Kunthavai Naacchiyaar Govt. Arts College for Women (Autonomous), Thajavur-7.
(Affliated to Bharathidasan University, Tiruchirappalli)

DEPARTMENT OF PHYSICS

III B.Sc Physics
Numerical Methods
Code: 18K5PELP1

Prepared by,

1. Mrs. K. Saritha, Lecturer in Physics, K. N. G. A. College, Thanjavur.
2. Dr. N. Nisha Banu, Lecturer in Physics, K. N. G. A. College, Thanjavur.

UNIT -IV FINITE DIFFERENCES

- Finite Differences

Let $y=f(x)$ be a given function of x and let $y_{0}, y_{1}, y_{2}, \ldots$ be the values of y corresponding to $x_{0}, x_{0}+h, x_{0}+2 h, \ldots$ of the values of x. i.e., $y_{0}=f\left(x_{0}\right), y_{1}=f\left(x_{0}+h\right), y_{2}=f\left(x_{0}+2 h\right), \ldots, y_{n}=f\left(x_{0}+n h\right)$. Here the independent variable (or argument), x proceeds at equally spaced intervals and ' h '(constant), the difference between two consecutive values of x is called the interval of differencing. Now $y_{1}-y_{0}, y_{2}-y_{1}, \ldots, y_{n}-y_{n-1}$ are called the first differences of the function y and differences of the y_{n} values are denoted by

$$
\Delta y_{n}=y_{n+1}-y_{n} \quad[n=0,1,2, \ldots]
$$

Here ' Δ ' acts as an operator called forward difference operator.
Thus

$$
\begin{aligned}
& \Delta y_{0}=y_{1}-y_{0} \\
& \Delta y_{1}=y_{2}-y_{1} \\
& :::::::::::: \\
& \Delta y_{n}=y_{n+1}-y_{n}
\end{aligned}
$$

The differences of these first differences are called second differences. Thus

$$
\begin{aligned}
& \Delta^{2}\left(y_{0}\right)=\Delta\left(\Delta y_{0}\right)=\Delta y_{1}-\Delta y_{0}=y_{2}-2 y_{1}+y_{0} \\
& \Delta^{2}\left(y_{1}\right)=\Delta\left(\Delta y_{1}\right)=\Delta y_{2}-\Delta y_{1}=y_{3}-2 y_{2}+y_{1}
\end{aligned}
$$

and so on.

In general $\Delta^{n} y_{k}=\Delta^{n-1} y_{k+1}-\Delta^{n-1} y_{k}$ defines $n^{\text {th }}$ differences where k and n are integers.
The difference table is a standard format for displaying finite differences and is explained in the following table called forward difference table.

x_{0}	y_{0}	Δy_{0}			
x_{1}	$y_{r_{n}}$	Δy_{1}	$\Delta^{2} y_{0}$		
x_{2}	y_{2}	Δy_{2}	$\Delta^{2} y_{1}$		
x_{3}	y_{3}	Δy_{3}	$\Delta^{2} y_{2}$		$\Delta^{3} y_{1}$
x_{3}					
x_{4}	y_{4}				

Here each difference proves to be a combination of y values. For example,

$$
\begin{aligned}
\Delta^{3} y_{0} & =\Delta^{2} y_{1}-\Delta^{2} y_{0} \\
& =\left(\Delta y_{2}-\Delta y_{1}\right)-\left(\Delta y_{1}-\Delta y_{0}\right) \\
& =\left\{\left(y_{3}-y_{2}\right)-\left(y_{2}-y_{1}\right)\right\}-\left\{\left(y_{2}-y_{1}\right)-\left(y_{1}-y_{0}\right)\right\} \\
& =y_{3}-3 y_{2}+3 y_{1}-y_{0}
\end{aligned}
$$

\square Backward Differences

We use another operator called the backward difference operator ∇ and is defined by

$$
\nabla y_{n}=y_{n}-y_{n-1}
$$

For $n=0,1,2, \ldots$ we get

$$
\begin{aligned}
& \nabla y_{0}=y_{0}-y_{-1} \\
& \nabla y_{1}=y_{1}-y_{0} \\
& \nabla y_{2}=y_{2}-y_{1}, \text { and so on. }
\end{aligned}
$$

The second backward difference is

$$
\begin{aligned}
\nabla^{2} y_{n} & =\nabla\left(\nabla y_{n}\right) \\
& =\nabla\left(y_{n}-y_{n-1}\right) \\
& =\nabla y_{n}-\nabla y_{n-1} \\
& =\left(y_{n}-y_{n-1}\right)-\left(y_{n-1}-y_{n-2}\right) \\
& =y_{n}-2 y_{n-1}+y_{n-2}
\end{aligned}
$$

Similarly the third backward difference is

$$
\begin{aligned}
\nabla^{3} y_{n} & =\nabla^{2} y_{n}-\nabla^{2} y_{n-1} \\
& =\left(y_{n}-2 y_{n-1}+y_{n-2}\right)-\left(y_{n-1}-2 y_{n-2}+y_{n-3}\right) \\
& =y_{n}-3 y_{n-1}+3 y_{n-2}-y_{n-3} \text { and so on. }
\end{aligned}
$$

\square Central Differences

In the preceding two sections we have discussed Newton's Forward and Backward interpolation formulae which were suited for interpolation near the beginning and end values of the given data. If we want to find the values of x near the middle of the data we use central difference formula, The central difference operator is denoted by δ and is defined by

$$
\delta y_{x}=y_{x+h / 2}-y_{x-h / 2}
$$

For example $y_{-1}-y_{-2}=\delta y_{-3 / 2}$
(taking $h=1$)

$$
y_{2}-y_{1}=\delta y_{3 / 2}
$$

Let $y=y_{0}$ be the central ordinate corresponding to $x=x_{0}$. Let the other ordinates be y_{r} at $x=x_{r}(r= \pm 1, \pm 2, \ldots)$ so that the central difference table is as follows :

The most important central difference formula is Stirling's. We shall derive this by first deriving two other central difference formulas and then taking the mean of the latter in pairs.

G'operators

\square Forward difference operator (Δ)

The forward difference operator ' Δ ' is defined by

$$
\Delta f(x)=f(x+h)-f(x)
$$

where ' h ' is a constant and is the difference between two arguments.
If we apply Δ on $f(x)$ twice, we get

$$
\begin{aligned}
\Delta^{2} f(x) & =\Delta[\Delta f(x)] \\
& =\Delta[f(x+h)-f(x)] \\
& =\Delta f(x+h)-\Delta f(x) \\
& =f(x+2 h)-f(x+h)-f(x+h)+f(x) \\
& =f(x+2 h)-2 f(x+h)+f(x)
\end{aligned}
$$

Similarly, we can find any higher order forward differences in terms of the entries.

\square Backward difference operator ($\bar{\nabla}$)

The backward difference operator ' ∇ ' is defined by

$$
\nabla f(x)=f(x)-f(x-l)
$$

where ' h ' is a constant. If we apply ∇ on $f(x)$ twice, we get

$$
\begin{aligned}
\nabla^{2} f(x) & =\nabla[\nabla f(x)] \\
& =\nabla[f(x)-f(x-h)] \\
& =\nabla f(x)-\nabla f(x-h) \\
& =\{f(x)-f(x-h)\}-\{f(x-h)-f(x-2 h)\} \\
& =f(x)-2 f(x-h)+f(x-2 h)
\end{aligned}
$$

Similarly we can find any higher order backward differences in terms of the entries.

Central difference operator (δ)

The Central difference operator δ is defined by

$$
\delta y_{x}=y_{x+\frac{1}{2} h}-y_{x-\frac{1}{2} h}
$$

$$
\begin{array}{ll}
\delta y_{\frac{1}{2}}=y_{1}-y_{0} & {\left[\text { Taking } x=\frac{1}{2} \text { and } h=1\right]} \\
\delta y_{\frac{3}{2}}=y_{2}-y_{1} & {\left[\text { Taking } x=\frac{3}{2} \text { and } h=1\right]} \\
\delta y_{\frac{5}{2}}=y_{3}-y_{2} \text { and so on. } &
\end{array}
$$

The higher order central difference operator can be defined by

$$
\begin{aligned}
\delta^{2} y_{x} & =\delta\left(\delta y_{x}\right) ; \delta=\mathrm{E}^{\frac{1}{2}}-\mathrm{E}^{\frac{-1}{2}} \\
& =\delta\left(y_{x+\frac{1}{2}}-y_{x-\frac{1}{2}}\right) \\
& =\delta y_{x+\frac{1}{2}}-\delta y_{x-\frac{1}{2}} \\
& =\left(y_{x+1}-y_{x}\right)-\left(y_{x}-y_{x-1}\right) \\
& =y_{x+1}-2 y_{x}+y_{x-1} \text { and so on. }
\end{aligned}
$$

\square Interpolation

Consider the table

$y=$| x | x_{0} | x_{1} | x_{2} | \cdots | x_{n} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | $f\left(x_{0}\right)$ | $f\left(x_{1}\right)$ | $f\left(x_{2}\right)$ | \cdots | $f\left(x_{n}\right)$ |

If the value of $f(y)$ is to be found at some point y in the interval $\left[x_{0}, x_{n}\right]$ and y is not one of the tabulated points, then the value of $f(y)$ is estimated by using the known values of $f(x)$ at the surrounding points. This process of computing the value of a function inside the given range is called interpolation. Simply interpolation means insertion or filling up intermediate terms of a series. If the point y lies outside the domain $\left[x_{0}, x_{n}\right]$ then the estimation of $f(y)$ is called extrapolation. In this chapter we will be mainly concerned with interpolation.

Newton's Forward Interpolation Formula

We know that

$$
\begin{aligned}
& \Delta y_{0}=y_{1}-y_{0} \text { i.e., } y_{1}=y_{0}+\Delta y_{0}=(1+\Delta) y_{0} \\
& \Delta y_{1}=y_{2}-y_{1} \text { i.e., } y_{2}=y_{1}+\Delta y_{1}=(1+\Delta) y_{1}=(1+\Delta)^{2} y_{0} \\
& \Delta y_{2}=y_{3}-y_{2} \text { i.e., } y_{3}=y_{2}+\Delta y_{2}=(1+\Delta) y_{2}=(1+\Delta)^{3} y_{0}
\end{aligned}
$$

In general, $y_{n}=(1+\Delta)^{n} y_{0}$
Expanding $(1+\Delta)^{n}$ by using Binomial theorem we have

$$
\begin{array}{r}
y_{n}=\left\{1+n \Delta+\frac{n(n-1) \Delta^{2}}{2!}+\frac{n(n-1)(n-2) \Delta^{3}}{3!}+\ldots\right\} y_{0} \\
y_{n}=f\left(x_{0}+n h\right)=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+ \\
\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+\ldots
\end{array}
$$

This result is known as Gregory-Newton forward interpolation (or) Newton's formula for equal intervals.

