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UNIT – I 

FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION 

Mechanics of a Particle  

 

 i.e acceleration is given by 

𝑎 =
𝑑𝒗

𝑑𝑡
=  

𝑑𝒓̇

𝑑𝑡
=  𝒓̈ 

Conservation of Linear Momentum 

The linear momentum of a particle of mass ‘m’ with velocity ‘v’ is mv and it is denoted 

by 𝑝 ⃗⃗⃗  = 𝑚𝑣 ⃗⃗⃗  = 𝑚𝑟̇  

By Newton’s second law of motion , 

𝐹 = 𝑚𝑎 = 𝑚 
𝑑𝑣

𝑑𝑡
=  

𝑑𝑝

𝑑𝑡
 

 𝑝⃗⃗⃗  = 𝑚 𝑣⃗⃗⃗      is the linear momentum 

If the external force acting on the particle is zero, then 

𝑑 𝑝⃗⃗⃗  

𝑑𝑡
=  

𝑑

𝑑𝑡
(𝑚 𝑣⃗⃗⃗ ) 

Or    𝑝⃗⃗⃗  = 𝑚 𝑣⃗⃗⃗      = constant.  Thus in the absence of external force, the linear momentum 

is conserved. 

Conservation of Angular Momentum 
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Conservation of Energy 

                                           F 

                                       P 

                                1                                          2 

             

 

Newton’s second law 

𝐹 = 𝑚𝑎 

Multiply by ds on both sides 

𝐹 . 𝑑𝑠 = 𝑚𝑎. 𝑑𝑠 

 

𝐹 . 𝑑𝑠 = (𝑚
𝑑𝑣

𝑑𝑡
. 𝑣) 𝑑𝑡 

[v=ds/dt,    ds=vdt] 

𝐹 . 𝑑𝑠 = (𝑚𝑣.
𝑑𝑣

𝑑𝑡
)𝑑𝑡 

(𝑚𝑣.
𝑑𝑣

𝑑𝑡
) this can be written as 

𝑑

𝑑𝑡
(
1

2
𝑚𝑣2) 

Therefore,  



𝑊12 = ∫ 𝐹. 𝑑𝑠 = 
2

1
∫

𝑑

𝑑𝑡

2

1
(
1

2
𝑚𝑣2)dt 

𝑊12 =
1

2
𝑚𝑣2

2 −
1

2
𝑚𝑣1

2 

𝑊12 = 𝑇2 − 𝑇1 

 

Also the forces are derivable from scalar potential energy function in the manner 

𝐹 = −∇𝑉 

𝑊12 = ∫𝐹. 𝑑𝑠 =  ∫−∇𝑉. 𝑑𝑠 

2

1

2

1

  

𝑊12 = ∫− 
𝑑𝑉

𝑑𝑠
𝑑𝑠 =  ∫−𝑑𝑉 =  −(𝑉2 − 𝑉1) 

2

1

2

1

 

𝑊12 = 𝑉1 − 𝑉2 

Therefore  

𝑇2 − 𝑇1 = 𝑉1 − 𝑉2 

 

𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

In general T+V = constant.  Thus the total energy is conserved 

MECHANICS OF A SYSTEM OF PARTICLES 

 Consider a system consists of two or more particles.  Force acting on ith particle is 

given by 

𝐹𝑖 = 𝐹𝑖
𝑒 + ∑𝐹𝑖𝑗 − − − − − − − 1

𝑁

𝑗=1

 

 

𝐹𝑖
𝑒 = 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑓𝑟𝑜𝑚 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 



𝐹𝑖𝑗 = 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑖 𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑗 𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 

∑
𝐹𝑖𝑗 = 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

(𝑗 = 1 𝑡𝑜 𝑁)𝑜𝑛 𝑖 𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒.

𝑁

𝑗=1

  

 

 

According to Newton’s second law, 

𝐹𝑖 = 𝑚𝑖𝑎𝑖 = 
𝑑𝑝𝑖

𝑑𝑡
=  𝑃̇𝑖 

𝐹𝑖 = 𝑚𝑖

𝑑𝑣𝑖

𝑑𝑡
= 𝑚𝑖

𝑑2𝑟𝑖

𝑑𝑡2
 

For all particles in the system, 

∑𝑃̇𝑖 =
𝑑2

𝑑𝑡2
 ∑𝑚𝑖𝑟𝑖 − − − − − −2

𝑖

 

 

From eqn 1 

𝐹𝑖 = 𝐹𝑖
𝑒 + ∑∑𝐹𝑖𝑗

𝑗

− − − − − −3

𝑖

 

But𝐹𝑖
𝑗
= − 𝐹𝑗

𝑖.  That is,  𝐹𝑖
𝑗
+ 𝐹𝑗

𝑖 = 0.  The second term in 3 becomes zero. 

 [𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑞𝑢𝑎𝑙 𝑎𝑛𝑑 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 𝑐𝑎𝑛𝑐𝑒𝑙 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟 𝑎𝑛𝑑 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑧𝑒𝑟𝑜] 

Now equating eqn 2 and 3 



𝐹𝑖
𝑒 =

𝑑2

𝑑𝑡2
 ∑𝑚𝑖𝑟𝑖 − − − − − −4

𝑖

 

 

Centre of mass R of a system is defined as, 

𝑅 =
∑ 𝑚𝑖𝑟𝑖𝑖

∑ 𝑚𝑖𝑖

=
∑ 𝑚𝑖𝑟𝑖𝑖

𝑀
 

∑𝑚𝑖𝑟𝑖
𝑖

= 𝑀𝑅 − − − − − 5 

Substitute eqn 5 in 4 

𝐹𝑖
𝑒 = 𝑀

𝑑2𝑅

𝑑𝑡2
= 𝑀𝑎 − − − − − 6 

Thus the acceleration of centre of mass is due to only external force. 

 

Conservation of linear momentum 

From eqn 5 

𝑀𝑅 = ∑𝑚𝑖𝑟𝑖
𝑖

− − − − − 7 

Differentiate the above eqn 7 with respect to ‘t’ 

𝑀
𝑑𝑅

𝑑𝑡
=  𝑚1

𝑑𝑟1

𝑑𝑡
+ 𝑚2

𝑑𝑟2

𝑑𝑡
+ ⋯ 

𝑀𝑉 = 𝑚1𝑣1 + 𝑚2𝑣2 + ⋯ = ∑𝑚𝑖𝑣𝑖   



∑𝑚𝑖𝑣𝑖 = 𝑃  

𝑖𝑠 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚.  𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  

𝑷 = 𝑴𝑽 − − − − − −𝟖  

Thus total linear momentum is equal to product of total mass of system and velocity. 

