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Inverse matrix- Gauss elimination and Gauss Jordan 

Apart from the Gaussian elimination, there is an alternative method to calculate the inverse 

matrix. It is much less intuitive, and may be much longer than the previous one, but we can always 

use it because it is more direct. 

Let's remember that given a matrix A, its inverse A−1 is the one that satisfies the following: 

A⋅A−1=I 

where I is the identity matrix, with all its elements being zero except those in the main diagonal, which 

are ones. 

The inverse matrix can be calculated as follows: 

A−1=
1

|A|
(Aadj)t 

Where: 

A−1→ Inverse matrix 

Given a square matrix A, which is non-singular (means the Determinant of A is nonzero); Then 

there exists a matrix  

A−1 

which is called inverse of matrix A. 

The inverse of a matrix is only possible when such properties hold:  

1. The matrix must be a square matrix. 

2. The matrix must be a non-singular matrix and, 

3. There exist an Identity matrix I for which 

 

A A−1 = A−1 A  = I 

In general, the inverse of n X n matrix A can be found using this simple formula:   

𝐴−1 =  
𝐴𝑑𝑗 (𝐴)

𝐷𝑒𝑡 (𝐴)
 

|A|→ Determinant 

Aadj→ Adjoint matrix 

At→ Transpose matrix 

 

Methods for finding Inverse of Matrix: 

Finding the inverse of a 2×2 matrix is a simple task, but for finding the inverse of larger matrix 

(like 3×3, 4×4, etc) is a tough task, So the following methods can be used:   

1. Elementary Row Operation (Gauss-Jordan Method) (Efficient) 

2. Minors, Cofactors and Ad-jugate Method (Inefficient)  

 

Gauss-Jordan Method is a variant of Gaussian elimination in which row reduction operation 

is performed to find the inverse of a matrix. 

 

Steps to find the inverse of a matrix using Gauss-Jordan method: 

In order to find the inverse of the matrix following steps need to be followed:  

1. Form the augmented matrix by the identity matrix. 

2. Perform the row reduction operation on this augmented matrix to generate a row 

reduced echelon form of the matrix. 



3. The following row operations are performed on augmented matrix when required:  

 Interchange any two row. 

 Multiply each element of row by a non-zero integer. 

 Replace a row by the sum of itself and a constant multiple of another row of the 

matrix. 

  

The Jacobi and Gauss-Seidel Iterative Methods 
 

 The Jacobi Method Two assumptions made on Jacobi Method:  

1. The system given by 

a11x1 + a12x2+….a1nxn = b1 

a21x1 + a22x2+….a2nxn = b2 

 . 

 . 

 . 

an1x1 + an2x2+….annxn = bn 

Has a unique solution.  

2. The coefficient matrix has no zeros on its main diagonal, namely, a11, a22, ………ann are 

nonzeros. 

Main idea of Jacobi To begin, solve the 1st equation for , the 2nd equation for x2and so on to 

obtain the rewritten equations: 

  x1 = 1/ a11 (b1-a12x2-a13x3-……….a1nxn) 

 x2 = 1/ a22 (b2-a21x1-a23x3-……….a2nxn) 

  . 

  . 

  .  

 Xn = 1/ ann (bn-an1x1-an3x2-……….annxn-1) 

Then make an initial guess of the solution x(0) = (x1
(0), x2

(0), x3
(0),…….xn

(0)) . Substitute these 

values into the right hand side the of the rewritten equations to obtain the first approximation, 

(x1
(1), x2

(1), x3
(1),…….xn

(1) ). This accomplishes one iteration. 

In the same way, the second approximation (x1
(2), x2

(2), x3
(2),…….xn

(2) ) is computed by 

substituting the first approximation’s x- vales into the right hand side of the rewritten equations. 