- EXAMPLE 8

A function $f(x)$ is given by the following table. Find $f(0.2)$ by a suitable formula.

x	0	1	2	3	4	5	6
$f(x)$	176	185	194	203	212	220	229

Solution

The difference table is as follows:

x	$y=f(x)$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$	$\Delta^{6} y$
$0\left(x_{0}\right)$	$176\left(y_{0}\right)$	Δy_{0}	$\left(\Delta^{2} y_{0}\right)$				
1	185	9	0	$\left(\Delta^{3} y_{0}\right)$			
2	194	9	0	0	$\left(\Delta^{4} y_{0}\right)$		
3	203	9	0	0	0	$\left(\Delta^{5} y_{0}\right)$	
4	212	9	0	-1	-1	-1	$\left(\Delta^{6} y_{0}\right)$
5	220	8	-1	2	3	4	5
6	229	9	1				

Here $x_{0}=0, h=1, y_{0}=176=f\left(x_{0}\right)$
We have to find the value of $f(0.2)$. By Newton's forward interpolation formula we have,

$$
\begin{aligned}
y\left(x_{0}+n h\right) & =y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+\ldots \\
y(0.2) & =? \\
x_{0}+n h & =0.2 \\
0+n \cdot 1 & =0.2 \text { i.e., } n=0.2 \\
\therefore y(0.2) & =176+(0.2)(9)+\frac{(0.2)(0.2-1)}{2} \cdot 0+\ldots \\
& =176+1.8 \\
& =177.8
\end{aligned}
$$

i.e.,
i.e.,

Hence $f(0.2)=177.8$.

The following table gives the population of a town during the last six the population during the period 1946 to 1948.

Year	1911	1921	1931	1941	1951	1961
Population (in thousands)	12	13	20	27	39	52

Solution

The difference table is as follows:

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{f}(x)$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
$1911\left(x_{0}\right)$	$12\left(y_{0}\right)$	Δy_{0}				
1921	13	1	$\left(\Delta^{2} y_{0}\right)$			
1931	20	7	6	$\left(\Delta^{3} y_{0}\right)$		
1941	27	7	0	-6	$\left(\Delta^{4} y_{0}\right)$	$\left(\Delta^{5} y_{0}\right)$
1951	39	12	5	5	11	-20
1961	52	13		-4		

Here $x_{0}=1911, h=10, y_{0}=12$
By Newton's formula we have
$y\left(x_{0}+n h\right)=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+\ldots$

$$
y(1946)=?
$$

i.e., $\quad x_{0}+n h=1946$
i.e., $1911+n \cdot 10=1946$ i.e., $n=3.5$
$\therefore y(1946)=12+(3.5)(1)+\frac{(3.5)(3.5-1)}{2} \times 6$

$$
\begin{aligned}
& +\frac{(3.5)(3.5-1)(3.5-2)}{6} \times(-6) \\
& +\frac{3.5(3.5-1)(3.5-2)(3.5-3)}{24} \times 11 \\
& +\frac{(3.5)(3.5-1)(3.5-2)(3.5-3)(3.5-4)}{120} \times(-20)
\end{aligned}
$$

$$
\begin{aligned}
& =12+3.5+26.25-13.125+3.0078+0.5469 \\
& =12+3.5+26.25+3.0078+0.5469-13.125 \\
& =32.18
\end{aligned}
$$

\therefore The population in the year 1946 is 32.18 .
To find the population in the year 1948 :
i.e., To find y (1948).
i.e.,

$$
x_{0}+n h=1948
$$

$$
1911+n \cdot 10=1948
$$

$$
n=3.7
$$

$$
\therefore y(1948)=12+3.7+\frac{(3.7)(3.7-1)}{2} \times 6
$$

$$
+\frac{3.7(3.7-1)(3.7-2)}{6} \times(-6)
$$

$$
+\frac{3.7(3.7-1)(3.7-2)(3.7-3)}{24} \times 11
$$

$$
+\frac{3.7(3.7-1)(3.7-2)(3.7-3)(3.7-4)}{120} \times(-20)
$$

$$
=12+3.7+29.97-16.983+5.4487+0.5944
$$

$$
=34.73
$$

The population in the year 1948 is 34.73 .
Increase in the population during the period 1946 to 1948.

$$
\begin{aligned}
& =\text { Population in } 1948-\text { Population in } 1946 \\
& =34.73-32.18 \\
& =2.55 \text { thousands }
\end{aligned}
$$

Lagrange's Interpolation Formula for unequal intervals

Let $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ be the values of the function $y=f(x)$ corresponding to the arguments $x_{0}, x_{1}, \ldots, x_{n}$, not necessarily equally
Let $f(x)$ be a polynomial in x of degree n. Then we can represent

$$
\begin{align*}
& f(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right) \\
& \\
& \quad+a_{1}\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)+\ldots \tag{1}\\
& \\
& \quad+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)
\end{align*}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are constants.
Now we have to determine the $(n+1)$ constants $a_{0}, a_{1}, \ldots a_{n}$. Putting $x=x_{0}$ in (1), we get

$$
\begin{align*}
f\left(x_{0}\right) & =a_{0}\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right) \\
\text { i.e., } \quad a_{0} & =\frac{f\left(x_{0}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} \tag{2}
\end{align*}
$$

Putting $x=x_{1}$ in (1), we get

$$
f\left(x_{1}\right)=a_{1}\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)
$$

i.e., $\quad a_{1}=\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)}$

Similarly

$$
\begin{align*}
& a_{2}=\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) \ldots\left(x_{2}-x_{n}\right)} \tag{4}\\
& a_{n}=\frac{f:::::::::::::::::::::::::: ~}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)} \tag{5}
\end{align*}
$$

Substituting (2), (3), (4), (5) in (1), we get

$$
\begin{aligned}
f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} f\left(x_{0}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} f\left(x_{1}\right) \\
& +\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)} f\left(x_{n}\right)
\end{aligned}
$$

If we denote $f\left(x_{0}\right), f\left(x_{1}\right), \ldots f\left(x_{n}\right)$ by $y_{0}, y_{1}, \ldots, y_{n}$ we get,

$$
\begin{aligned}
f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} y_{0} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} y_{1} \\
& +\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)} y_{n}
\end{aligned}
$$

which is Lagrange's interpolation formula.f
$x=10$ from the following table :

x	5	6	9	11
y	12	13	14	16

Solution

The Lagrange's interpolation formula is

$$
\begin{aligned}
y=f(\dot{x})= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0} \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3}
\end{aligned}
$$

Here

$$
\begin{align*}
x= & 10, \quad x_{0}=5, \quad x_{1}=6, \quad x_{2}=9, \quad x_{3}=11 \\
y_{0}= & 12, \quad y_{1}=13, \quad y_{2}=14 \quad y_{3}=16 \\
f(10)= & \frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)}(12) \tag{12}\\
& +\frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)}(13) \tag{13}\\
& \quad+\frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-11)}(14) \tag{14}\\
& \quad+\frac{(10-5)(10-6)(10-9)}{(11-5)(11-6)(11-9)}(16) \\
= & \frac{4 \cdot 1 \cdot 1}{1 \cdot 4 \cdot 6}(12)-\frac{5 \cdot 1 \cdot 1}{1 \cdot 3 \cdot 5}(13) \tag{13}\\
f(10)= & 14.63 \tag{16}
\end{align*}
$$

EXAMPLE 2

Find the equation of the parabola passing through the points $(0,0)$, $(1,1)$ and $(2,20)$ using Langrange's formula.

Solution

The given points can be arranged in the form of table as given below.

Here

x	0	1	2
y	0	1	20

$$
\begin{array}{lll}
x_{0}=0, & x_{1}=1, & x_{2}=2 \\
y_{0}=0, & y_{1}=1, & y_{2}=20
\end{array}
$$

We know that Lagrange's formula is

$$
\begin{align*}
& y(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \times y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \times y_{1} \\
&+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} \times y_{2} \tag{1}
\end{align*}
$$

Substituting the above values, we get

$$
\begin{aligned}
y(x) & =\frac{(x-1)(x-2)}{(-1)(-2)} \times(0)+\frac{(x-0)(x-2)}{(1)(-1)} \times(1)+\frac{(x-0)(x-1)}{(2)(1)} \times(\\
& =(-x)(x-2)+x(x-1)(10) \\
& =-x^{2}+2 x+\left(x^{2}-x\right)(10) \\
& =-x^{2}+2 x+10 x^{2}-10 x \\
& =9 x^{2}-8 x
\end{aligned}
$$

The required equation of parabola is

$$
y=9 x^{2}-8 x
$$

EXAMPLE 3 *

Using Lagrange's interpolation formula, find the equation of the cubic curve that passes through the points $(-1,-8),(0,3),(2,1)$ and $(3,2)$.

Solution

The given data can be arranged in the form of table as given below.

x	-1	0	2	3
y	-8	3	1	2

The Lagrange's interpolation formula is

$$
\begin{aligned}
y=f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3}
\end{aligned}
$$

Here

$$
\begin{align*}
& \text { Here } \begin{aligned}
x_{0}= & -1, \quad x_{1}=0, \quad x_{2}=2, \quad x_{3}=3 \\
y_{0}= & -8, \quad y_{1}=3, \quad y_{2}=1, \quad y_{3}=2 . \\
f(x)= & \frac{(x-0)(x-2)(x-3)}{(-1-0)(-1-2)(-1-3)}(-8) \\
& \quad+\frac{(x+1)(x-2)(x-3)}{(0+1)(0-2)(0-3)}(3) \\
& \quad+\frac{(x+1)(x-0)(x-3)}{(2+1)(2-0)(2-3)}(1) \\
& \quad+\frac{(x+1)(x-0)(x-2)}{(3+1)(3-0)(3-2)}(2) \\
= & \frac{2}{3}\left(x^{3}-5 x^{2}+6 x\right)+\frac{1}{2}\left(x^{3}-4 x^{2}+x+6\right)-\frac{1}{6}\left(x^{3}-2 x^{2}-3 x\right. \\
& +\frac{1}{6}\left(x^{3}-x^{2}-2 x\right)
\end{aligned} \\
& y=
\end{align*}
$$

$$
\begin{aligned}
y & =\frac{7}{6} x^{3}-\frac{31}{6} x^{2}+\frac{14}{3} x+3 \\
y & =\frac{7 x^{3}-31 x^{2}+28 x+18}{6} \\
6 y & =7 x^{3}-31 x^{2}+28 x+18
\end{aligned}
$$