Differentiate eqn 8 with respect to ‘t’ 

𝑑𝑃

𝑑𝑡
=

𝑑

𝑑𝑡
 (𝑀𝑉) =  𝑀

𝑑𝑉

𝑑𝑡
= 𝑀

𝑑2𝑅

𝑑𝑡2
  

From eqn 6, total external force, 

𝐹𝑖
𝑒 = 𝑀

𝑑2𝑅

𝑑𝑡2
= 

𝑑𝑃

𝑑𝑡
=

𝑑

𝑑𝑡
 (𝑀𝑉) − − − − − 9 

When Fe = 0 

𝑃 = 𝑀𝑉 =  ∑𝑚𝑖𝑣𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − − − − − 10 

Thus if total external force on the system is zero, its total linear momentum is constant. 

Conservation of Angular momentum  

If L1, L2 ……….are the angular momenta of various particles of a system, the total 

angular momentum 

𝐿 =  𝐿1 + 𝐿2 + ⋯ = (𝑟1 × 𝑝1) + (𝑟2 × 𝑝2) + ………     

Therefore  

𝐿 =  ∑(𝑟𝑖 × 𝑝𝑖) − − − − − −11

𝑁

𝑖=1

 

Differentiate eqn 11 with respect to ‘t’ 

𝑑𝐿

𝑑𝑡
= ∑[

𝑑

𝑑𝑡
(𝑟𝑖 × 𝑝𝑖)]

𝑖

= ∑(
𝑑𝑟𝑖

𝑑𝑡
 × 𝑝𝑖)  + (𝑟𝑖  ×

𝑑𝑝𝑖

𝑑𝑡
)

𝑖

  

= ∑(𝑟𝑖̇ × 𝑝𝑖) + (𝑟𝑖 × 𝑝𝑖̇) 



[𝐹 =
𝑑𝑝

𝑑𝑡
⁄ = 𝑃̇] 

= ∑(𝑣𝑖 × 𝑚𝑣𝑖) + (𝑟𝑖 × 𝐹𝑖) 

𝑑𝐿

𝑑𝑡
= 0 + ∑𝑟𝑖 × 𝐹𝑖 − − − − − 12 

Multiply by ri on both sides for system of particles in eqn 1.  Therefore,  

∑(𝑟𝑖 × 𝐹𝑖)

𝑖

= ∑(𝑟𝑖 × 𝐹𝑖
𝑒)

𝑖

+ ∑∑(𝑟𝑖 × 𝐹𝑖𝑗)

𝑗𝑖

− − − − − 13 

In the above term the last term becomes zero. 

∑(𝑟𝑖 × 𝐹𝑖)

𝑖

= ∑(𝑟𝑖 × 𝐹𝑖
𝑒)

𝑖

 

∑(𝑟𝑖 × 𝐹𝑖)

𝑖

= 𝑁 

 

From eqn. 12 torque, 

𝑵 = 
𝒅𝑳

𝒅𝒕
 

Thus, the rate of change of angular momentum is equal to applied external torque on the 

system.  If N = 0,  L = L1 + L2 + ……….. = constant.  In the absence of external torque 

the angular momentum is conserved. 

Conservation of Energy for a System of Particles 

Consider a system of particles located at r1, r2, …….rN  and having masses m1, m2 ….mN. 

Forces acting on the particles can be derived from a potential function.  Force on the ith  

particle can be written as, 

𝐹𝑖 = −∇𝑖  𝑉  --------------- 1 

Newton’s second law takes the form 



  

𝐹 = 𝑚𝑎 = 𝑚 
𝑑𝑣

𝑑𝑡
=  

𝑑𝑝

𝑑𝑡
=

𝑑

𝑑𝑡
 (𝑚𝑣) 

Substitute for F in eqn. 1 

𝑑

𝑑𝑡
 (𝑚𝑖𝑣𝑖) = −∇𝑖  𝑉  ---------------2 

Multiply by vi on both sides.  Summing over i particles we get 

∑𝑚𝑖𝑣𝑖  .

𝑁

𝑖=1

𝑑

𝑑𝑡
 𝑣𝑖 = −∑𝑣𝑖  

𝑁

𝑖=1

. ∇𝑖 𝑉 ……………3 

Consider LHS 

𝑚𝑖𝑣𝑖
𝑑

𝑑𝑡
 𝑣𝑖   can be written as,      

𝑑

𝑑𝑡
 (1 2⁄  𝑚𝑣2) =  

1

2
 𝑚2 𝑣 

𝑑𝑣

𝑑𝑡
= 𝑚𝑣

𝑑𝑣

𝑑𝑡
  

LHS becomes 

𝑑

𝑑𝑡
 ∑

1

2
 

𝑁

𝑖=1

𝑚𝑖𝑣𝑖
2 ……………… . .4 

𝑇 = ∑
1

2
 

𝑁

𝑖=1

𝑚𝑖𝑣𝑖
2 

𝐿𝐻𝑆 =  
𝑑𝑇

𝑑𝑡
………………… .5 

 

Consider RHS, 

𝑉𝑖 =
𝑑𝑟𝑖

𝑑𝑡
 

Therefore,  

−∑ 

𝑁

𝑖=1

∇𝑖  𝑉.
𝑑𝑟𝑖

𝑑𝑡
= −∑

𝑑𝑉

𝑑𝑟𝑖
.
𝑑𝑟𝑖

𝑑𝑡
 

𝑁

𝑖=1

  



𝑅𝐻𝑆 = − 
𝑑𝑉

𝑑𝑡
……………… . .6 

5=6 

𝑑𝑇

𝑑𝑡
= − 

𝑑𝑉

𝑑𝑡
……………… . .7 

𝑑𝑇

𝑑𝑡
+ 

𝑑𝑉

𝑑𝑡
= 0 

𝑑𝐸

𝑑𝑡
= 0…………… . .8 

Where E=T+V is the total energy.  Thus if the force acting on the ith particle can be 

obtained as the gradient of a potential, then the total energy is given by E=T+V, is a 

constant  of the motion. 