By repeated iterations, we form a sequence of approximations x(k) = (x1
(k), x2

(k), x3
(k),…….xn

(k) 

)t, K= 1,2,3…… 

The Jacobi Method. For each k ≥1, generate the components xi
(k)of x (k) from x (k-1)by 

 𝑥𝑖
𝑘 =  

1

𝑎𝑖𝑖
∑ (−𝑎𝑖𝑗𝑥𝑗

(𝑘−1)
+  𝑏𝑖

𝑛
𝑗=1       ,         for i = 1,2,…..n 

Main idea of Gauss-Seidel, With the Jacobi method, the values of xi
(k) obtained in the kth 

iteration remain unchanged until the entire (k+1)th iteration has been calculated. With the 

Gauss-Seidel method, we use the new values  xi
(k+1)as soon as they are known. For example, 

once we have computed x1
(k+1)from the first equation, its value is then used in the second 

equation to obtain the new x2
(k+1) and so on. 



UNIT-1 - SOLUTIONS OF LINEAR ALGTEBRAIC 

EQUATION 
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Unit- III: Solution of Algebraic, transcendental and differential equations 

 Bisection method- Method of successive approximation – Regulafalsi Method – 

Newton – Raphson method - Taylor series method- Euler’s method Runge Kutta method 

(II and IV order) 

 

Bisection Method 

In mathematics, the bisection method is a root-finding method that applies to 

any continuous functions for which one knows two values with opposite signs. The method 

consists of repeatedly bisecting the interval defined by these values and then selecting the 

subinterval in which the function changes sign, and therefore must contain a root. It is a very 

simple and robust method, but it is also relatively slow. Because of this, it is often used to 

obtain a rough approximation to a solution which is then used as a starting point for more 

rapidly converging methods. The method is also called the interval 

halving method, the binary search method or the dichotomy method. 

The method is applicable for numerically solving the equation f(x) = 0 for 

the real variable x, where f is a continuous function defined on an interval [a, b] and 

where f(a) and f(b) have opposite signs. In this case a and b are said to bracket a root since, 

by the intermediate value theorem, the continuous function f must have at least one root in the 

interval (a, b). 

At each step the method divides the interval in two by computing the midpoint c = 

(a+b) / 2 of the interval and the value of the function f(c) at that point. Unless c is itself a root 

(which is very unlikely, but possible) there are now only two possibilities: either f(a) and f(c) 

have opposite signs and bracket a root, or f(c) and f(b) have opposite signs and bracket a 

root.[5] The method selects the subinterval that is guaranteed to be a bracket as the new 

interval to be used in the next step. In this way an interval that contains a zero of f is reduced 

in width by 50% at each step. The process is continued until the interval is sufficiently small. 

Explicitly, if f(a) and f(c) have opposite signs, then the method sets c as the new value 

for b, and if f(b) and f(c) have opposite signs then the method sets c as the new a. (If f(c)=0 

then c may be taken as the solution and the process stops.) In both cases, the new f(a) and f(b) 

have opposite signs, so the method is applicable to this smaller interval 

The input for the method is a continuous function f, an interval [a, b], and the function 

values f(a) and f(b). The function values are of opposite sign (there is at least one zero 

crossing within the interval). Each iteration performs these steps: 

1. Calculate c, the midpoint of the interval, c = a + b/2. 

2. Calculate the function value at the midpoint, f(c). 

3. If convergence is satisfactory (that is, c - a is sufficiently small, or |f(c)| is sufficiently 

small), return c and stop iterating. 

4. Examine the sign of f(c) and replace either (a, f(a)) or (b, f(b)) with (c, f(c)) so that 

there is a zero crossing within the new interval. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Root-finding_algorithm
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Bisection
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Intermediate_value_theorem
https://en.wikipedia.org/wiki/Bisection_method#cite_note-5


When implementing the method on a computer, there can be problems with finite 

precision, so there are often additional convergence tests or limits to the number of iterations. 

Although f is continuous, finite precision may preclude a function value ever being zero. For 

example, consider f(x) = x − π; there will never be a finite representation of x that gives zero. 