The required equation of the cubic curve is

$$
\therefore 6 y=7 x^{3}-31 x^{2}+28 x+18
$$

Bessel'" formula:-
Gauss's forward interpolation formula is

$$
\begin{aligned}
& \text { Gauss s } \\
& y(x o+n h)= y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y-1 \\
&+\frac{(n+1)(n)(n-1)}{3!} \Delta^{3} y-1 \\
&+\frac{(n+1) n(n-1)(n-2)}{4!} \Delta^{4} y-2+\cdots \rightarrow(1)
\end{aligned}
$$

we know that

$$
\begin{align*}
\Delta^{2} y_{0}-\Delta^{2} y-1 & =\Delta^{3} y-1 \tag{2}\\
\Delta^{2} y-1 & =\Delta^{2} y_{0}-\Delta^{3} y-1 \\
\Delta^{2} y-2 & =\Delta^{3} y-1-\Delta^{3} y-2 \\
\Delta^{3} y-1 & =\Delta^{3} y-2+\Delta^{4} y-2 \\
\Delta^{3} y-2 & =\Delta^{3} y-1-\Delta^{4} y^{4} 2 \\
\Delta^{4} y-2 & =\Delta^{4} y-1-\Delta^{5} y-2
\end{align*}
$$

and so on. Now (1) can be written as

$$
\begin{aligned}
& \text { and so on. Now (0) can be wrong } \begin{aligned}
y\left(x_{0}+n h\right)= & y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2 \cdot 1}\left[\frac{1}{2} \Delta^{2} y-1+1 / 2 \Delta^{2} y-1\right] \\
& +\frac{(n+1) n(n-1)}{31} \Delta^{3} y-1 \\
& +\frac{(n+1) n(n-1)(n-2)}{4!}\left[\frac{1}{2} \Delta_{\left.y-2+1 / 2 \Delta \Delta^{4}-2\right]}^{2}+\cdots\right. \\
= & y_{0}+n \Delta y_{0}+\frac{1}{2} \cdot \frac{n(n-1)}{2!} \Delta^{2} y-1 \\
& +\frac{1}{2} \frac{n(n-1)}{2,1}\left(\Delta^{2} y_{0}-\Delta^{3} y-1\right)+\frac{n\left(n^{2}-1\right)}{31} \Delta y-1 \\
& +\frac{1}{2} \cdot \frac{(n+1)(n)(n-1)(n-2)}{4} \Delta^{4} y-2
\end{aligned}
\end{aligned}
$$

$$
+1 / 2 \frac{n(n+1)(n-1)(n-2)}{4!}\left(\Delta_{y-1}^{4}-\Delta^{5} y-2\right)+\cdots
$$

using (2) and (3) in (1)

$$
\begin{aligned}
& =y_{0}+n \Delta y_{0}+n(n-1)\left[\frac{B^{2} y-1+\Delta^{2} y_{0}}{2}\right]+\frac{n(n-1)}{2!}\left(\frac{n+1)}{3}-1 / 2\right) \\
& +(n+1) n(n-1)(n-2)\left[\Delta_{y-2}^{4}+\Delta^{4} y+\Delta^{3} y-1\right. \\
& y\left(x_{0}+n h\right)=y_{0}+n \Delta y_{0}+n(n-1)\left[\frac{2}{2}\right]-\cdots \\
& \begin{aligned}
y\left(x_{0}+n h\right)= & y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2)}\left[\frac{\Delta^{2} y-1+\Delta^{2} y_{0}}{2}\right] \\
& +\frac{n(n-1)(n-1 / 2)}{2}
\end{aligned} \\
& +\frac{n(n-1)(n-1 / 2)}{3!} \Delta^{3} y-1 \\
& \rightarrow \frac{(n+1) n(n-1)(n-2)}{41}\left[\frac{\Delta 4 y-2+\Delta^{4} y-1}{2}\right]+. \\
& \text { This is Bessel's Jormula. }
\end{aligned}
$$

EXAMPLE 1

(Using Bessel's formula find $f(25)$ given $f(20)=2854, f(24)=3_{162}$ $f(28)=3544, f(32)=3992$.

Solution

Here take $x_{0}=24, h=4$, The Bessel's formula is

$$
y\left(x_{0}+n h\right)=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!}\left(\frac{\Delta^{2} y_{-1}+\Delta^{2} y_{0}}{2}\right)
$$

$$
+\frac{n(n-1)\left(n-\frac{1}{2}\right)}{3!} \Delta^{3} y_{-1}
$$

$$
+\frac{(n+1) n(n-1)(n-2)}{4!}\left[\frac{\Delta^{4} y_{-2}+\Delta^{4} y_{-1}}{2}\right]+\ldots
$$

$$
y(25)=?
$$

ie., $\quad x_{0}+n h=25$

$$
\begin{aligned}
& n(4)=25-x_{0}=25-24 \\
& \therefore n=\frac{1}{4}=0.25
\end{aligned}
$$

The difference table is as given below
(2

Using the above formula, we get,

$$
\begin{align*}
& \begin{aligned}
y(25) & =3162+0.25 \times 382+\frac{0.25(-0.75)}{2}\left(\frac{74+66}{2}\right) \\
& +\frac{(0.25)(0.25-1)\left(0.25-\frac{1}{2}\right)}{3!} \\
& =3162+95.5-6.5625-0.0625
\end{aligned} \\
& y(25)=3250.875 \tag{-8}
\end{align*}
$$

Given that $\sin (0.1)=0.0998, \sin (0.2)=0.1986, \sin (0.3)=0.2955$; $\sin (0.4)=0.3894$ and $\sin (0.5)=0.4794$, find $\sin (0.35)$.

Solution

The difference table is as given below

x	$f(x)$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
$0.1\left(x_{-2}\right)$	$0.0998\left(y_{-2}\right)$	$0.0988 \Delta y_{-2}$			
$0.2\left(x_{-1}\right)$	$0.1986\left(y_{-1}\right)$				
0.3	$\left(x_{0}\right)$	$0.2955\left(y_{0}\right) \cdot$	$0.0969 \Delta y_{-1}$	$-0.0019 \Delta^{2} y_{-2}$	
0.4	$\left(x_{1}\right)$	$0.3894\left(y_{1}\right)$	$0.0939 \Delta y_{0}$	$-0.0030 \Delta^{2} y_{-1}$	
0.5	$\left(x_{2}\right)$	$0.4794\left(y_{2}\right)$	$0.0900 \Delta y_{1}$	$-0.0039 \Delta^{2} y_{0}$	-0.0009
$\Delta^{3} y_{-2}$	0.0002				
$\Delta^{4} y_{-2}$					
				$\Delta^{3} y_{-1}$	

Here take $x_{0}=0.3 ; y_{0}=0.2955$ and $h=0.1$
We know that Bessel's formula is

$$
\begin{align*}
& y\left(x_{0}+n h\right)=y_{0}+ n \Delta y_{0}+\frac{n(n-1)}{2!}\left(\frac{\Delta^{2} y_{-1}+\Delta^{2} y_{0}}{2}\right)+\frac{n(n-1)\left(n-\frac{1}{2}\right)}{3!} \Delta^{3} y_{-1} \\
&+\frac{(n+1) n(n-1)(n-2)}{4!}\left[\frac{\Delta^{4} y_{-2}+\Delta^{4} y_{-1}}{2}\right]+\ldots \quad \ldots(1) \tag{1}\\
& \\
& \text { i.e., } \quad \begin{aligned}
x_{0}+n h & = \\
n(0.35)= & 0.35 \\
n(0.1)= & 0.35-0.3 \Rightarrow n=0.5
\end{aligned}
\end{align*}
$$

Substituting the values available in the table and $n=0.5$ in (1), we get $y(0.35)=0.2955+(0.5) \times(0.0939)+\frac{(0.5)(0.5-1)}{2!}\left(\frac{-0.0030-0.0039}{2}\right)$

$$
\begin{aligned}
& \quad+\frac{(0.5)(0.5-1)\left(0.5-\frac{1}{2}\right)}{3!}(-0.0009)+\ldots . \\
= & 0.2955+0.04695+0.00043125+\ldots . \\
= & 0.3429
\end{aligned}
$$

Therefore $\sin (0.35)=\mathbf{0 . 3 4 2 9}$

\square NUMERICAL INTEGRATION

The term Numerical integration is the numerical evaluation of a definite integral

$$
\mathrm{A}=\int_{a}^{1} f(x) d x
$$

where ' a ' and ' b ' are given constants and $f(x)$ is a function given analytically by a formula or empirically by a table of values. Geometrically, A is the area under the curve of $f(x)$ between the ordinates $x=a$ and $x=b$.

But in engineering problems we frequently come across the integrals whose integrand is an empirical function given by a table. In these cases we may use a numerical method for approximate integration. When we apply numerical integration to a function of a single variable, the process is sometimes called mechanical quadrature; when we apply numerical integration to the computation of a double integral involving a function of two independent variables it is called mechanical cubature.

The problem of numerical integration, like that of numerical differentiation, is solved by representing the integrand by an interpolation formula and then integrating this formula between the given limits. Thus, to find the value of the definite integral $\int_{a}^{b} f(x) d x$ (or) $\int_{a}^{b} y d x$ we replace the function $f(x)$ (or y) by an interpolation formula, usually one involving differences, and then integrate this formula between the limits a and b. In this way we can derive quadrature formulae for the approximate integration of any function for which numerical values are known.

Of the many possible quadrature formulae, here we shall derive some of the simplest and most useful one.
\square QUADRATURE FORMULA FOR EQUIDISTANT
ORDINATES
Consider the Newton's forward difference formula

$$
\begin{aligned}
y(x)=y\left(x_{0}+n h\right)=y_{0}+n \Delta y_{0}+ & \frac{n(n-1)}{2!} \Delta^{2} y_{0} \\
& +\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+\cdots
\end{aligned}
$$

This formula can also be written by replacing n by u as
$y(x)=y\left(x_{0}+u h\right)=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}$

$$
\begin{equation*}
+\frac{v(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots \tag{1}
\end{equation*}
$$

Let $y=y(x) \ldots$ (2) be the given function.
Let us now integrate (2) over n equidistant intervals of width $h(=\Delta x)$.

$$
\begin{aligned}
& \text { i.e., } \int_{x_{0}}^{x_{0}+n h} y(x) d x=? \\
& \text { Let } x=x_{0}+u h \\
& \therefore d x=h d u \\
& x=x_{0}, u=0 \\
& x=x_{0}+n h, u=n \\
& \text { When } \quad \\
& \therefore \int_{x_{0}}^{x_{0}+n h} y(x) d x=h_{0}^{n} y\left(x_{0}+u h\right) d u
\end{aligned}
$$

$$
\begin{equation*}
=h \int_{0}^{n}\left(y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots\right) d u \tag{by1}
\end{equation*}
$$

$$
=h \int_{0}^{n}\left(y_{0}+u \Delta y_{0}+\frac{u^{2}-u}{2!} \Delta^{2} y_{0}+\frac{u^{3}-3 u^{2}+2 u}{3!} \Delta^{3} y_{0}+\ldots\right) d u
$$

$$
=h\left[\left(u y_{0}\right)_{0}^{n}+\left(\frac{u^{2}}{2} \Delta y_{0}\right)_{0}^{n}+\frac{1}{2}\left(\frac{u^{3}}{3}-\frac{u^{2}}{2}\right)_{0}^{n} \Delta^{2} y_{0}\right.
$$

$$
\left.+\frac{1}{6}\left(\frac{u^{4}}{4}-u^{3}+u^{2}\right)_{0}^{n} \Delta^{3} y_{0}+\ldots . .\right]
$$

$$
=h\left[n y_{0}+\frac{n^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \Delta^{2} y_{0}\right.
$$

$$
\left.+\frac{1}{6}\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right) \Delta^{3} y_{0}+\ldots .\right]
$$

$$
\begin{aligned}
\quad \int_{x_{0}}^{x_{0}+n h} y(x) d x=h\left[n y_{0}\right. & +\frac{n^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \Delta^{2} y_{0} \\
& \left.+\frac{1}{6}\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right) \Delta^{3} y_{0}+\ldots\right] \cdots(A)
\end{aligned}
$$

This gives the general Quadrature Formula for equidistant ordinates and is known as Newton-Cote's formula.