Constraints 

 The limitations or the geometrical restrictions on the motion of a particles or 

system of particles are known as constraints. 

 

Holonomic constraint 

 

 
 
 “Constraints on the position of a system of particles are called holonomic 

constraints”. 

 

Examples 

 The constraints involved in the rigid body in which the distance between any 

two particles is always fixed are holonomic. 

 The constraints involved when a particle is restricted to move along a curve 

are holonomic. 



 Simple pendulum with rigid support 

 A bead moving on a circular ring or in an abacus. 

 
Non holonomic constraints  

 

“Constraints on the velocities of the particles in the system are called non holonomic” 

 

 Rolling disc on a rough surface without slipping. 

 Molecules in a gas-constraints involved in the motion of molecules in a gas 

container are non-holonomic. 

 

  
1. The values of the coordinates determine the configuration of the system. 

2. They may be varied arbitrarily and independently of each other, without violating the 

constraints of the system. 

Examples 

1. Consider a particle which moves in space, we can fixed in the position of the particle 

by using the coordinates x, y, z. Hence we require 3 generalized coordinates to fix the 

particles which moves in space. 

2. When a particle moves in a plane it may be described by Cartesian coordinates x and y 

or the polar coordinate r, 𝜃. So the generalized coordinates are two. 

3. Consider a particle which is constraint to move only on a sphere of radius a. Then the 

generalized coordinates required are 2 namely 𝜃 𝑎𝑛𝑑 φ (longitude and latitude). 

4. The beads of an abacus has the generalized coordinate x (the Cartesian coordinate 

along the horizontal wire) 

 



Degrees of freedom 

 “The number of coordinates required to specify the position of a system is called 

the degrees of freedom of the system”.  The number of independent ways in which a 

mechanical system can move without violating any constraint is called the number of 

degrees of freedom of the system. It is indicated by the least possible number of 

coordinates to describe the system.  The degree of freedom for a system containing n 

particles is 3N- k where k is the number of constraints on the system. 

1. Rigid body in a space - Consider an rigid object moving in three dimensional 

space as in below diagram. 

 
Here the object has three translational motion along X, Y and Z axis and three rotational 

motion about X, Y and Z axis.  Therefore, the total degrees of freedom (DOF) are six.  

2. Rigid  body in a plane 

 

The rigid bar can be translated along the x axis, translated along the y axis, 

and rotated about its centroid.  Therefore the degrees of freedom are three. 

 

 



D’Alemberts Principle 

(It is a differential method to obtain Lagrange’s equation) 

 

 This method is based on the principle of virtual work.  For a system to be in 

equilibrium the resultant force acting on each particle must be zero.  i.e., Fi = 0, where Fi 

is the force acting on ith particle.  

The virtual work is given by 

𝐹𝑖 . 𝛿𝑟𝑖 =  0 

𝛿𝑟𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

Summing all over the particles 

∑𝐹𝑖 .

𝑖

𝛿𝑟𝑖 = 0………………………… . .1 

From Newton’s second law, 

𝐹𝑖 = 
𝑑𝑃𝑖

𝑑𝑡
=  𝑃̇𝑖 

𝑃𝑖 is the momentum of ith particle due to Fi 

𝐹𝑖 − 𝑃̇𝑖 = 0……………………… .2 

Replace Fi by 𝐹𝑖 − 𝑃̇𝑖  in equation 1 

∑(𝐹𝑖 − 𝑃̇𝑖).

𝑖

𝛿𝑟𝑖 = 0………………………… . .3 

If constraints are present in the system then Fi can be written as 

 

𝐹𝑖 = 𝐹𝑖
𝑎 + 𝑓𝑖 ………………… . .4 

𝐹𝑖
𝑎  𝑖𝑠 𝑡ℎ𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑜𝑟 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑎𝑛𝑑 𝑓𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑜𝑟𝑐𝑒  

Put eqn 4 in 3 

∑[(𝐹𝑖
𝑎 + 𝑓𝑖) −  𝑃̇𝑖).

𝑖

𝛿𝑟𝑖 = 0 

 

∑ (𝐹𝑖
𝑎 − 𝑃̇𝑖).𝑖 𝛿𝑟𝑖+∑ 𝑓𝑖 .𝑖 𝛿𝑟𝑖 = 0 

If constraint force vanishes second term is 0 

 

∑(𝐹𝑖
𝑎 − 𝑃̇𝑖).

𝑖

𝛿𝑟𝑖 = 0………… .5 

 

This is D’Alembert’s Principle 

 



Lagrange’s equation from D’Alembert’s Principle 

 

 Consider a system of particles.  The position vectors of the particles in a system 

i.e., r1, r2, r3 …….ri are expressed as the functions of generalized co-ordinates q1, q2, q3, 

…..qn and time ‘t’. 

𝑟𝑖 = 𝑟𝑖(𝑞1, 𝑞2 ∙∙∙∙∙∙∙∙ 𝑞𝑛 , 𝑡) − − − − − 1 

Differentiating eqn. 1 with respect to time partially, 

𝑑𝑟𝑖

𝑑𝑡
=  

𝜕𝑟𝑖

𝜕𝑞1

 
𝑑𝑞1

𝑑𝑡
+

𝜕𝑟𝑖

𝜕𝑞2

 
𝑑𝑞2

𝑑𝑡
+∙∙∙∙∙∙∙∙∙∙∙∙

𝜕𝑟𝑖

𝜕𝑡
 
𝑑𝑡

𝑑𝑡
 

𝑣𝑖 = ∑
𝜕𝑟𝑖

𝜕𝑞𝑗

 𝑞̇𝑗 +

𝑗

𝜕𝑟𝑖

𝜕𝑡
− − − − − 2 

Virtual displacement 𝛿𝑟𝑖 in terms of generalized co-ordinates from eqn. 1 is given by 

𝛿𝑟𝑖 = ∑
𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 − − − − − −3

𝑗

 

From D’Alemberts principle (dropping superscripts) 

∑(𝐹𝑖 − 𝑃̇𝑖).