Additionally, the difference between a and b is limited by the floating point precision; i.e., as 

the difference between a and b decreases, at some point the midpoint of [a, b] will be 

numerically identical to (within floating point precision of) either a or b. 

Method of successive approximation (Iterative Method) 

In computational mathematics, an iterative method is a mathematical procedure that 

uses an initial value to generate a sequence of improving approximate solutions for a class of 

problems, in which the nth approximation is derived from the previous ones. A specific 

implementation of an iterative method, including the termination criteria, is an algorithm of 

the iterative method. An iterative method is called convergent if the corresponding sequence 

converges for given initial approximations. A mathematically rigorous convergence analysis 

of an iterative method is usually performed; however, heuristic-based iterative methods are 

also common. 

In contrast, direct methods attempt to solve the problem by a finite sequence of 

operations. In the absence of rounding errors, direct methods would deliver an exact solution 

Iterative methods are often the only choice for nonlinear equations. However, iterative 

methods are often useful even for linear problems involving many variables (sometimes of 

the order of millions), where direct methods would be prohibitively expensive (and in some 

cases impossible) even with the best available computing power. 

If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed 

point of the function f, then one may begin with a point x1 in the basin of attraction of x, and 

let Xn+1 = f(Xn) for n ≥ 1, and the sequence {Xn}n ≥ 1 will converge to the solution x. 

Here Xn is the nth approximation or iteration of x and Xn+1 is the next or n + 1 iteration of x. 

Alternately, superscripts in parentheses are often used in numerical methods, so as not to 

interfere with subscripts with other meanings. (For example, X(n+1) = f(X(n)).) If the 

function f is continuously differentiable, a sufficient condition for convergence is that 

the spectral radius of the derivative is strictly bounded by one in a neighbourhood of the fixed 

point. If this condition holds at the fixed point, then a sufficiently small neighbourhood (basin 

of attraction) must exist. 

Regula Falsi Method 

In mathematics, the regula falsi, method of false position, or false position method is a 

very old method for solving an equation with one unknown, that, in modified form, is still in 

use. In simple terms, the method is the trial and error technique of using test ("false") values 

for the variable and then adjusting the test value according to the outcome. This is sometimes 

also referred to as "guess and check". Versions of the method predate the advent 

of algebra and the use of equations. 

Modern versions of the technique employ systematic ways of choosing new test 

values and are concerned with the questions of whether or not an approximation to a solution 

can be obtained, and if it can, how fast can the approximation be found. 

https://en.wikipedia.org/wiki/Computational_mathematics
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm#Termination
https://en.wikipedia.org/wiki/Algorithm
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Two basic types of false position method can be distinguished historically, simple 

false position and double false position. 

Simple false position is aimed at solving problems involving direct proportion. Such 

problems can be written algebraically in the form: determine x such that 

 𝑎𝑥 = 𝑏 

if a and b are known. The method begins by using a test input value x′, and finding the 

corresponding output value b′ by multiplication: ax′ = b′. The correct answer is then found by 

proportional adjustment, 𝑥 =  
𝑏

𝑏′
 𝑥′ 

Double false position is aimed at solving more difficult problems that can be written 

algebraically in the form: determine x such that 

𝑓(𝑥) = 𝑎𝑥 + 𝐶 = 0, 

if it is known that 

𝑓 (𝑥1) = 𝑏1,               𝑓(𝑥2) = 𝑏2. 