- TRAPEZOIDAL RULE

Putting $n=1$ in (A), we get

$$
\int_{x_{0}}^{x_{0}+h} y(x) d x=h\left[y_{0}+\frac{1}{2} \Delta y_{0}\right]
$$

(neglecting higher order differences)

$$
\begin{align*}
& =\frac{h}{2}\left[2 y_{0}+\Delta y_{0}\right]=\frac{h}{2}\left[y_{0}+\left(y_{0}+\Delta y_{0}\right)\right] \\
& =\frac{h}{2}\left[y_{0}+y_{1}\right] \tag{l}
\end{align*}
$$

In the interval $\left(x_{0}+h, x_{0}+2 h\right)$, we get

$$
\begin{align*}
\int_{x_{0}+h}^{x_{0}+2 h} y(x) d x & =h\left[y_{1}+\frac{1}{2} \Delta y_{1}\right] \\
& =\frac{h}{2}\left[2 y_{1}+\Delta y_{1}\right]=\frac{h}{2}\left[y_{1}+\left(y_{1}+\Delta y_{1}\right)\right] \\
& =\frac{h}{2}\left[y_{1}+y_{2}\right]
\end{align*}
$$

$$
\int_{x_{0}+(n-1) h}^{x_{0}+n h} y(x) d x=\frac{h}{2}\left[y_{n-1}+y_{n}\right]
$$

Adding (1), (2) and (3), we get

$$
\int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right]
$$

This is called the Trapezoidal \mathbf{R} :le.

Note: The trapezoidal rule is the simplest of the formulae for numerical integration, but it is also the least accurate. The accuracy of the result can be improved by decreasing the interval h.

- TRUNCATION ERROR IN THE TRAPEZOIDAL RULE

The Taylor series expansion of $y=f(x)$ about $x=x_{1}$ is given by

$$
\begin{equation*}
y=y_{1}+\frac{\left(x-x_{1}\right)}{1!} y_{1}^{\prime}+\frac{\left(x-x_{1}\right)^{2}}{2!} y_{1}^{\prime \prime}+ \tag{1}
\end{equation*}
$$

where y_{1} is the value of y at $x=x_{1}$ and $y_{1}{ }^{\prime}, y_{1}{ }^{\prime \prime} \ldots$ etc are the values of $\quad y^{\prime}, y^{\prime \prime}$, etc at $x=x_{1}$.

$$
\begin{align*}
\therefore \int_{x_{1}}^{x_{2}} y d x & =\int_{x_{1}}^{x_{2}}\left[y_{1}+\frac{\left(x-x_{1}\right)}{1!} y_{1}{ }^{\prime}+\frac{\left(x-x_{1}\right)^{2}}{2!} y_{1}{ }^{\prime \prime}+\ldots\right] d x \\
& =\left[y_{1} x+\frac{\left(x-x_{1}\right)^{2}}{2!} y_{1}{ }^{\prime}+\frac{\left(x-x_{1}\right)^{3}}{3!} y_{1}{ }^{\prime \prime}+\ldots\right]_{x_{1}}^{x_{2}} \\
& =y_{1}\left(x_{2}-x_{1}\right)+\frac{\left(x_{2}-x_{1}\right)^{2}}{2!} y_{1}{ }^{\prime}+\frac{\left(x_{2}-x_{1}\right)^{3}}{3} y_{1}^{\prime \prime}+\ldots . \\
& =h y_{1}+\frac{h^{2}}{2!} y_{1}{ }^{\prime}+\frac{h^{3}}{3!} y_{1}^{\prime \prime}+ \tag{2}
\end{align*}
$$

where $h=x_{2}-x_{1}$
Now, $\quad A_{1}=$ area of the trapezium in the interval $\left(x_{1}, x_{2}\right)$

$$
\begin{equation*}
=\frac{1}{2} h\left(y_{1}+y_{2}\right) \tag{3}
\end{equation*}
$$

Putting $x=x_{2}$ and $y=y_{2}$ in (1), we get

$$
\begin{align*}
y_{2} & =y_{1}+\frac{\left(x_{2}-x_{1}\right)}{1!} y_{1}^{\prime}+\frac{\left(x_{2}-x_{1}\right)^{2}}{2!} y_{1}^{\prime \prime}+\ldots . \\
& =y_{1}+\frac{h}{1!} y_{1}^{\prime}+\frac{h^{2}}{2!} y_{1}^{\prime \prime}+\ldots \tag{4}
\end{align*}
$$

where $h=x_{2}-x_{1}$
Substituting (4) in (3), we get

$$
\begin{align*}
\mathrm{A}_{1} & =\frac{h}{2}\left[2 y_{1}+\frac{h}{1!} y_{1}^{\prime}+\frac{h^{2}}{2!} y_{1}^{\prime \prime}+\ldots\right] \\
& =h y_{1}+\frac{h^{2}}{2!} y_{1}^{\prime}+\frac{h^{3}}{2 \times 2!} y_{1}^{\prime \prime}+\ldots \tag{s}
\end{align*}
$$

(2) $-(5) \Rightarrow$

$$
\begin{aligned}
\int_{x_{1}}^{x_{2}} y d x-\mathrm{A}_{1} & =\left(\frac{1}{3!}-\frac{1}{2 \times 2!}\right) h^{3} y_{1}^{\prime \prime}+\ldots \\
& =\frac{-h^{3}}{12} y_{1}^{\prime \prime}+\ldots
\end{aligned}
$$

i.e., Principal part of the error in $\left(x_{1}, x_{2}\right)$

$$
=\frac{-h^{3}}{12} y_{1}{ }^{\prime \prime}
$$

Similarly principal part of the error in the interval $\left(x_{2}, x_{3}\right)$

$$
=\frac{-h^{3}}{12} y_{2}{ }^{\prime \prime} \text { and so on. }
$$

Hence the total error $\mathrm{E}=\frac{-h^{3}}{12}\left[y_{1}{ }^{\prime \prime}+y_{2}{ }^{\prime \prime}+\ldots+y_{n}{ }^{\prime \prime}\right]$

$$
\therefore \mathrm{E}<\frac{-n h^{3}}{12} y^{\prime \prime}(\xi)
$$

Where $y^{\prime \prime}(\xi)$ is the largest of the n quantities $y_{1}{ }^{\prime \prime}, y_{2}{ }^{\prime \prime}, \ldots, y_{n}{ }^{\prime \prime}$.
i.e., $\mathrm{E}<\frac{-n h^{3}}{12} y^{\prime \prime}(\xi)=-\frac{(b-a) h^{2}}{12} y^{\prime \prime}(\xi)\left[\because n=\frac{b-a}{h}\right]$
\therefore Error in the trapezoidal rule is of the order \boldsymbol{h}^{2}. \measuredangle Example 1 d

Compute the value of the definite integral $\int_{4}^{5.2} \log _{e} x d x$ or
 5.2

$\int \ln x d x$ using trapezoidal rule.
4

Solution

Divide the interval of integration into six equal parts each of width 0.2 i.e., $h=0.2$. The values of the function $y=\ln x$ are next calculated for each point of subdivision as given below.
 By Trapezoidal rule, we have
$\int_{5.2}^{5 n} x d x=\frac{h}{2}\left[\left(y_{0}+y_{6}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}\right)\right]$
4

$$
\begin{aligned}
= & \frac{0.2}{2}[(1.386294+1.648658)+2(1.435084+1.481604 \\
& +1.526056+1.568616+1.609437)] \\
= & (0.1)[3.034952+15.241562]
\end{aligned}
$$

5.2

$\int_{4}^{5} \ln x d x=1.8276544$
4

4 Example 2

Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ by dividing the range of integration into 4 equal parts using trapezoidal rule.
[Nov. '91, Nov. '89]

Solution

Here the length of the interval is $h=\frac{1-0}{4}=0.25$. The values of the function $y=e^{-x^{2}}$ for each point of subdivision are given below.

x	0	0.25	0.5	0.75	1
$e^{-x^{2}}$	1	0.9394	0.7788		
	y_{0}	y_{1}	y_{2}	0.5698 y_{3}	0.3678 y_{4}

By Trapezoidal rule we have

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d x & =\frac{h}{2}\left[\left(y_{0}+y_{4}\right)+2\left(y_{1}+y_{2}+y_{3}\right)\right] \\
& =\frac{0.25}{2}[1.3678+2(2.2876)]=(0.125)(5.943)
\end{aligned}
$$

$$
\int_{0}^{1} e^{-x^{2}} d x=0.7428
$$

4 Example 3

Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$, using Trapezoidal rule with $h=0.2$.
Hence determine the value of π.
[April '92]

Solution

Here $h=0.2$. The values of the function $y=\frac{1}{1+x^{2}}$ for each point of subdivision are given below.

x	0	0.2	0.4	0.6	0.8	1
$y=\frac{1}{1+x^{2}}$	1	0.9615	0.8621	0.7353	0.6098	0.5
y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	

By Trapezoidal rule we have,

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}=\frac{h}{2}\left[\left(y_{0}+y_{5}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}\right)\right]
$$

$$
=\frac{0.2}{2}[1.5+2(3.1687)]=(0.1)(7.8374)
$$

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}=0.78374
$$

We know that

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{1+x^{2}} & =\left(\tan ^{-1} x\right)_{0}^{1}=\frac{\pi}{4} & \therefore \pi=4 \int_{0}^{1} \frac{d x}{1+x^{2}} \\
& =4(0.78374) & \text { [From Trapezoidal Rule] } \\
\therefore \quad \pi & =3.13496 &
\end{aligned}
$$

4 Example 4

Using Trapezoidal rule evaluate $\int_{0}^{2} y d x$ from the following table.

$$
0.6
$$

x	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
y	1.23	1.58	2.03	4.32	6.25	8.36	10.23	12.45

Here $h=0.2$

x	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
y	1.23	1.58	2.03	4.32	6.25	8.36	10.23	12.45
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}

By Trapezoidal rule, we have

$$
\begin{aligned}
\int_{0.6}^{2} y d x & =\frac{h}{2}\left[\left(y_{0}+y_{7}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}\right)\right] \\
& =\frac{0.2}{2}[13.68+2(1.58+2.03+4.32+6.25+8.36+10.23)] \\
& =(0.1)[79.22]
\end{aligned}
$$