𝑖

𝛿𝑟𝑖 = 0 − − − −4 

Put eqn. 3 in 4 

 

∑(𝐹𝑖 − 𝑃̇𝑖).

𝑖

∑
𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 = 0

𝑗

 

 

∑𝐹𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 − ∑𝑃̇𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 = 0

𝑖𝑗

− − − − − 5

𝑗

 

We define the term  

∑𝐹𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 =  𝑄𝑗  − − − −6            𝑎𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑜𝑟𝑐𝑒

𝑖𝑗

 

Put eqn. 6 in 5 

∑ 𝑄𝑗  𝛿𝑞𝑗 − ∑𝑃̇𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 = 0

𝑖𝑗

− − − − − 7

𝑗

 



Consider second term in eqn. 7 

∑𝑃̇𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 =

𝑖𝑗

∑𝑚𝑖𝑟̈𝑖
𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 − − − − − 8

𝑖𝑗

 

Let, 

𝑑

𝑑𝑡
(𝑟̇𝑖  ∙

𝜕𝑟𝑖

𝜕𝑞𝑗

) = 𝑟̈𝑖
𝜕𝑟𝑖

𝜕𝑞𝑗

+ 𝑟̇𝑖 ∙
𝑑

𝑑𝑡
(
𝜕𝑟𝑖

𝜕𝑞𝑗

) 

 

𝑟̈𝑖
𝜕𝑟𝑖

𝜕𝑞𝑗

=
𝑑

𝑑𝑡
(𝑟̇𝑖  ∙

𝜕𝑟𝑖

𝜕𝑞𝑗

) − 𝑟̇𝑖 ∙
𝑑

𝑑𝑡
(
𝜕𝑟𝑖

𝜕𝑞𝑗

) − − − − − 9 

Put eqn. 9 in 8 

∑𝑃̇𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 =

𝑖𝑗

∑{
𝑑

𝑑𝑡
(𝑚𝑖𝑟̇𝑖  ∙

𝜕𝑟𝑖

𝜕𝑞𝑗

) − 𝑚𝑖 𝑟̇𝑖 ∙
𝑑

𝑑𝑡
(
𝜕𝑟𝑖

𝜕𝑞𝑗

)}

𝑖𝑗

 𝛿𝑞𝑗 

= ∑{
𝑑

𝑑𝑡
(𝑚𝑖𝑣𝑖  ∙

𝜕𝑟𝑖

𝜕𝑞𝑗

) − 𝑚𝑖𝑣𝑖 ∙
𝑑

𝑑𝑡
(
𝜕𝑟𝑖

𝜕𝑞𝑗

)}

𝑖𝑗

 𝛿𝑞𝑗 − − − 10 

 

But,  

𝑑

𝑑𝑡
(
𝜕𝑟𝑖

𝜕𝑞𝑗

) =
𝜕𝑣𝑖

𝜕𝑞𝑗

− − − − − 11 

Differentiate eqn. 2 with respect to 𝑞̇𝑗 

𝜕𝑣𝑖

𝜕𝑞̇𝑗

=
𝜕𝑟𝑖

𝜕𝑞𝑗

− − − − − −12 

Put eqn. 11 and 12 in eqn. 10 

∑𝑃̇𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 = ∑{
𝑑

𝑑𝑡
(𝑚𝑖𝑣𝑖  ∙

𝜕𝑣𝑖

𝜕𝑞̇𝑗

) − 𝑚𝑖𝑣𝑖 ∙ (
𝜕𝑣𝑖

𝜕𝑞𝑗

)}

𝑖𝑗

 𝛿𝑞𝑗

𝑖𝑗

 

∑{
𝑑

𝑑𝑡
[

𝜕

𝜕𝑞̇𝑗

(∑
1

2
𝑚𝑖𝑣𝑖

2)] −
𝜕

𝜕𝑞𝑗

[∑
1

2
𝑚𝑖𝑣𝑖

2]}

𝑖𝑗

 𝛿𝑞𝑗  

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,        ∑ 𝑃̇𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 𝛿𝑞𝑗 =

𝑖𝑗

∑{
𝑑

𝑑𝑡
[
𝜕𝑇

𝜕𝑞̇𝑗

] −
𝜕𝑇

𝜕𝑞𝑗

}

𝑖𝑗

 𝛿𝑞𝑗 − − − −13 



Put eqn. 13 in eqn. 7 

∑ 𝑄𝑗  𝛿𝑞𝑗 − ∑[
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑗

) −
𝜕𝑇

𝜕𝑞𝑗

]

𝑖𝑗

𝛿𝑞𝑗 = 0

𝑗

 

𝑸𝒋  = ∑[
𝒅

𝒅𝒕
(
𝝏𝑻

𝝏𝒒̇𝒋

) −
𝝏𝑻

𝝏𝒒𝒋

] − − − − − 14

𝒊𝒋

 

This is the general form of Lagrange’s equation. 

For conservative system the force is derived from potential function V. 

𝐹𝑖 = −∇𝑖  𝑉 = −
𝜕𝑉

𝜕𝑟𝑖
 

Generalized force  

𝑄𝑗  = ∑𝐹𝑖

𝜕𝑟𝑖

𝜕𝑞𝑗

 

𝑖𝑗

 

= ∑∇𝑖 𝑉

𝑖𝑗

  
𝜕𝑟𝑖

𝜕𝑞𝑗

= −∑
𝜕𝑉

𝜕𝑟𝑖
𝑖𝑗

 
𝜕𝑟𝑖

𝜕𝑞𝑗

= −
𝜕𝑉

𝜕𝑞𝑗

 

From eqn. 14 

∑[
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇𝑗

) −
𝜕𝑇

𝜕𝑞𝑗

] = −
𝜕𝑉

𝜕𝑞𝑗
𝑖𝑗

 

∑[
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑗

) −
𝜕(𝑇 − 𝑉)

𝜕𝑞𝑗

] = 0

𝑖𝑗

 

(Since V is not a function of  𝑞̇𝑗 that is,  
𝜕𝑉

𝜕𝑞̇𝑗
=0) 

 

∑[
𝑑

𝑑𝑡
(
𝜕(𝑇 − 𝑉)

𝜕𝑞̇𝑗

) −
𝜕(𝑇 − 𝑉)

𝜕𝑞𝑗

] = 0

𝑖𝑗

 

Define a new function called Lagrangian L of the system (L = T-V) 

 

∑[
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑗

) −
𝜕𝐿

𝜕𝑞𝑗

] = 0

𝑖𝑗

 

The above equation is known as Lagrange’s equation of motion. 