Double false position is mathematically equivalent to linear interpolation. By using a 

pair of test inputs and the corresponding pair of outputs, the result of this algorithm given by,  

𝑥 =
𝑏1𝑥2 − 𝑏2𝑥1

𝑏1 − 𝑏2
 

Newton- Raphson Method 

In numerical analysis, Newton's method, also known as the Newton–Raphson method, 

named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces 

successively better approximations to the roots (or zeroes) of a real-valued function. The 

most basic version starts with a single-variable function f defined for a real variable x, the 

function's derivative f ′, and an initial guess x0 for a root of,  f. If the function satisfies 

sufficient assumptions and the initial guess is close, then 

𝑔(𝑥) =  𝑥 −  
𝑓(𝑥)

𝑓′(𝑥)
 

is a better approximation of the root than x0 Geometrically, (x1, 0) is the intersection 

of the x-axis and the tangent of the graph of , f at (x0, f (x0)): that is, the improved guess is 

the unique root of the linear approximation at the initial point. The process is repeated as 

𝑥𝑛+1 = 𝑥𝑛 −  
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

 

until a sufficiently precise value is reached. This algorithm is first in the class 

of Householder's methods, succeeded by Halley's method. The method can also be extended 

to complex functions and to systems of equations. 
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Taylor Series Method 

To derive these method, we start with a Taylor Expansion: 

              y (t + ∆t) ≈ y(t)+∆ty’ (t) + 1/2 ∆t2 y” (t) + ... + 1/r! y(r) (t)∆tr 

Let’s say we want to truncate this at the second derivative and base a method on that. The 

scheme is, then: 

                                                  yn+1 = yn + fn∆t + f’tn/2 ∆t2. 

The Taylor series method can be written as 

                                                  yn+1 = yn + ∆t F (tn, yn, ∆t) 

where F = f + 1/2∆tf’. If we take the LTE for this scheme, we get (as expected) 

                     LT E(t) = y (tn + ∆t) − y(tn) ∆t – f (tn, y(tn)) – 1/2 ∆tf’ (tn, y(tn)) = O (∆t2) 

Of course, we designed this method to give us this order, so it shouldn’t be a surprise! 

So the LTE is reasonable, but what about the global error? Just as in the Euler Forward 

case, we can show that the global error is of the same order as the LTE. How do we do this? 

We have two facts, 

                                            y(tn+1) = y(tn)+∆t F (tn, y(tn), ∆t), 

                                                                   and 

                                              yn+1 = yn + ∆tF(tn, yn, ∆t) 

where F = f + 1/2∆tf’. Now we subtract these twos 

                     |y(tn+1) − yn+1|  =  |y(tn) − yn + ∆t(F(tn, y(tn)) − F(tn, yn)) + ∆tLT E| 

                                                    ≤ |y(tn) − yn| + ∆t |F(tn, y(tn)) − F(tn, yn)| + ∆t |LT E| . 

Now, if F is Lipschitz continuous, we can say 

                                                   en+1 ≤ (1 + ∆tL)en + ∆t |LT E|. 

Of course, this is the same proof as for Euler’s method, except that now we are looking at F, 

not f, and the LT E is of higher order. We can do this no matter which Taylor series method 

we use, how many terms we go forward before we truncate. 

Advantages and Disadvantages of the Taylor Series Method: 

Advantages         a) One step, explicit 

                               b) can be high order 

                               c) easy to show that global error is the same order as LTE 

disadvantages Needs the explicit form of derivatives of f 

Euler’s Method 

If we truncate the Taylor series at the first term 

                                    y (t + ∆t) = y(t)+∆ty’ (t) + 1/2 ∆t2 y” (τ), 

we can rearrange this and solve for y’ (t) 



                                    y’ (t) = y (t + ∆t) − y(t) /∆t + O(∆t). 

Now we can attempt to solve (1.1) by replacing the derivative with a difference 

                                      y ((n + 1) ∆t) ≈ y(n∆t) +∆t f (n∆t, y(n∆t)) 

Start with y(0) and step forward to solve for any time. 

What’s good about this? If the O term is something nice looking, this quantity decays 

with ∆t, so if we take ∆t smaller and smaller, this gets closer and closer to the real value.  

Also, even though this may be a good approximation for y’ (t) it may not converge to the 

right solution. To answer these questions, we look at this scheme in depth. Terminology: 

From now on, we’ll call yn the numerical approximation to the solution y(n∆t); tn = n∆t. 