2
$\int y d x=7.922$
0.6

- SIMPSON'S $\frac{1}{3}$ RULE

Putting $n=2$ in the above relation (A) (Refer Pg. No. 3.32) and neglecting all differences above the second we get,

$$
\int_{\int}^{x_{0}+2 h} y(x) d x=h\left[2 y_{0}+\frac{2^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{2^{3}}{3}-\frac{2^{2}}{2}\right) \Delta^{2} y_{0}\right]
$$

x_{0}

$$
\begin{aligned}
& =2 h\left[y_{0}+\Delta y_{0}+\frac{1}{6} \Delta^{2} y_{0}\right]=2 h\left[\frac{6 y_{0}+6 \Delta y_{0}+\Delta^{2} y_{0}}{6}\right] \\
& =2 h\left[\frac{6 y_{0}+6 \cdot\left(y_{1}-y_{0}\right)+y_{2}-2 y_{1}+y_{0}}{6}\right] \\
& =\frac{h}{3}\left[y_{0}+4 y_{1}+y_{2}\right]
\end{aligned}
$$

$$
\begin{equation*}
\therefore \int^{x_{0}+2 h} y(x) d x=\frac{h}{3}\left[y_{0}+4 y_{1}+y_{2}\right] \tag{1}
\end{equation*}
$$

x_{0}

Similarly for the next two intervals $x_{0}+2 h$ to $x_{0}+4 h$ we get,

$$
\begin{equation*}
\int_{x_{0}+2 h}^{x_{0}+4 h} y(x) d x=\frac{h}{3}\left[y_{2}+4 y_{3}+y_{4}\right] \tag{2}
\end{equation*}
$$

In general,

$$
\int_{x_{0}+(n-2) h}^{x_{0}+n h} y(x) d x=\frac{h}{3}\left[y_{n-2}+4 y_{n-1}+y_{n}\right]
$$

Adding all the above integrals (1), (2), (3) we get,

$$
\begin{aligned}
\int_{x_{0}}^{x_{0}+n h} f(x) d x= & \frac{h}{3}\left[y_{0}+4\left(y_{1}+y_{3}+\ldots\right)+2\left(y_{2}+y_{4}+\ldots\right)+y_{n}\right] \\
= & \frac{h}{3}\left[y_{0}+y_{n}+4\right. \text { (sum of odd ordinates) } \\
& +2 \text { (sum of even ordinates) }]
\end{aligned}
$$

This is called Simpson's one third rule or Simpson's $\frac{1}{3}$ rule.
Note 1: When using this formula the student must bear in mind that the interval of integration must be divided into an even number of subintervals of width h.
Note 2 : Simpson's $\frac{1}{3}$ rule is also called a closed formula, since the end point y_{0} and y_{1} are also included in the formula.

- SIMPSON'S THREE - EIGHTH RULE :

Putting $n=3$ in (A) (Refer Pg. No. 3.32) and neglecting the higher order differences above the third we get

$$
\begin{array}{r}
\int_{x_{0}}^{x_{0}+n h} y(x) d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\ldots+y_{n-1}\right)\right. \\
\\
\left.+2\left(y_{3}+y_{6}+\ldots+y_{n-3}\right)\right] .
\end{array}
$$

This is known as Simpson's three - eighth rule.
Note : This rule can be applied only if the number of subintervals is a multiple of 3 .

Q TRUNCATION ERROR IN SIMPSON'S RULE

The Taylor series expansion of $y=f(x)$ about $x=x_{1}$ is given by

$$
\begin{equation*}
y=y_{1}+\frac{\left(x-x_{1}\right)}{1!} y_{1}^{\prime}+\frac{\left(x-x_{1}\right)^{2}}{2!} y_{1}^{\prime \prime}+\ldots \tag{1}
\end{equation*}
$$

where y_{1} is the value of y at $x=x_{1}$ and $y_{1}{ }^{\prime}, y_{1}{ }^{\prime \prime}, \ldots$ etc. are the values of $y^{\prime}, y^{\prime \prime}, \ldots$ etc. at $x=x_{1}$.

Hence

$$
\begin{align*}
& \int_{x_{1}}^{x_{3}} y d x=\int_{x_{1}}^{x_{3}}\left[y_{1}+\frac{\left(x-x_{1}\right)}{1!} y_{1}^{\prime}+\frac{\left(x-x_{1}\right)^{2}}{2!} y_{1}{ }^{\prime \prime}+\ldots\right] d x \\
& =\left[y_{1} x+\frac{\left(x-x_{1}\right)^{2}}{2!} y_{1}^{\prime}+\frac{\left(x-x_{1}\right)^{3}}{3!} y_{1}{ }^{\prime \prime}+\ldots\right]_{x_{1}} \\
& =y_{1}\left(x_{3}-x_{1}\right)+\frac{\left(x_{3}-x_{1}\right)^{2}}{2!} y_{1}^{\prime}+\frac{\left(x_{3}-x_{1}\right)^{3}}{3!} y_{1}^{\prime \prime}+\ldots \\
& =2 h y_{1}+\frac{(2 h)^{2}}{2!} y_{1}^{\prime}+\frac{(2 h)^{3}}{3!} y_{1}{ }^{\prime \prime}+\frac{(2 h)^{4}}{4!} y_{1}^{\prime \prime \prime}+\frac{(2 h)^{5}}{5!} y_{1}{ }^{i v}+\ldots \\
& \quad\left[\because x_{2}-x_{1}=h ; \therefore x_{3}-x_{1}=2 h\right] \\
& =2 h y_{1}+2 h^{2} y_{1}^{\prime}+\frac{4 h^{3}}{3} y_{1}^{\prime \prime}+\frac{2 h^{4}}{3} y_{1}{ }^{\prime \prime \prime}+\frac{4 h^{5}}{15} y_{1}^{i v}+\ldots \quad \ldots \text { (2) } \tag{2}
\end{align*}
$$

Now,Area $A_{1}=$ area over the first double strip by Simpson's $\frac{1}{3}$ rule

$$
\begin{equation*}
=\frac{1}{3} h\left(y_{1}+4 y_{2}+y_{3}\right) \tag{3}
\end{equation*}
$$

Putting $x=x_{2}$ and therefore $y=y_{2}$ in (1), we get,

$$
\begin{align*}
y_{2} & =y_{1}+\frac{\left(x_{2}-x_{1}\right)}{1!} y_{1}^{\prime}+\frac{\left(x_{2}-x_{1}\right)^{2}}{2!} y_{1}^{\prime \prime}+\ldots \\
& =y_{1}+\frac{h}{1!} y_{1}^{\prime}+\frac{h^{2}}{2!} y_{1}^{\prime \prime}+\frac{h^{3}}{3!} y_{1}^{\prime \prime \prime}+\frac{h^{4}}{4!} y_{1}^{i v}+\ldots \tag{4}
\end{align*}
$$

where $h=x_{2}-x_{1}$
Putting $x=x_{3}$ and therefore $y=y_{3}$ in (1), we get,

$$
y_{3}=y_{1}+\frac{\left(x_{3}-x_{1}\right)}{1!} y_{1}^{\prime}+\frac{\left(x_{3}-x_{1}\right)^{2}}{2!} y_{1}^{\prime \prime}+\ldots
$$

$$
=y_{1}+\frac{2 h}{1!} y_{1}^{\prime}+\frac{4 h^{2}}{2!} y_{1}^{\prime \prime}+\frac{8 h^{3}}{3!} y_{1}{ }^{\prime \prime \prime}+\frac{16 h^{4}}{4!} y_{1}{ }^{i v}+\ldots
$$

Substituting (4) and (5) in (3), we get

$$
\begin{align*}
\mathrm{A}= & \frac{h}{3}\left[y_{1}+4\left\{y_{1}+\frac{h}{1!} y_{1}^{\prime}+\frac{h^{2}}{2!} y_{1}^{\prime \prime}+\frac{h^{3}}{3!} y_{1}^{\prime \prime \prime}+\frac{h^{4}}{4!} y_{1}^{i v^{2}}+\ldots\right\}\right. \\
& \left.+\left\{y_{1}+\frac{2 h}{1!}+\frac{4 h^{2}}{2!} y_{1}^{\prime \prime}+\frac{8 h^{3}}{3!} y_{1}^{\prime \prime \prime}+\frac{16 h^{4}}{4!} y_{1}^{i v}+\right\} \ldots\right] \tag{6}
\end{align*}
$$

Subtracting (2) and (6), we get

$$
\int_{x_{1}}^{x_{3}} y d x-\mathrm{A}_{1}=\left[\frac{4 h^{5}}{15} y_{1}^{i v}-\frac{5 h^{5}}{18} y_{1}^{i v}\right]+\ldots
$$

\therefore The error in the interval $\left(x_{1}, x_{3}\right)$,

$$
\begin{aligned}
& =\left(\frac{4}{15}-\frac{5}{18}\right) h^{5} y_{1}^{i v}=\left(\frac{24-25}{90}\right) h^{5} y^{i v} \\
& =\frac{-h^{5}}{90} y_{1}^{i v}
\end{aligned}
$$

\therefore The principal part of the error in $\left(x_{1}, x_{3}\right)$

$$
=\frac{-h^{5}}{90} y_{1}^{i v}
$$

Similarly, principal part of the error in the interval $\left(x_{3}, x_{5}\right)$,

$$
=\frac{-h^{5}}{90} y_{3}^{i v} \text { and so on. }
$$

Hence the total error E

$$
\begin{aligned}
& =\frac{-h^{5}}{90} y_{1}^{i v}-\frac{h^{5}}{90} y_{3}^{i v}-\ldots-\frac{h^{5}}{90} y_{2 n-1}^{i v} \\
& =\frac{-h^{5}}{90}\left[y_{1}^{i v}+y_{3}^{i v}+\ldots+y_{2 n-1}^{i v}\right] \\
& =\frac{-n h^{5}}{90} y^{i v}(\xi)
\end{aligned}
$$

where $y^{i v}(\xi)$ is the largest of the n quantities $y_{1}{ }^{i v}, y_{3}^{i v}, \ldots$ $y_{2 n-1}^{i v}$.

$$
\text { i.e., } \mathrm{E}<\frac{-(b-a)}{2 h} \cdot \frac{h^{5}}{90}\left[\because \frac{b-a}{2 n}=h \text {,i.e., } h=\frac{b-a}{2 h}\right]
$$

$$
<-\frac{h^{4}}{180}(b-a)
$$

\therefore Error in the Simpson's $\frac{1}{3}$ rule is of the order h^{4}.

- Example 1 o

Compute the value of the definite integral 5.2

$\int_{\int}^{5.2}$ In $x d x$ using Simpson's rule.

