known as normalizing constant.

To amrive at results consistent with physical observations, scveral addi-
tional requirements are imposed on the wave function W (x):

I. It must be well behaved, that is, single-valued and continuous
everywhere.

or A PF=

2. If ¥ (x), ...y, (x) are solutions of Schrodinger equation, then the
lincar combination y (x) = a, ¥, (x) + a; Y, (x) + ..a, Y, (x) must be a
solution.

3. The wave function y (x) must approach zero as x—eo

Eigenfunctions and Eigenvalues. Schrodinger’s time-independent
equation is an example of a type of differential equation called an eigen-
value equation. In general, we can write an eigenvalue equation as

. Fop¥ =f¥
The differential operator F,, operates on a function v, and this yiclds
a constant f times the function. The function y is then called an eigenfunc-

tion of the operator F,,, and the corresponding value for f is called the eigen-
value. xy

SIMPLE APPLICATIONS OF SCHRODINGER’S EQUATION”
- 7.10. The particle in a box [Infinite Square Well Potential]

Consider a  particle
moving inside a box along the
x-direction. The particle is
bouncing back and forth be-

L tween the walls of the box. The
box has insurmountable poten-
tial barmers at x = 0 and x = L.
i.e., the box is supposed to have
walls of infinite height at x =0
and x = L (Fig. 7.14). The par-
ticle has a mass m and its posi-
tion x at any instant is given by
v O<x<L.

The potential energy V of
the particle is infinite on both
sides of the box. The potential

0 —» x encrgy V of the particle can be
L assumed to be zero between
Fig. 7.14 ‘ x=0and x=L.
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- In terms of the boundary conditions'imposed by the problem, the
potential function is

V=0forO<x<L
V=ooforx <0
V=oforx>L

The particle cannot exist outside the box and so its wave function ¥

'1s0forx< OQandx > L. Ourtask is to find what ¥ is within the box, viz.,
betweenx =Qandx =L,

Within the box, the Schrodinger's equation becomes

2
@ o S
Putting 8“;’2715 = k%, the equation becomes
2
d—\£+ Fy=0
PR
The general solution of this equation is
Y= Asinkx+ B cos kx ...(1)

The boundary conditions can be used to evaluate the constants A and
B in equation (1).

¥ =0atx=0and hence B =0
Y=0atx=L.Hence 0 =A sin kL

SinceA# 0,kL = nt where n 1S an integer or k = n%t
Thus Vo) = Asin L0
The energy of _p KR g
the particle } " 8mm L8m’m
n*h?
E,= L2 ---(3)

For each value of n, there is an energy level and the corresponding
wavefunction is given by equation(2). Each value of E, is called an eigen-
value and the corresponding ‘¥, is called eigenfunction. Thus inside thz box,
the particle can only have_ the discrete €nergy values specified by equation
(3). Note also that the particle cannot have zero energy.

The particle in a box: Wave functions

It is certain that the particle is somewhere inside the box. Hence for 2
normalised wave function
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L L,
I Xy ode= 1 ie, A’j sin’
0 0

A’I(

\/2
A L

The normalised wave
functions of the particle

1 - cos 2nmx/L
2

1.6.,

or

} -,

The normalised wave functions ¥,
7.15.

Example 1. Calculate the per-

mitted energy levels of an electron, in
a box 1 A wide.

Here, m = mass of the electron
=9.1x 10 kg;
L=14A=10"m.
E =17
. The permitted electron ener-
n*h? | |

ies=E,= —
& " 8mL

n* (6.626 x 107>’
8(9.1 x 107°") (1071’
6 X 1078 ntJ= 38n V.

7,

sin LI
i

%z,

¥, and ¥, are plotted in Fig.

A

The minimum energy, the ¥,
electron can have, is E, = 38 €V, cor-
responding ton = 1.
The other values of energy are  x = () <=L

E2 = 4E| = 152 EV, E3 = 9El = 342
eV and so on. |
Example 2. A particle is moving in

Fig. 7.15

a one-dimensional box (of infinite

height) of width 10 A. Calculate the probability of finding :h-e particle
within an interval of 1 A at the centre of the box, when it is in its state of

least energy.
The wave function of the particle in

the ground state (n = 1) 1s
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of a-decay exhibited by radioactive nuclei.

Einmplc. The potential barrier problem is a good approximation 1o
the problem of an electron trapped inside but near the surface of a metal.
Calculate the probability of transmission that a 1.0 eV electron will
pencirate a potential barrier of 4.0 eV when the barrier width is 2.0 A.