 

 

 

 



Application of Lagrangian formulation 

Simple Pendulum 

A simple pendulum consists of a mass m hanging from a string of 

length l and fixed at a point. When displaced to an initial angle and released, 

the pendulum will swing back and forth with periodic motion.  

Ɵ is the angular displacement of the simple pendulum from equilibrium 

position.  Ɵ is chosen as the generalized coordinate.  

 

The kinetic energy is given by 

𝑇 =  
1

2
 𝑚𝑣2 

[Ɵ=arc/radius = s/l.     Therefore, s=lƟ .      velocity v =ds/dt = d/dt(lƟ)= lθ̇ ] 

  

𝑇 =  
1

2
 𝑚(𝑙θ̇)2 = 

1

2
 𝑚 𝑙2θ̇

2
 

Potential energy is V= mgh = mg (OA-OC) = mg (l – l cosƟ) = mgl (1-cosƟ) 

Lagrangian L = T – V 

𝐿 =  
1

2
 𝑚𝑙2θ̇

2
−  𝑚𝑔𝑙(1 − cosƟ) 

𝜕𝐿

𝜕θ̇
= 

1

2
 𝑚𝑙2 2 Ɵ̇ = 𝑚𝑙2Ɵ̇ 



𝜕𝐿

𝜕Ɵ
=  −𝑚𝑔𝑙 𝑠𝑖𝑛Ɵ 

Substitute in Lagrangian equation, 

  

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕θ̇
) −

𝜕𝐿

𝜕Ɵ
= 0 

 

𝑑

𝑑𝑡
(𝑚𝑙2Ɵ̇) +  𝑚𝑔𝑙 𝑠𝑖𝑛Ɵ = 0 

 

𝑚𝑙2𝜃̈ +  𝑚𝑔𝑙 𝑠𝑖𝑛Ɵ = 0 

 

𝜃̈ +
𝑔

𝑙
 𝑠𝑖𝑛Ɵ = 0 

For small amplitude 𝑠𝑖𝑛Ɵ ≈ 𝜃 

𝜃̈ +
𝑔

𝑙
 Ɵ = 0 

This is the equation of motion for simple pendulum. 

Atwood’s Machine 

Atwood’s Machine is a system of two masses, connected by an inextensible string 

passing over a small smooth pulley.  It is an example conservative system with 

holonomic constraint. 

The schematic representation of Atwood’s machine is shown below.  It consists of two 

masses m1 and m2 suspended over a frictionless pulley of radius ‘r’ connected by a string 

of length ‘l’.  Let ‘x’ be the vertical distance from the pulley to mass m1.  Then mass m2 

will be at a distance l-x from pulley.  PA = x, PQ = l and QA = l-x.  Here x is the 

independent coordinate. 



 

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑚1 = 
1

2
 𝑚1 𝑥̇

2 

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑚2 = 
1

2
 𝑚2 𝑥̇

2 

𝑇𝑜𝑡𝑎𝑙 𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑇 =  
1

2
 𝑚1 𝑥̇

2 +
1

2
 𝑚2 𝑥̇

2 

𝑇 =
1

2
(𝑚1 + 𝑚2 ) 𝑥̇

2 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑚1 = − 𝑚1 𝑔𝑥 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑚2 = − 𝑚2 𝑔(𝑙 − 𝑥) 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑉 = − 𝑚1 𝑔𝑥+(− 𝑚2 𝑔(𝑙 − 𝑥)) 

𝑉 = − 𝑚1 𝑔𝑥 − 𝑚2 𝑔(𝑙 − 𝑥) 

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 𝐿 = 𝑇 − 𝑉 

𝐿 =
1

2
(𝑚1 + 𝑚2 )𝑥̇

2 + 𝑚1 𝑔𝑥 + 𝑚2 𝑔(𝑙 − 𝑥) 

𝐿 =
1

2
(𝑚1 + 𝑚2 )𝑥̇

2 + 𝑚1 𝑔𝑥 + 𝑚2 𝑔𝑙 − 𝑚2 𝑔𝑥 

𝐿 =
1

2
(𝑚1 + 𝑚2 )𝑥̇

2 +  𝑔𝑥(𝑚1 − 𝑚2 ) +  𝑚2 𝑔𝑙 



𝜕𝐿

𝜕𝑥
= (𝑚1 − 𝑚2 )𝑔 

𝜕𝐿

𝜕𝑥̇
= (𝑚1 + 𝑚2 )𝑥̇ 

Lagrange’s equation of motion, 

 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥̇
) −

𝜕𝐿

𝜕𝑥
= 0 

 

𝑑

𝑑𝑡
[(𝑚1 + 𝑚2 )𝑥̇] − (𝑚1 − 𝑚2 )𝑔 = 0 

 

(𝑚1 + 𝑚2 )𝑥̈ = (𝑚1 –𝑚2 )𝑔 

 

𝑥̈ =
(𝑚1 –𝑚2 )𝑔

(𝑚1 + 𝑚2 )
 

 

This is the required equation of motion of a system of two masses, connected by an 

inextensible string passing over a small smooth pulley. 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT – II  MOTION UNDER CENTRAL FORCE 

 

 ‘Central force is that force which is always directed towards or away from a fixed 

centre and magnitude is a function of distance from the centre point’ 

𝐹 ⃗⃗  ⃗ = 𝑓 (𝑟)𝑟̂ 

𝑓 (𝑟) 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟  𝑎𝑛𝑑 𝑟̂ is the unit vector. 

 The problem of finding the motion of a particle under a central force is one of the 

most important problems in physics, because it is closely related to mechanics of nature, 

that is,  motion of planets, satellites etc. 

 The force between two interacting particle is primarily a central force.  If one of 

the particle is heavier than other, although due to Newton’s third law, force acting on 

both the particles will be the same.  The acceleration of heavier  particle will be too small 

than lighter  one and it can be neglected and heavier particle can be regarded at rest.  By 

locating origin at heavier particle, the problem of two bodies simply reduces to one body 

problem. 