Solution

Divide the interval of integration into six equal parts each of width 0.2 i.e., $h=0.2$. The values of the function $y=\ln x$ are next calculated for each point of subdivision as given below.

x	4.0	$\mathbf{4 . 2}$	$\mathbf{4 . 4}$	$\mathbf{4 . 6}$	4.8	$\mathbf{5 . 0}$	$\mathbf{5 . 2}$
$\ln x$	1.386294						
y_{0}	1.435084	y_{1}	1.481604 y_{2}	1.526056 y_{3}	1.568616 y_{4}	1.609437 $y 5$	1.648658 $y 6$

By Simpson's $\frac{1}{3}$ rule, we have

$$
\begin{aligned}
\int_{4}^{5.2} \ln x d x & =\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+2\left(y_{2}+y_{4}\right)+4\left(y_{1}+y_{3}+y_{5}\right)\right] \\
& =\frac{0.2}{3}[3.034952+2(3.050221)+4(4.570577)]
\end{aligned}
$$

5.2
 $\int \ln x d x=1.827847$
 4

$\$$ Example 2 d

Evaluate $\int e^{-x^{2}} d x$ by dividing the range of integration into 4 0
equal parts using Simpson's rule. [Nov. '91, Nov. '89]

Solution

Here the length of the interval is $h=\frac{1-0}{4}=0.25$. The values of the function $y=e^{-x^{2}}$ for each point of subdivision are given below.

x	0	0.25	0.5	0.75	1
$\cdot e^{-x^{2}}$	1	0.9394	0.7788	0.5698	0.3678
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}

By Simpson's rule we have

$\int_{0}^{1} e^{-x^{2}} d x=\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+2 y_{2}+4\left(y_{1}+y_{3}\right)\right]$

$$
=\frac{0.25}{3}[1.3678+1.5576+6.6368]
$$

$$
\int_{0}^{1} e^{-x^{2}} d x=0.7468
$$

4 Example 3

Find the value of $\int_{0}^{\pi / 2} \sqrt{1-0.162 \sin ^{2} x} d x$, using Simpson's one third rule.

Solution

Let us divide the interval of integration into 6 equal subintervals

$$
\text { i.e., } h=\frac{\pi / 2-0}{6}=\frac{\pi}{12}=15^{\circ}
$$

The values of the function $y=\sqrt{1-0.162 \sin ^{2} x}$ for each point of subdivisions are given below.

x	0	$\frac{\pi}{12}$	$2 \frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5 \pi}{12}$	$\frac{\pi}{2}$
y	1.0000	0.9946	0.9795	0.9586	0.9373	0.9213	0.9154
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}

By Simpson's $\frac{1}{3}$ rule, we have

$$
\int_{0}^{\pi / 2} y \mathbf{d} \boldsymbol{x}=\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}\right)+2\left(y_{2}+y_{4}\right)\right]
$$

$\int_{0}^{\pi / 2} \sqrt{1-0.162 \sin ^{2} x} d x=\frac{\pi}{36}[(1.0000+0.9154)+4(0.9946$

$$
+0.9586+0.9213)+2(0.9795+0.9373)]
$$

$\int_{0}^{\pi / 2} \sqrt{1-0.162 \sin ^{2} x} d x=1.5051$

© Example 4

Find the value of $\log 2^{\frac{1}{3}}$ from $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x$ using Simpson's $\frac{1}{3}$
rule with $h=0.25$.
[April '91]

Solution

Given $h=0.25$. The values of the function $y=\frac{x^{2}}{1+x^{3}}$ for each point of subdivisions are given below.

x	0	0.25	0.5	0.75	1.0
$y=\frac{x^{2}}{1+x^{3}}$	0	0.06154	0.22222	0.39560	0.5000
y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	

By Simpson's $\frac{1}{3}$ rule, we have

$$
\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x=\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+2 y_{2}+4\left(y_{1}+y_{3}\right)\right]
$$

$$
\begin{array}{r}
=\frac{0.25}{3}[(0+0.5)+2(0.22222) \\
\quad+4(0.06 \\
=\frac{0.25}{3}[0.5+0.44444+1.82856]
\end{array}
$$

$$
+4(0.06154+0.39560)]
$$

$$
\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x=0.231083
$$

We know that,

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x & =\frac{1}{3}\left[\log \left(1+x^{3}\right)\right]_{0}^{1} \\
& =\frac{1}{3}(\log 2-\log 1)=\frac{1}{3} \log _{e} 2 \\
\therefore \log 2^{\frac{1}{3}} & =\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x \\
\log 2^{\frac{1}{3}} & =0.231083
\end{aligned}
$$

When a train is moving at 30 metres per second steam is shut off and brakes are applied. The speed of the train (V) in metres per second after t seconds is given by

t	0	5	10	15	20	25	30	35	40
V	30	24	19.5	16	13.6	11.7	10.0	8.5	7.0

Using Simpson's rule determine the distance moved by the train in 40 secs.

Solution

We know that velocity is the rate of change displacement.

$$
\text { i.e., } \quad \mathrm{V}=\frac{d s}{d t} \text { or } d s=\mathrm{V} d t
$$

Here we have to find the total distance moved by the train in 40 secs.

$$
\therefore \mathrm{S}=\int_{0}^{40} \mathrm{~V} d t
$$

The given table is

t	0	5	10	15	20	25	30	35	40
V	30	24	19.5	16	13.6	11.7	10.0	8.5	7.0
	$\mathrm{~V}_{0}$	$\mathrm{~V}_{1}$	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	$\mathrm{~V}_{4}$	$\mathrm{~V}_{5}$	$\mathrm{~V}_{6}$	$\mathrm{~V}_{7}$	$\mathrm{~V}_{8}$

By Simpson's rule we have
40
$\mathrm{S}=\int_{0} \mathrm{~V} d t$

$$
\begin{aligned}
& =\frac{h}{3}\left[\left(\mathrm{~V}_{0}+\mathrm{V}_{8}\right)+2\left(\mathrm{~V}_{2}+\mathrm{V}_{4}+\mathrm{V}_{6}\right)+4\left(\mathrm{~V}_{1}+\mathrm{V}_{3}+\mathrm{V}_{5}+\mathrm{V}_{7}\right)\right] \\
& =\frac{5}{3}[37+2(19.5+13.6+10.0)+4(24+16+11.7+8.5)] \\
& =\frac{5}{3}[37+86.2+240.8]=\mathbf{6 0 6 . 6 6} \text { metres. }
\end{aligned}
$$

\therefore Distance moved by the train in 40 secs $=606.66 \mathrm{~m}$.

Example 6

Given $e^{0}=1, e^{I}=2.72, e^{2}=7.39, e^{3}=20.09, e^{4}=54.60$. Use Simpson's rule to find an approximate value of $\int e^{x} d x$. Also 0 compare your result with the exact value of the integral. Solution
[AMIE, S' 88]
The given values can be arranged in the form of table as given below.

x	0	1	2	3	4
$y=e^{x}$	1	2.72	7.39	20.09	54.60
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}

By Simpson's rule, we have

$$
\begin{aligned}
\int_{0}^{4} e^{x} d x & =\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+2 y_{2}+4\left(y_{1}+y_{3}\right)\right] \\
& =\frac{1}{3}[55.60+14.78+4(2.72+20.09)] \\
& =\frac{1}{3}[70.38+91.24]
\end{aligned}
$$

Now by ordinary integration we get

$$
\begin{aligned}
& \int_{0}^{4} e^{x} d x=\left(e^{x}\right)_{0}^{4}=e^{4}-e^{0}=54.598-1 \\
& \int_{0}^{4} e^{x} d x=53.598
\end{aligned}
$$

A river is 80 feet wide. The depth 'd' in feet at a distance ${ }_{x}$ using Simpson's rule.

Solution

Here $h=10$. The given table is

x	0	10	20	30	40	50	60	70
80								
$y=d$	0	4	7	9	12	15	14	8
3								
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}
y_{8}								

By Simpson's $\frac{1}{3}$ rule, we have

$$
\text { Area of cross-section }=\int_{0}^{80} y d x
$$

$$
\begin{aligned}
& =\frac{h}{3}\left[\left(y_{0}+y_{8}\right)+2\left(y_{2}+y_{4}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}+y_{7}\right)\right] \\
& =\frac{10}{3}[3+2(33)+4(36)]
\end{aligned}
$$

Area of cross section $=\mathbf{7 1 0}$ sq. feet.

4. Example 8

Evaluate $\int^{1.4}\left(\sin x-\ln x+e^{x}\right) d x$ by Simpson's $\frac{1}{3}$ rule. 0.2

Solution

Let us divide the interval of integration into twelve equal parts by taking $h=0.1$. Now the table of values of the given function $y=\sin x-\ln x+e^{x}$ at each point of subdivision is as given below.

x	0.2	0.3	0.4	0.5	0.6	0.7	0.8
y	3.02951	2.84936	2.79754	2.82130	2.89754	3.01465	3.16004
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
x	0.9	1.0	1.1	1.2	1.3	1.4	
y	3.34830	3.55935	3.80007	4.06984	4.37050	4.70418	
	y_{7}	y_{8}	y_{9}	y_{10}	y_{11}	y_{12}	

By Simpson's $\frac{1}{3}$ rule, we have

$$
\begin{aligned}
& \begin{aligned}
& \int_{0.2}^{1.4} y d x=\frac{h}{3}\left[\left(y_{0}+y_{12}\right)+2\left(y_{2}+y_{4}+y_{6}+y_{8}+y_{10}\right)+\right. \\
&\left.4\left(y_{1}+y_{3}+y_{5}+y_{7}+y_{9}+y_{11}\right)\right] \\
&=\frac{0.1}{3}[7.73369+2(16.49077)+4(20.20418)] \\
&=4.05106
\end{aligned} \\
& \therefore \int^{1.4}\left(\sin \boldsymbol{x}-\ln \boldsymbol{x}+\boldsymbol{e}^{x}\right) d \boldsymbol{x}=\mathbf{4 . 0 5 1 0 6}
\end{aligned}
$$

1.4 0.2

Example 9

Use Simpson's $\frac{1}{3}$ rule to estimate the value of $\int_{1}^{5} f(x) d x$ given

x	1	2	3	4	5
$y=f(x)$	13	50	70	80	100
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}

Solution

By Simpson's $\frac{1}{3}$ rule, we have

$$
\begin{aligned}
\int_{1}^{5} f(x) d x & =\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+2\left(y_{2}\right)+4\left(y_{1}+y_{3}\right)\right] \\
& =\frac{1}{3}[(13+100)+2(70)+4(50+80)] \\
& =\frac{1}{3}[113+140+520]
\end{aligned}
$$

\& Example 10

Evaluate $\int_{1}^{4} f(x) d x$ from the following table by Simpson's $\frac{3}{8}$ 1
rule.

x	1	2	3	4
$y=f(x)$	1	8	27	64
	y_{0}	y_{1}	y_{2}	y_{3}

Solution

By Simpson's $\frac{3}{8}$ rule, we have

$$
\begin{aligned}
\int_{1}^{4} f(x) d x & =\frac{3 h}{8}\left[\left(y_{0}+y_{3}\right)+3\left(y_{1}+y_{2}\right)\right] \\
& =\frac{3(1)}{8}[1+3(8)+3(27)+64] \\
& =\frac{3}{8}[1+24+81+64]=\frac{3}{8}[170]
\end{aligned}
$$

$\int_{1}^{4} f(x) d x=63.75$

$\$$ Example 11 \&

Evaluate $\int_{0}^{\pi / 2} \sin x d x$, using Simpson's $\frac{3}{8}$ rule.