From equation (7) the (ransmission coefficient is
T ~ 16 1.0 eV - 1.0eV
40 eV 4 QeV

— _2x2x10"1°m\1291 = .
105 x 107 s; ¥ 201X 107 kg) (4-1) (1.6 x 107 J)

= 0.084

‘Thus, only about eight 1.0 eV electrons, out of every hundred,
penetrate the barrier.
/3.

13. Linear harmonic oscillator

Consider a particle executing simple harmonic motion along the x
direction and let & be the restoring force per unit displacement.

The P.E. of the particle = f kx dx = -;-ké. -
0

The Schrodinger equation for the harmonic oscillator is

dy  8n’m 1
+ E-—kd |ly=0 (D)
¢ K ( 2 ]
It is convenient to simplify Eq. (1) by introducing the dimensionless
quantjties
1 i -\/ 2rmv
y =[T/_2—TE- vkm ) x X = hn X «.(2)
9 .
and o= _._2£. "_' - £ “.(3)

h/2r k hv
where v is the classical frequency of the oscillation given by

1 [k
TEE Y o

2r m
In terms of y and @, Schrodinger’s equation becomes

Scanned with CamScanner



ﬁﬂ; + (o - y’) v =0 ...(4)
dy

To solve this cquation, a solution of the form below can be tried -
) 2
-y
W:f(y)e" . we kD)

where f{y) is a function of y that remains to be found.
By inserting the W of Eq. (5) in Eq. (4) we obtain

Ly —uy Ly @- =0 6
7~ Yyt @ hf=0. .(6)
which is the differential equation that f obeys.

Writing (oe — 1) = 2n, Eq. (6) becomes,

A, df N
a7 2ydy+ 2nf=0 ..(7)

This is a standard mathematical equation known as Hermite's equa-
tion. The solutions of Eq. (7) are called Hermite's Polynomials, given by

n d
H,0)=f4)= (-1)" expy 2 P )] (8)
The eigen functions of harmonic oscillator, therefore, are the follow-

Va (0)= NH, () exp (- y*/2) ..9)
where N is a normalisation constant.
The eigen values (permitted values of the total energy) are given by .

E, = (n+ %)hv n=20,1, 2, 3, ...(10)
AV
The energy of a har-

monic oscillator is thus -

quantised in steps of hv. The "2 N {Es

energy levels here are even- 972 hy \ 75 L

ly spaced (Fig. 7.18). We 7/2 n E3

note that, when n =0, E, = 5,2 hv\- £

L pv which is the lowest 3219 .

2 &

value of encrgy the oscil- 1712 hv 7/5(1 R

lator can have. This value is 0 X

called the zero point energy. Fig. 7.18
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The Harmonic Oscillator Wave Functions. Each wave function v,
c‘o?snsm of 2 m,lynom ial H,(y) (called a Hermite poiynomial), the exponen-
tial factor F7A ':md a numerical coefficient which is nceded for ¥, to
meet the nommalisation condition

2
[lv.lPay=1 n=o0, 1,2 (D
The general formula for the nth wave function is
— 2mv i n -12 - '2/"
Vo= W 2" n!) H (y)e’’'" ...(12)

The ﬁrsl.four Hermite polynomials H,(y) are listed in table 7.2, and
the corresponding wave functions are plotted in Fig. 7.19. The vertical lines
show the limits -A and +A between which a classical oscillator with the

same energy would vibrate. /

3 T ' T T : T y 1
A | [\{\ /\ﬂ ' :

| |

I
kA T ER %S
1 . , .
. N AN 'R
1 1 1 1 1 1 1 L
x=-A xz=<A x=-A xz=+A x=-A xz+A x=-A x=+A

Fig. 7.19
Table 7.2. Some Hermite polynomials

n Ho(y) } Ea
0 1 3 hv
1 2y 2 hv
s,
2 4y"— 2 > hv
3 8y’ - 12y | 1 hv
7.14. The Hydrogen Atom

The hydrogen atom consists of a proton around which the electran
revolves. The proton is assumed at rest at the origin of a rectangular coor-
dinate system, and the clectron is orbiting around the fixed proton at a radius
r under the influence of the attractive coulomb ficld of the system. The
e coulomb field is V(r) = - e*/AnE,r.
on is represented by a
ilomb field. This cir-
ach cor-

potential energy function due to th
From the viewpoint of quantum mechanics, the clectr
wave system bounded by the potential well of the cou
cumstance results in a set of permitted standing wave sysiems, ¢

responding to a particular possible value of the total energy.
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