𝑓 (𝑟)  <  0 → 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑒 

𝑓 (𝑟)  > 0 → 𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑒 

 

 

 
Thus central force is the force on a body or an object is always towards a fixed point 

(origin). OR  “central force is the force that is directed along the line joining the object 

and the origin. 

 

 



Some examples of central forces are  

1. Gravitational force. 

2. Coulomb force  

3. Simple harmonic motion 

4. Projectile motion 

5. Uniform circular motion   

6. Electrostatic forces and magneto static forces. 

 

Conservation of energy 

Motion of a particle with mass ‘m’ subject to a central force  

𝐹 ⃗⃗  ⃗(𝑟) = 𝑓 (𝑟)𝑟̂ 

Unit vector 𝑟̂ =
𝑟 

𝑟
 

If V(r) is potential energy then, 

𝑓 (𝑟) = −
𝑑𝑉(𝑟)

𝑑𝑟
 

 

𝐹 ⃗⃗  ⃗(𝑟) = −∇ 𝑉 (𝑟) 

𝑉 (𝑟) 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

The curl of gradient of scalar function is zero. 

That is, ∇ × ∇ 𝑉(𝑟) = 0  

𝛁 ×  𝑭⃗⃗ = 𝟎 

Thus central force is always a conservative force. 

Conservation of angular momentum 

Torque 

𝑁 ⃗⃗⃗⃗ = 𝑟 ⃗⃗ × 𝐹 ⃗⃗  ⃗(𝑟) 

= 𝑟 ⃗⃗ × 𝑟̂ 𝑓 (𝑟) 

= 𝑟 ⃗⃗ ×
𝑟 ⃗⃗ 

𝑟
 𝑓 (𝑟) = 0 

Thus 𝑁 = 
𝑑𝐿

𝑑𝑡
= 0 

Angular momentum L through the central force is constant.   

 

 

 



KEPLER PROBLEM 

 The inverse square law of force is most important of all the central force laws. It 

results in the deduction of Kepler’s laws.  The planets move around the sun under the 

influence of gravitational force which is an inverse square law of force.  Hence we 

deduce the Keplers laws on the basis of inverse square law of force.   

Inverse square law of force is given by, 

𝑓(𝑟) = − 
𝑘

𝑟2
 

 

Law of elliptical orbit - All the planets move in an elliptical orbit around the sun being  at 

one of the foci. 

Law of areas - The radius vector connecting the sun and the planet sweeps at equal areas 

is equal intervals of time. ie, areal velocity is constant. 

Harmonic law - The square of the period of revolution of any planet about the sun is 

proportional to the cube of the semi major axis. 

Deduction of first law: 

The central force varies inversely as the square of the distance. That is 

𝑓(𝑟) = − 
𝐾

𝑟2
− − − − − 1 

K is the constant.  The corresponding potential energy will be 

𝑉(𝑟) = −
𝐾

𝑟
 

 

2 

J is the angular momentum and u is a variable.  

             3        



                4 

       5 

6 

Multiply by J2 / mK 

7 

 

Where  

                     8 

 

In the above equation ‘e’ is known as eccentricity. 

Equation 7 represents a conic section and therefore coinciding with Kepler’s first law of 

planetary motion. 

 

𝑟 =
𝑙

1 + 𝑒 𝑐𝑜𝑠𝜃
− − − − − −9 

 

5 



 

      10 

𝐸 =  
𝑚𝐾2

2𝐽2
 (𝑒2 −  1) − − − − − −11 

 

 

 
 

Deduction of Kepler’s  second law 

When planet moves in orbit the radius vector sweeps equal area in equal interval of time.   

 
Areal velocity v1r1 = v2r2 

 
 

 

r1

1 
r2 



If vector r rotates by an angle dƟ in time dt, the area swept out by r in time dt. 

𝑑𝐴 =  
1

2
 𝑟 (𝑟𝑑𝜃) 

𝑑𝐴

𝑑𝑡
=

1

2
𝑟2

𝑑𝜃

𝑑𝑡
=

1

2
𝑟2𝜃̇ =

𝐽

2𝑚
 

Thus areal velocity is constant.  Thus second law is proved. 

 

Deduction of Kepler’s third law 

 

From equation 7 

 

 

 

12 

13 



 

 

From equation 11 

𝐸 =  
𝑚𝐾2

2𝐽2
 (𝑒2 −  1) 

(𝑒2 −  1) =
2𝐸𝐽2

𝑚𝐾2
 

 

( 1 − 𝑒2) =  − 
2𝐸𝐽2

𝑚𝐾2 

𝑓𝑟𝑜𝑚 𝑒𝑞𝑛. 8 𝑤𝑒 ℎ𝑎𝑣𝑒,    𝑙 =  
𝐽2

𝑚𝐾
 

 

Substitute15 in eqn 14 

 

 

 

 

 

 

14 

15 

16 

17 



 

 

Equating eqn. 17 and 18 

 

From eqn. 14 

 

 

 

Substitute the above eqn. in T 

 

 

This gives the time period in the elliptical orbit.  

Squaring both sides of equation 20,  

 

 

 

18 

19 

20 

 

 

 



Virial Theorem (R.E. Clausius, 1870) 

 

 

 
First term on RHS can be written as 

 
Second term can be written as 

 

 

The time average of above equation over a time interval 𝜏 is obtained as 
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Scattering in a Central Force field 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

1 



 

 

 

 

Hence equation 1 represents the path of the charged particle as a hyperbola 

 

 

 



 

 

From equation 1 

 

  

 

 

 

 

 

 

 

 

 



Substituting the value of p and dp/d∅  in the differential cross-section 𝜎(𝛷) eqn. 

 

 

  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Therefore, the satellite will be moving in an elliptical orbit if 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT – III RIGID BODY DYNAMICS AND SMALL OSCILLATIONS 
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So the transformation matrix is given by 

 

The angle Ψ is called the body angle. 

The complete matrix of transformation A will be A = BCD. 

 

 



Moments and Products of Inertia  

 If a rigid body is taken as a rigid collection of particles then angular momentum is 

given as, 

𝐿  ⃗⃗⃗⃗ =  ∑𝑚 (𝑟𝑖  × 𝑣𝑖)

𝑖

 

Lx, Ly, Lz are angular momentum component.   ωx, ωy , ωz are angular velocity . 