Solution

To use Simpson's $\frac{3}{8}$ rule the number of subintervals should be a multiple of 3 . Hence we divide the interval of integration $\left(0, \frac{\pi}{2}\right)$ into 9 subintervals of width $\frac{\pi}{18}$. Let $y=\sin x$. The values of the function $y=\sin x$ for each point of subdivisions are given below.

x	0	$\frac{\pi}{18}$	$\frac{2 \pi}{18}$	$\frac{3 \pi}{18}$	$\frac{4 \pi}{18}$	$\frac{5 \pi}{18}$	$\frac{6 \pi}{18}$	$\frac{7 \pi}{18}$	$\frac{8 \pi}{18}$	$\frac{9 \pi}{18}$
y	0	0.1736	0.3420	0.5000	0.6428	0.7660	0.8660	0.9397	0.9848	1
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{9}

\qquad

By Simpson's $\frac{\mathbf{3}}{8}$ rule, we have

$$
\begin{array}{r}
\int_{0}^{\pi / 2} y \mathrm{~d} x=\frac{3 h}{8}\left[\left(y_{0}+y_{9}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}+y_{8}\right)\right. \\
\\
\left.+2\left(y_{3}+y_{6}\right)\right]
\end{array}
$$

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin x d x= & \frac{\pi}{48}[(0+1)+3(0.1736+0.3420+0.6428 \\
& +0.7660+0.9397+0.9848)+2(0.5+0.8660)] \\
= & \frac{\pi}{48}(15.2787)
\end{aligned}
$$

$$
\int_{0}^{\pi / 2} \sin x d x=0.999988
$$

Checking : $\int_{0}^{\pi / 2} \sin x \mathrm{~d} x=[-\cos x]_{0}^{\pi / 2}=1$.

© Example 12 \$

The velocity V of a particle at distances from a point on its path is given by the table:

S (feet)	$\mathbf{0}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$
V (feet/sec)	$\mathbf{4 7}$	$\mathbf{5 8}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 1}$	$\mathbf{5 2}$	$\mathbf{3 8}$

Estimate the time taken to travel 60 feet by using Simpson's one-third rule. Compare the result with Simpson's $\frac{\mathbf{3}}{\mathbf{8}}$ rule.

Solution

We know that the rate of change of displacement is velocity.

$$
\text { i.e., } \begin{align*}
\frac{d s}{d t} & =\mathrm{V} \\
\text { (or) } d s & =\mathrm{V} d t \\
\text { i.e., } d t & =\frac{1}{\mathrm{~V}} d s \tag{1}
\end{align*}
$$

Here we want to find the time taken to travel 60 feet. Therefore integrate (1) from 0 to 60 , we get $\int_{0}^{60} d t=\int_{0}^{60} \frac{1}{\mathrm{~V}} d s$

The time taken to travel 60 feet is

$$
t=\int_{0}^{60} \frac{1}{\mathrm{~V}} d s=\int_{0}^{60} y d x
$$

The given table can be written as given below.

$x(=s)$	0	10	20	30	40	50	60
$y=\frac{1}{\mathrm{~V}}$	0.02127	0.01723	0.01563	0.01538	0.01639	0.01923	0.0263
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}

By Simpson's one third rule, we have

$$
\int_{0}^{60} y d x=\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+2\left(y_{2}+y_{4}\right)+4\left(y_{1}+y_{3}+y_{5}\right)\right]
$$

$$
\begin{aligned}
& =\frac{10}{3}[(0.02127+0.0263)+2(0.01563+0.01639) \\
& +4(0.01724+0.01538+0.01923)] \\
& =\frac{10}{3}[0.04757+0.06404+0.2074]=1.063 \text { secs }
\end{aligned}
$$

Hence time taken to travel $\mathbf{6 0}$ feet is $\mathbf{1 . 0 6 3}$ secs.
By Simposon's $\frac{\mathbf{3}}{\mathbf{8}}$ rule

$$
\begin{aligned}
\int_{0}^{60} y d x= & \frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}\right)+2\left(y_{3}\right)\right] \\
= & \frac{3 \times 10}{8}[(0.02127+0.02630) \\
& +3(0.01723+0.01563+0.01639+0.01923) \\
= & 3.75[0.04757+0.20544+0.03076]
\end{aligned}
$$

```
6 0
    \intydx = 1.064 secs.
    0
```

By dividing the range into ten equal parts, evaluate $\int^{\pi} \sin x d x$ by using Simpson's $\frac{1}{3}$ rule. Is it possible to evaluate the same by Simpson's $\frac{3}{8}{ }^{\text {th }}$ rule. Justify your answer.

Solution

Here range $=\pi-0=\pi$
$\therefore \quad h=\frac{\pi}{10}$
The values of the function $y=\sin x$ for each point of subdivisions are given below.

x	0	$\frac{\pi}{10}$	$\frac{2 \pi}{10}$	$\frac{3 \pi}{10}$	$\frac{4 \pi}{10}$	$\frac{5 \pi}{10}$	$\frac{6 \pi}{10}$	$\frac{7 \pi}{10}$	$\frac{8 \pi}{10}$	$\frac{9 \pi}{10}$	π
y	0	0.3090	0.5878	0.8090	0.9511	1.0	0.9511	0.8090	0.5878	0.3090	0
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{9}	y_{10}

By Simpson's $\frac{\mathbf{1}}{\mathbf{3}}$ rule

$$
\begin{array}{r}
\begin{array}{r}
\int_{0}^{\pi} \sin x d x= \\
\\
\left.+4\left(y_{1}+y_{3}+y_{5}+y_{7}+y_{9}\right)\right]
\end{array} \\
\begin{array}{r}
\frac{\pi}{3}\left[\left(y_{0}+y_{10}\right)+2\left(y_{2}+y_{4}+y_{6}+y_{8}\right)\right. \\
=
\end{array} \quad \begin{array}{r}
+0.5878)+4(0.3090+0.8090 \\
+1.0+0.8090+0.3090)]
\end{array} \\
\begin{array}{l}
\int_{0}^{\pi} \sin x d x=2.00091
\end{array} \\
\hline
\end{array}
$$

Note : Here we cannot use Simpson's $\frac{3^{\text {th }}}{8}$ rule since the subintervals is not a multiple of 3 .

GAUSS QUADRATURE FORMULA

Carl Frederich Gauss approached the problem of numerical integration in a different way. Instead of finding the area under the given curve, he tried to evaluate the function at some points along with the abscissa. Here the values of abscissa are not equal. Then apply certain weight to the evaluated function.

Thus for Gauss two point formula,

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\int_{-1}^{1} f(t) d t \\
& =\omega_{1} f\left(t_{1}\right)+\omega_{2} f\left(t_{2}\right) \tag{1}
\end{align*}
$$

The function $f(t)$ is evaluated at t_{1} and $t_{2} \cdot \omega_{1}$ and ω_{2} are the weights given to the two functions.

The basic methodology is explained as given below for Gauss two point formula.

286 Numerical Methods

Weddle's rule

Put $n=6$ in Newton-Cote's quadrature formula. Neglecting all differences of order higher than sixth. we get

$$
\begin{aligned}
\int_{x_{0}}^{x_{0}+6 h} f(x) d x=h\left[6 y_{0}+18 \Delta y_{0}+\right. & 27 \Delta^{2} y_{0}+24 \Delta^{3} y_{0}+\frac{123}{10} \Delta^{4} y_{0} \\
& \left.+\frac{33}{10} \Delta^{5} y_{0}+\frac{41}{140} \Delta^{6} y_{0}\right]
\end{aligned}
$$

We now replace the term $\frac{41}{140} \Delta^{6} y_{0}$ by $\frac{42}{140} \Delta^{6} y_{0}=\frac{3}{10} \Delta^{6} y_{0}$. As a result of this adjustment the error crept in is $\frac{h \Delta^{6} y_{0}}{140}$ which is very small and negligible when h and $\Delta^{6} y_{0}$ are small. Using $E-1=\Delta$ and replacing all differences in terms of y^{\prime} s we get

$$
\int_{x_{0}}^{x_{0}+6 h} f(x) d x=\frac{3 h}{10}\left[y_{0}+5 y_{1}+y_{2}+6 y_{3}+y_{4}+5 y_{5}+y_{6}\right]
$$

Similarly

$$
\begin{aligned}
& \int_{x 0}^{50+12 h} f(x) d x=\frac{3 h}{10}\left[y_{6}+5 y_{7}+y_{8}+y_{9}+y_{10}+5 y_{11}+y_{12}\right] \\
& \int_{x_{0}+(n-6) h_{h}}^{50+n h_{h}} f(x) d x=\frac{3 h_{1}}{10}\left[y_{n-6}+5 y_{n-5}+y_{n-1}+6 y_{n-3}+y_{n-2}+5 y_{n-1}+y_{n}\right]
\end{aligned}
$$

(Assuming u is a multiple of 6).
Adding all these integrals we get

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+n h_{0}} f(x) d x=\frac{3 / L}{10}\left[\left(y_{0}+5 y_{1}+y_{2}+6 y_{3}+y_{1}+5 y_{5}\right)\right. \\
&+\left(2 y_{6}+5 y_{7}+y_{x}+6 y_{9}+y_{10}+5 y_{11}\right)+\cdots \\
&\left.+\left(2 y_{n-6}+5 y_{n-5}+y_{n-4}+6 y_{n-3}+y_{n-2}+5 y_{n-1}+y_{n}\right)\right]
\end{aligned}
$$

This equation is called Wealdle's rule.

- GAUSSIAN QUADRATURE (3 POINT) FORMULA

$$
\int_{a}^{b} f(x) d x=\int_{-1}^{1} f(t) d t
$$

where the interval (a, b) is changed into $(-1,1)$ by the transformation,

$$
x=\frac{b+a}{2}+\left(\frac{b-a}{2}\right) t
$$

Then | $\int_{-1}^{1} f(t) d t$ | $=\mathrm{A}_{1} f\left(t_{1}\right)+\mathrm{A}_{2} f\left(t_{2}\right)+\mathrm{A}_{3} f\left(t_{3}\right)$ |
| ---: | :--- |
| A_{1} | $=\mathrm{A}_{3}=0.5555$ |
| $\mathrm{~A}_{2}$ | $=0.8888$ |
| t_{1} | $=-0.7745$ |
| t_{2} | $=0$ |
| t_{3} | $=0.7745$ |

Example 1
Evaluate $\int_{1}^{2} \frac{d x}{x}$ using Gauss 3-point formula.