Euler’s method can then be written 

                                     yn+1 = yn + ∆t f (tn, yn)             n = 1, ..., N – 1 

Runge-Kutta Method 

To avoid the disadvantage of the Taylor series method, we can use Runge-Kutta 

methods. These are still one step methods, but they depend on estimates of the solution at 

different points. They are written out so that they don’t look messy: 

          Second Order Runge-Kutta Methods: 

                                  k1 = ∆t f(ti, yi) 

                                  k2 = ∆t f(ti + α∆t, yi + βk1) 

                               yi+1 = yi + ak1 + bk2 

let’s see how we can chose the parameters a, b, α, β so that this method has the highest order 

LT E possible. Take the Taylor expansions to express the LTE: 

           k1(t)=∆t f (t, y(t)) 

           k2(t)=∆tf (t + α∆t, y + βk1(t ) 

                   = ∆t (f(t, y(t) + ft(t, y(t))α∆t + fy(t, y(t))βk1(t) + O(∆t2 )) 

       LTE(t) = y(t +∆t) − y(t) /∆t – (a /∆t) f(t,y(t))∆t – (b / ∆t) (ft(t, y(t))α∆t + fy(t, y(t)βk1(t) 

                   + f(t, y(t)) ∆t + O(∆t2) 

                  = y(t + ∆t) − y(t)  / ( ∆t  ) – af (t, y(t)) − bf(t, y(t)) − bft(t, y(t))α 

                  − bfy(t, y(t) βf(t, y(t)) + O(∆t2 ) 

                  =y’(t) + 1/2∆ty”(t) − (a + b)f(t,y(t)) − ∆t(bαft(t,y(t)) + bβf(t, y(t))fy(t,y(t)) + O(∆t2) 

      = (1 − a − b)f + (1/ 2 − bα)∆tft + (1 /2 − bβ)∆tfyf + O(∆t 2 ) 

So we want a = 1 − b, α = β = 1/2b . 

Fourth Order Runge-Kutta Methods:  

k1 = ∆t f(ti, yi) 

k2 = ∆t f(ti + 1/2 ∆t, yi + 1/2 k1) 

k3 = ∆t f(ti + 1/2 ∆t, yi + 1/2 k2) 



k4 = ∆t f(ti + ∆t, yi + k3) 

yi+1 = yi + 1/6 (k1 + k2 + k3 + k4) 

The second order method requires 2 evaluations of f at every timestep, the fourth order 

method requires 4 evaluations of f at every timestep. In general: For an rth order RungeKutta 

method we need S(r) evaluations of f for each timestep, where 

S(r) ={

𝑟                         𝑓𝑜𝑟 𝑟 ≤ 4
𝑟 + 1             𝑓𝑜𝑟 𝑟 = 5 𝑎𝑛𝑑 𝑟 = 6

≥ 𝑟 + 2                                    𝑓𝑜𝑟 𝑟 ≥
 

 

Practically speaking, people stop at r = 5. Advantages of Runge-Kutta Methods 

 1. One step method – global error is of the same order as local error. 

 2. Don’t need to know derivatives of f.  

3. Easy for” Automatic Error Control”. 



UNIT-3 SOLUTION OF ALGEBRAIC 

TRANSCE NDENDAL AND DIFFERENTAL EQUATION 

Biseclien Methed 

f(x) = Ce5 x - xe perlerm fiue ibuatien o the bisecdion 

melhod o unen he ueot the equalien 

Selutien 

F(o) = 1 

f -2.17797 -VL 

The neet ies betwean o and 1 

= 0 5, f(Xo) = C93 X - e 0 05322 +VA 

The neet lies between 0.5 and 1 

=p* =0-75, f(x) ( -7e= -0.8560b = - VL 
2 

The net lies betweon o.5 and o75 

= O5+075 -0-b25 f(t)e es X-ne = -0.35b69=-vl 

2 

The nest lies b@tween 0.b25 and 0.5 

3 0525+0:50.5b25 f(Aa) es -ne s -0-14129 -V£ 

2 

The nset lies botween 0-5b25 and o.5 

4 
O.S625 +0.5 D D. 53125, f(4) = Lesx-Xe = - 0- D415 -VL 

The rsot lies between 0.53125 and 0.5 

5 
O53125+0.5 .515b2,f(*5) = Cx -*e = 0.00649 = +V 

2 

uerne nsot ues between R4+*s0.53125 +0.51562 
2 

0 5234-3 



Ibuatiue Methed 

Fund the Hoot eh the equalion , xi1oo =0 upto 4 deimal 

Scessie. 