𝐿𝑒𝑡 𝐼𝑥𝑥 , 𝐼𝑦𝑦, 𝐼𝑧𝑧 , 𝐼𝑥𝑦, 𝐼𝑦𝑧, 𝐼𝑧𝑥 , 𝐼𝑦𝑥 , 𝐼𝑧𝑦, 𝐼𝑥𝑧  be nine coefficients.  They are written as 3x3 

matrix. 

(

𝐿𝑥

𝐿𝑦

𝐿𝑧

) =  (

𝐼𝑥𝑥

𝐼𝑦𝑥

𝐼𝑧𝑥

  

𝐼𝑥𝑦

𝐼𝑦𝑦

𝐼𝑧𝑦

  

𝐼𝑥𝑧

𝐼𝑦𝑧

𝐼𝑧𝑧

) (

𝜔𝑥

𝜔𝑦

𝜔𝑧

) 

𝐿 = 𝐼 𝜔⃗⃗  

When I operates on angular velocity vector 𝜔⃗⃗  a physically different vector, the angular 

momentum  𝐿  ⃗⃗⃗⃗  results. 

Therefore I is termed as moment of inertia tensor. 

𝐼𝑥𝑥 = ∑𝑚𝑖(𝑟𝑖
2 − 𝑥𝑖

2) =  ∑𝑚𝑖(𝑦𝑖
2 + 𝑧𝑖

2)   

𝐼𝑦𝑦 = ∑𝑚𝑖(𝑟𝑖
2 − 𝑦𝑖

2) =  ∑𝑚𝑖(𝑧𝑖
2 + 𝑥𝑖

2)   

𝐼𝑧𝑧 = ∑𝑚𝑖(𝑟𝑖
2 − 𝑧𝑖

2) =  ∑𝑚𝑖(𝑥𝑖
2 + 𝑦𝑖

2)   

are called moment of inertia coefficients.  

 

 𝐼𝑥𝑥 - moment of inertia of the body about x-axis. 

𝐼𝑦𝑦- moment of inertia of the body about y-axis. 

𝐼𝑧𝑧 - moment of inertia of the body about z-axis. 

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = −∑𝑚𝑖𝑥𝑖𝑦𝑖  

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = −∑𝑚𝑖𝑦𝑖𝑧𝑖 

𝐼𝑧𝑥 = 𝐼𝑥𝑧 = −∑𝑚𝑖𝑧𝑖𝑥𝑖 

are termed as products of inertia.  

 



Euler’s equation of motion for a rigid body 

Lagrange’s method 

 Euler’s angles completely describe the orientation of the rigid body when it is 

rotating with one point fixed.  The Euler’s  angle Φ, Ɵ, Ψ are taken as generalized 

coordinates and components of the applied torque as the generalized forces 

corresponding to these angles.  The Lagrangian is given by, 

L = T − V 

L = T (Φ,̇ Ɵ,̇ Ψ̇, Φ, Ɵ,Ψ) − V(Φ, Ɵ,Ψ) 

L =  
1

2
 (I1ωx

2 + I2ωy
2 + I3ωz

2) − V(Φ, Ɵ,Ψ) − − − −1 

I1, I2, I3 are the principal moment of inertia. 

 For a fixed point, the kinetic energy depends on  Euler’s  angle Φ, Ɵ, Ψ via the 

angular velocity components along the principal axes x, y and z.    

 The angle Ψ  happens to be the angle of rotation about the principal z-axis, so 

that angular velocity 𝜔𝛹 = 𝛹̇ and the generalized force or the z-component of 

torque is  

𝑁𝑍 = −
𝜕𝑉

𝜕𝛹
 

Therefore, the Lagrange’s equation for Ψ- coordinate is 

 

d

dt
(
∂T

∂Ψ̇
) −

∂T

∂Ψ
=  −

∂V

∂Ψ
= 𝑁𝑍 − − − −2 

 For convenience, we reproduce here the angular velocity components expressed in 

terms of Euler’s angles and kinetic energy expressed in terms of ωx, ωy , ωz as referred 

to the principal axes.  ωx, ωy , ωz  are angular velocity components. 

𝜔𝑥 = 𝛷̇ sin Ɵ 𝑠𝑖𝑛𝛹 + Ɵ̇ cos𝛹 

𝜔𝑦 = 𝛷̇ sin Ɵ 𝑐𝑜𝑠 𝛹 − Ɵ̇ sin 𝛹 

𝜔𝑧 = 𝛷̇𝑐𝑜𝑠 Ɵ − 𝛹̇  

Kinetic energy  𝑇 =
1

2
 (I1ωx

2 + I2ωy
2 + I3ωz

2) 



Therefore, 

    
∂𝜔𝑥

∂Ψ̇
= 0      

∂𝜔𝑦

∂Ψ̇
= 0      

∂𝜔𝑧

∂Ψ̇
= 1        

∂𝜔𝑥

∂Ψ
= 𝜔𝑦       

∂𝜔𝑦

∂Ψ
= −𝜔𝑥       

∂𝜔𝑧

∂Ψ
= 0        

 

∂T

∂Ψ̇
=

∂T

∂𝜔𝑥

∂𝜔𝑥

∂Ψ̇
+

∂T

∂𝜔𝑦

∂𝜔𝑦

∂Ψ̇
+

∂T

∂𝜔𝑧

∂𝜔𝑧

∂Ψ̇
 

 

∂T

∂Ψ̇
= I1𝜔𝑥. 0 + I2𝜔𝑦. 0 + I3𝜔𝑧. 1 

∂T

∂Ψ̇
= I3𝜔𝑧 − − − −3 

Similarly,   

∂T

∂Ψ
=

∂T

∂𝜔𝑥

∂𝜔𝑥

∂Ψ
+

∂T

∂𝜔𝑦

∂𝜔𝑦

∂Ψ
+

∂T

∂𝜔𝑧

∂𝜔𝑧

∂Ψ
 

∂T

∂Ψ
= I1𝜔𝑥𝜔𝑦 + I2𝜔𝑦(−𝜔𝑥) + I3𝜔𝑧. 0 

∂T

∂Ψ
= (I1 − I2)𝜔𝑥𝜔𝑦 − − − − − −4 

Substitute eqn. 3 and 4 in 2 

d

dt
(I3𝜔𝑧) − (I1 − I2)𝜔𝑥𝜔𝑦 = 𝑁𝑍  

I3𝜔𝑧̇ − 𝜔𝑥𝜔𝑦(I1 − I2) = 𝑁𝑍 − − − 5 

Similarly by cyclic permutation, 

I1𝜔𝑥̇ − 𝜔𝑦𝜔𝑧(I2 − I3) = 𝑁𝑥 − − − 6 

I2𝜔𝑦̇ − 𝜔𝑧𝜔𝑥(I3 − I1) = 𝑁𝑦 − − − 7 

 

Equations 5,6 and 7 are known as Euler’s equation. 