Solution

Transform the variable from x to t by the transformation

$$
\left.\begin{array}{rl}
x & =\left(\frac{b+a}{2}\right)+\left(\frac{b-a}{2}\right) t \\
& =\frac{3}{2}+\frac{t}{2} \\
\text { i.e., } \quad x & =\frac{3+t}{2} \\
\therefore \mathrm{I}=\int_{1}^{2} \frac{d x}{x} & =\int_{-1}^{1} f(t) d t \\
& =\mathrm{A}_{1} f\left(t_{1}\right)+\mathrm{A}_{2} f\left(t_{2}\right)+\mathrm{A}_{3} f\left(t_{3}\right) \\
\mathrm{A}_{1} & =\mathrm{A}_{3}=0.5555 \tag{2}\\
\mathrm{~A}_{2} & =0.8888
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
f\left(t_{1}\right)=f(-0.7745)=\frac{1}{3-0.7745}=0.4493 \tag{3}\\
f\left(t_{2}\right)=f(0)=\frac{1}{3}=0.3333 \\
f\left(t_{3}\right)=f(0.7745)=\frac{1}{3+0.7745}=0.2649
\end{array}\right\}
$$

Substituting (2) and (3) in (1), we get

$$
\begin{aligned}
& \mathbf{I}=0.5555(0.4493)+0.8888(0.3333)+(0.2649)(0.5555) \\
& \mathbf{I}=\mathbf{0 . 6 9 2 9}
\end{aligned}
$$

Example 2
Evaluate $\int_{0.2}^{1.5} e^{-x^{2}} d x$ using the three point Gaussian
Quadrature.
Solution
Transform the variable from x to t by the transformation

$$
x=\left(\frac{b+a}{2}\right)+\left(\frac{b-a}{2}\right) t
$$

where $a=0.2, b=1.5$

$$
=\frac{1.7}{2}+\frac{1.3 t}{2}
$$

i.e., $\quad x=\frac{1.7+1.3 t}{2} \Rightarrow d x=\frac{1.3 d t}{2}=0.65 d t$

$$
\begin{align*}
\therefore & =\int_{0.2}^{1.5} e^{-x^{2}} d x \\
& =\int_{-1}^{1}-e^{\left(\frac{1.7+1.3 t}{2}\right)^{2}}(0.65) d t \\
& =0.65 \int_{-1}^{1}-e^{\left(\frac{1.7+1.3 t}{2}\right)^{2}} d t \tag{1}\\
I & =0.65\left[\mathrm{~A}_{1} f\left(t_{1}\right)+\mathrm{A}_{2} f\left(t_{2}\right)+\mathrm{A}_{3} f\left(t_{3}\right)\right] \tag{2}
\end{align*}
$$

where $f(t)=e^{-\left(\frac{1.7+1.3 t}{2}\right)^{2}}$

$$
\begin{align*}
\mathrm{A}_{1} & =\mathrm{A}_{3}=0.5555 \tag{3}\\
\mathrm{~A}_{2} & =0.8888 \\
f\left(t_{1}\right) & =f(-0.7745)=e^{-\left(\frac{1.7+1.3(-0.7745)}{2}\right)^{2}} \\
& =0.8868 \\
f\left(t_{2}\right) & =f(0)=e^{-\left(\frac{1.7+1.3(0)}{2}\right)^{2}} \\
& =0.48555 \\
f\left(t_{3}\right) & =f(0.7745)=e^{-\left(\frac{1.7+1.3(0.7745)}{2}\right)^{2}} \\
& =0.16013
\end{align*}
$$

Substituting (2) and (3) in (1), we get

$$
\begin{aligned}
I & =0.5555(0.8868)+0.8888(0.4855) \\
& +(0.5555)(0.16013) \\
& =0.4926+0.4315+0.08895 \\
I & =\mathbf{1 . 0 1 3 0 7}
\end{aligned}
$$

6 Example 3

Evaluate $\int_{0}^{1} \frac{1}{1+t} d t$ by Gaussian quadrature formula.

Solution

Transform the variable from t to x by the transformation

$$
\begin{equation*}
t=\left(\frac{b+a}{2}\right)+\left(\frac{b-a}{2}\right) x \tag{1}
\end{equation*}
$$

Here $a=0, b=1$.

$$
t=\frac{1}{2}+\frac{x}{2}=\frac{x+1}{2}=d t=\frac{d x}{2}
$$

when $t=0, x=-1$

$$
t=1, x=1
$$

$$
\begin{align*}
& I=\int_{0}^{1} \frac{d t}{1+t}=\int_{1}^{1} \frac{d x / 2}{1+\left(\frac{x+1}{2}\right)} \\
& =\int_{1}^{1} \frac{d x}{2+x+1} \\
& \quad \mathrm{I}=\mathrm{A}_{1} f\left(x_{1}\right)+\mathrm{A}_{2} f\left(x_{2}\right)+\Lambda_{1} f\left(x_{3}\right) \tag{2}\\
& \text { where } f(x)=\frac{1}{x+3} \\
& \mathrm{~A}_{1}=\mathrm{A}_{3}=0.5555 \\
& A_{2}=0.8888 \tag{3}\\
& f\left(x_{1}\right)=f(-0.7745)=\frac{1}{(-0.7745)+3}=0.4493 \\
& f\left(x_{2}\right)=f(0)=\frac{1}{3}=0.3333 \\
& f\left(x_{3}\right)=f(0.7745)=\frac{1}{0.7745+3}=0.2649 \tag{4}\\
& \text { Substituting (3) and (4) in (2), we get } \\
& I=[0.5555 \times 0.4493+0.8888 \times 0.3333 \\
& +0.5555 \times 0.2649] \\
& =[0.2495+0.2962+0.14715] \\
& \mathrm{I}=\mathbf{0 . 6 9 2 8 5}
\end{align*}
$$

6 Example 4
Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$, using Gauss 3 point formula.

Solution

Transform the variable from x to t by the transformation

$$
\begin{array}{rlr}
x & =\left(\frac{b+a}{2}\right)+\left(\frac{b-a}{2}\right) t & \\
& =\frac{1}{2}+\frac{t}{2}=\frac{t+1}{2} & \\
\text { i.e., } x & =\frac{t+1}{2} & \\
d x & =\frac{d t}{2} &
\end{array}
$$

$\therefore I=\int_{0}^{1} \frac{d x}{1+x^{2}}=\int_{-1}^{1} \frac{1}{1+\left(\frac{t+1}{2}\right)^{2}} \frac{d t}{2}$

$$
=2 \int_{-1}^{1} \frac{d t}{4+(t+1)^{2}}
$$

$$
\begin{equation*}
\mathrm{I}=2\left\{\mathrm{~A}_{1} f\left(t_{1}\right)+\mathrm{A}_{2} f\left(t_{2}\right)+\mathrm{A}_{3} f\left(t_{3}\right)\right\} \tag{1}
\end{equation*}
$$

where $f(t)=\frac{1}{4+(t+1)^{2}}$

$$
\begin{align*}
& \begin{array}{l}
\mathrm{A}_{1}= \\
\mathrm{A}_{3}
\end{array}=0.5555 \tag{2}\\
& \mathrm{~A}_{2}=0.8888 \\
& f\left(t_{1}\right)=f(-0.7745) \\
&=0.2468 \tag{3}\\
& f\left(t_{2}\right)=f(0)=\frac{1}{4+(-0.7745+1)^{2}} \\
& f\left(t_{3}\right)=f(0.7745)=\frac{1}{4+(0.7745+1)^{2}} \\
&=0.13988
\end{align*}
$$

Substituting (2) and (3) in (1), we get

$$
\begin{aligned}
\mathrm{I} & =2[0.5555(0.2468)+0.8888(0.2)+0.5555(0.13988)] \\
& =2[0.39256] \\
\mathbf{I} & =\mathbf{0 . 7 8 5 1 2}
\end{aligned}
$$

4 Example 5

Evaluate $\int_{j}^{2} \frac{d x}{1+x^{3}}$ using Gauss 3 point formula.

Solution

Transform the variable from x to t by the transformation

$$
\begin{aligned}
& x=\frac{b+a}{2}+\left(\frac{b-a}{2}\right) t \\
& x=\frac{3}{2}+\frac{t}{2}=\frac{3+t}{2}
\end{aligned}
$$

$$
\begin{align*}
& \left.\begin{array}{rl}
\therefore \mathrm{I} & =\int_{1}^{2} \frac{d x}{1+x^{3}}=\int_{1}^{1} \frac{1}{1+\frac{(31 t)^{3}}{8}} \frac{d t}{2} \\
& =4 \int_{-1}^{1} \frac{1}{8+(3+t)^{3}} d t \\
\begin{array}{rl}
\therefore 1 & =4 \int_{-1}^{8+(3+t)^{3}} \frac{1}{8} \\
& =A_{1} f\left(t_{1}\right)+\mathrm{A}_{2} f\left(t_{2}\right)+A_{3} f\left(t_{3}\right)
\end{array} \\
\text { where } f(t)=\frac{1}{(3+t)^{3}+8} \\
\mathrm{~A}_{1} & =\mathrm{A}_{3}=0.5555 \\
\mathrm{~A}_{2} & =0.8888 \\
f\left(t_{1}\right) & =f(-0.7745)=\frac{1}{(3-0.7745)^{3}+8}=0.0525 \\
f\left(t_{2}\right) & =f(0)=\frac{1}{35}=0.0285 \\
f\left(t_{3}\right) & =f(0.7745)=\frac{1}{(3+0.7745)^{3}+8}=0.0162
\end{array}\right\}
\end{align*}
$$

Substituting (3) and (4) in (2), we get

$$
\begin{aligned}
I & =4[0.5555 \times 0.0525+0.8888 \times 0.0285+0.5555 \times 0.0162] \\
& =4[0.06349] \\
I & =0.25396
\end{aligned}
$$

QEXERCISES

1. Applying Gauss's quadrature 3 point formula, evaluate $\int_{5}^{12} \frac{d x}{x}$. [Ans: 0.25009]
2. Evaluate $\int_{0}^{1} x d x$ by 3 point Gaussian formula. [Ans : 0.4999] 3. Evaluate by Gaussian 3 point formula $\int_{0}^{10} e^{\frac{1}{1+x^{2}}} d x$. |Ans: $11.986 \mid$

SCANNED BOOKS

1. Dr. A. SINGARAVELU, Numerical Methods (revised version) July 2008, Meenakshi Agency, Pushpa Nagar, Medavakkam, Chennai 600100.
2. Dr. A. SINGARAVELU, Numerical Methods ($19^{\text {th }}$ revised version) December 2012, Meenakshi Agency, Pushpa Nagar, Medavakkam, Chennai 600100.
3. S. ARUMUGAM, Numerical Methods (Second Edition), Scitech Publications (INDIA) Pvt. Ltd. Chennai 600017.