F(3) = 27+9-I00 = - b4 = -vl 

fC4) = 64+1b-100 -20 -VL 
(5) = I25+25-l00 50 +V 

x (2+«) -ioo o 

2 (r+1) -loo 0 

2 too 

-3/2 'C 1o (+1) = J6 (-VA) L*+12 *= (-5) (x+1) = (-5 (x+1) 
2 

(x) 5 
(x+1 3/2 

-5 p (4) -5 
(4+1)%a 

= - 0 44 

(5)3/a 

ps) -5 2 - 0o. 34 

(5+1)% (b) 
o 4 2 

(%o) 
o 

4 3 8529 
V4 2+ 

2 C) 

2 4- 30918 
+ 4 38 52+1 



3 ( a) 
o =4 3 3995 

2+1 4 309 18+| 

4 (x3) 
4 3 2743 10 

J433995+1 Vx3+ 

X5 P(a4) 
= 4 33252 

4 32743+ x4+1 

64 33045 , g 4 33129, Xa = 4 33045, Xg = 4 33109 

o 4 331b3 = 4 33Io6 i2 = 4 33105 

u *i2 all cellected the same and he values 

ae ame. took cenect t 

The sot e the equatisn = 4 331 

fow decimal places. 

RRGulakalai Methed 

Find the Hett o e" = 3 by wgula alis method 3 decimal 

place nset 1 and 1.5 . 

S.: fcx) = *e"-3 

fu) - 0. 2817 (- 

f(15) 3.7225 (+ 

b1 5 
fla) 0 2817 fCb) = 3.7225 

2, aflb) -bfta) 
flb-fla) 

I(3 7225) - I 5 (-o 2817) 

(3.7225 ) - (-o.2817) 

0351 



FCa) ne*-3 

C10351) =- 0.0857 -V2 

The nbot lies between I 035 I and I.5 

X2 0351 (3.7225 ) -1'5(-0 o857) I O455 

3-7225- (-o.0857) 

0455) - 0.0257 -Ve 

The Jeot es between 1. oas s and I5 

a=I. 04 55 b I5 

F(a) = o257 fl6) 3.7225 

3 1 0486 

F-6486) xe'-3 = - o- o076 = -V 

The uset lies betwen 1. 0486 nd 5 

a 10486 b =l 5 

fCa) = -o.0076 Flb) 3.7225 

4 1 0495 

fCD495) = xe"-3e - 0. o023 

Henece the ual neot o the egpualion = 1.049 

Newten Ranhaen Methed 

Evaluate i2 to ewn deumal e newton Raphson methed. 

Sel i2 
12 

2-12 0 

fR) = m-12. 

f'x) = 2x 
fCx) = x*-12 

fCo) = -12 - V 

f = -12 = -11 : -V2 



fl2) = 4 12 - 8 - V 

f3) 9-12 - 3 - - VR 

fC4) tb-12 4 +V 

o 3 n o 

'n) 
= X - f) 9-12) 

3.5 
I 3.5 , n 

n+ -fn) *n 
f'n) 

x, - F) 3 5 - 
Co 25) 

7 f'C)
2 3.4b43 

2 3 4643 n 2 

6.0ol3 
3 2 ** 3 4b 43 

f'C2) 
6.9286 

3 3. 4b4 

3 3.4b41 n 3 

C- 0.oo001) 4 X3 - c3 3.4641 6.9282 .928 2 f'C3 

4 3.464-1 
Hence he neal neet o the eaualion = 3. 464-1 

Eulen's Mathed 

selue dy . - I+y uwith y to) = 2 , sing Eulens Method dy 
also find ning y (o.1). y(0-2), y (o.3). 