 

 



 

 

 

 

 

 

 

Fig.1 



 

From Euler’s geometrical equation, 

 

 

Theory of Small Oscillations  

Normal modes and frequencies 

Consider three springs arranged as shown below.  

 

The two masses are equal.  Let x1 and x2 be displacements of the left and right masses.  

The middle spring is stretched or compressed by x2 - x1. 

Solving for x1 and x2  we get, 

𝑥1 = 𝐴1 cos(𝜔1𝑡 + 𝛷1) + 𝐴2 cos(𝜔2𝑡 + 𝛷2) 

𝑥2 = 𝐴1 cos(𝜔1𝑡 + 𝛷1) − 𝐴2 cos(𝜔2𝑡 + 𝛷2) 

𝐴1 𝑎𝑛𝑑 𝐴2 are amplitudes of mode 1 and mode 2 respectively.   

𝛷1𝑎𝑛𝑑 𝛷2are phase constants of mode 1 and mode 2. 

If 𝐴2 = 0 

𝑥1 = 𝐴1 cos(𝜔1𝑡 + 𝛷1) 

𝑥2 = 𝐴1 cos(𝜔1𝑡 + 𝛷1) 

 

If 𝐴1 = 0 

𝑥1 = 𝐴2 cos(𝜔2𝑡 + 𝛷2) 

𝑥2 = −𝐴2 cos(𝜔2𝑡 + 𝛷2) 



Thus if  𝐴2 = 0, the two masses oscillate together in phase with frequency 𝜔1. 

If 𝐴1 = 0, the two masses oscillate with frequency 𝜔2 opposite to each other.. that is out 

of phase by 𝜋. 

 “the two such modes of oscillation involving a single frequency are called normal 

modes of vibration” 

For a given normal mode, all the coordinates (x1 and x2) oscillate with same frequency.   

𝜔1 𝑎𝑛𝑑 𝜔2are known as normal frequency. 

 

Linear triatomic molecule 

 

 

 



 

 

 

 



 



 



 

 

 

 

 

 

 

 

 

 

 



 

UNIT – IV 

HAMILTON’S FORMULATION 

Hamilton’s canonical equations of motion 
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DEDUCTION OF HAMILTON’S EQUATIONS FROM VARIATIONAL 

PRINCIPLE 

 

 

 

 

1 and 3 

This equation is known as Hamilton’s 

equations or Hamilton’s canonical 

equations of motion. 

 



 

 

 

 

 



 

 

 

Using 2 and 3 the quantity in the first term of eqn 1 is 
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CANONICAL TRANSFORMATION 

 

Legendre Transformations 

 

 



 

Generating Functions 



 



 

 

 

 



 

 

 

 



 

POISSON’S BRACKET 

 



 

 

 

 

 

 



 

 

 



 

INVARIANCE OF POISSON BRACKET WITH RESPECT TO CANONICAL 

TRANSFORMATION 

 

 

 



 

 

 

 

 



 

 

 

 

 



HAMILTON – JACOBI METHOD 

Solution to harmonic oscillator problem 

 

 

 

 



 

 

 

 

 

 

 



 

UNIT – V 

RELATIVITY 

 

 

Principle of Relativity 

 

 

 



 

Postulates of Special theory of Relativity 

 

 

 

 



Four Dimensional formaulation – Minskowski’ space 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 



THOMAS PRECESSION 

 “Thomas precession is a kinematic effect in the flat space time of special 

relativity. In the curved space time of general relativity,” 

 For a given inertial frame, if a second frame is Lorentz-boosted relative to it, and a 

third boosted relative to the second, but non-collinear with the first boost, then the 

Lorentz transformation between the first and third frames involves a combined boost and 

rotation, known as the "Wigner rotation" or "Thomas rotation". For accelerated motion, 

the accelerated frame has an inertial frame at every instant. Two boosts a small time 

interval (as measured in the lab frame) apart leads to a Wigner rotation after the second 

boost. In the limit the time interval tends to zero, the accelerated frame will rotate at 

every instant, so the accelerated frame rotates with an angular velocity. 

 The precession can be understood geometrically as a consequence of the fact that 

the space of velocities in relativity is hyperbolic, and so parallel transport of a vector (the 

gyroscope's angular velocity) around a circle (its linear velocity) leaves it pointing in a 

different direction, or understood algebraically as being a result of the non-

commutativity of  Lorentz transformations. 

Elements of general theory of relativity 

 General relativity, also known as the general theory of relativity, is 

the geometric theory of gravitation published by Albert Einstein in 1915 and is the 

current description of gravitation in modern physics. 

General relativity generalizes special relativity and refines Newton's law of universal 

gravitation, providing a unified description of gravity as a geometric property 

of space and time or four-dimensional spacetime. In particular, the curvature of 

spacetime is directly related to the energy and momentum of 

whatever matter and radiation are present. 

 Some predictions of general relativity differ significantly from those of classical 

physics, especially concerning the passage of time, the geometry of space, the motion of 
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https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/Special_relativity
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https://en.wikipedia.org/wiki/Inertial_frame
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bodies in free fall, and the propagation of light. Examples of such differences 

include gravitational time dilation, gravitational lensing, the gravitational redshift of 

light, the gravitational time delay and singularities/black holes. The predictions of general 

relativity in relation to classical physics have been confirmed in all observations and 

experiments to date. Although general relativity is not the only relativistic theory of 

gravity, it is the simplest theory that is consistent with experimental data.  
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