Sot The Eulen's yeumuula . 

dm m+hf(xm, ym) 

d f (x,9) =fl+y) 

O, 9. 2, h=0.1, n=0 

+ (o-1) 0-2) 
.+C0-1) [i+ c07 (2)] 
2+0 1 

9, 2-1 
= *oth = o+01 

0-1 

I0 l, 9,= 2-1, h eOI, h =I 

92 -9, + h 8 X. y) 

2.1 +o.i C Co-1) (2 1) 

2.1+0 I ( 3 2) 

92 2 221 
2 +h 

0 1+0.|

2 0.2 

2 22I +0. 1+(o 22 (2 2212 

2.221+ o 1444 2 

3 2 3b54| 
3 R2+h : O.3 

Conclusuon : 

y to- D= 2.1 

y (o-2) = 2. 221 

y(0-3) 2. 3654 



Rungekutta Methsd 

th 0nden duy/ wnth y to) =I at x = 2, 0.4 
R.K Methed I I 0nden. Usinq unge -Kutta method o 

y2-2 

Sel 
9- 

2+2 
h 0 22 A 0 2 ? 

k, = h( ao 9o 02 (i) =0 2 

K = 0:2 

K2 h (xo+ yo+ *Va) = 0.2 (o+0-1,1+0-1) 
0 2 (o 11-1) 

0 2 Co. 9836) 

K2 0. 1967| 

K3 h (+2 * *7a) 0-2 (o+o.1, 1+0.0984) 
O 2 (o.1,t 0984) 
O 2 Co.983b) 

K3=01967 

K4 h (oth »o+k3) = O-2 (o+0:2 1+0 1967 

0 2 Co 2, I 1967 ) 

O 2 (o.94 67 

k401891 

Ay (ki+ 2k2+2k3 + Ka) 

Co.2 +0. 3934+O 39 34 + 0 1891) 

Y C11759 

ay = o 19598 

o +Ay I+0 19598 

II19 598 



R2 = O4 2 ? 

=0 2, 1 I 19 598. h o 2 

Ki =h6 (a,,.) = o.2 (o 2,119598) 

o 2 (o.9456) 

ki o 1891 

K2 h (* +h/2 » y+ /2) = o 2(o 2+o.l , I-19 598+0-O945) 

0 2 (o 3,2906) 

o 2 (o. 8975) 
K2 o 1794 

K3 h (*, +h/2 »,+ Kz2/,) = 0-2 (o.2 +0.l,1. 19598+0-0597 

0 2 (0 3, 1 2857 

O 2 o. 8967) 

K3 0.1793 

K4 h *, +h, y,t K3) = o.2 (o 2 +0.2,1.19 598+0:1793) 

0.2 Co.4 , l 3753 

O 2 Co.8440) 

K4 O1688 

4 / (k, +2k2 +2k3 +k4) 

/6 (o. 1891 +0 3588+0-3586 +0 Ib8 8) 

075 3 

Ay z o. I792 

29+A9 
19598 +0 1792 

92 1 3752 



Taylen Senies Methed 

Find the value oh yco-1) covRct oown decimal places 

om 9/dx = *2-y y to) =I with h =o.I nng Taylen 

Soues Method 

Sel y' = **-9y 
o0 9 h 0. 

IV 

/3 do+ 

-

y2%-y' o 2 o 
2l0)- (-1) =1 

9 2-9" 2- do 

2- = 

it 

() = - | 

3 

d=1+ (-1) + (o-1 a+ Co 1 CI+ (o.2-1D4..
2 6 24 

= 1+ (0-2 (-1)+0.005 +0 000lb + 0. 000004 (-1) 

18 O. 905I56 
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