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UNIT — 1
FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION

Mechanics of a Particle

Let m be the mass of the given particle, o be the fixed origin and 7 be the radius
vector of m with respect to ‘O’ at any instant of time‘t’.

The velocity of m with respect to ‘O’ is the rate of change of displacement.

- . A ¢ ¢ T
(1e) velocityv=—= 1"
dt
Acceleration is the rate of change of velocity.

I.e acceleration is given by

_dv _dr
T "

Conservation of Linear Momentum

The linear momentum of a particle of mass ‘m’ with velocity ‘v’ is mv and it is denoted

by p’ = mv = mr

By Newton’s second law of motion ,

P =m7v isthe linear momentum
If the external force acting on the particle is zero, then
dp d

- amv)

Or p=mwv =constant. Thus in the absence of external force, the linear momentum
IS conserved.

Conservation of Angular Momentum
The Angular momentum of a particle of mass ‘m’ with respect to a fixed point

‘0’ is defined to be L = ¥ x p where 7 is the linear momentum of the particle.
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The moment of a force F with respect to a fixed origin 1s defined as N=7xF

Prove that moment of force is the rate of change of angular momentum.

(ie) To Prove N= %.

dr
Hence N= —.
dt



If the total torque, N, is zero then L= 0, and the angular momentum Lis
conserved.
Conservation of Energy
F
The work done b'y the external force _F'upon the particle in going from point 1
to point 2 is deﬁr‘\\édby W=/ *F d§,wh"ere dscorresponds to an infinitesimal

________ 1 EE
displacement.

We Know that,
W|2=f12 ﬁdg

Newton’s second law
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Multiply by ds on both sides

F.ds = ma.ds

[v=ds/dt, ds=vdt]

5 dv
F.ds = (mv.—) dt
dt

(mv. E) this can be written as < (2 mv?)
dt dt 2

Therefore,



2 2d 1
Wi, = [ F.ds = fla(zmvz)dt

1 2 1 2
W12 = Emvz - Emvl
Wi,=T,—-T,

Also the forces are derivable from scalar potential energy function in the manner

F=-VI
2 2

W12: deS: f_VVdS
1 1

2 2
av
W12 == J-_ Eds == _dV == _(VZ - Vl)

1 1
W=V, =-V,
Therefore

T,-T,=V,-V,

T, + Vi = T, + V, = constant.
In general T+V = constant. Thus the total energy is conserved
MECHANICS OF A SYSTEM OF PARTICLES

Consider a system consists of two or more particles. Force acting on it particle is
given by

Ff = external force from outside the system



F;; = internal force on the i th particle due to j th particle.

F;; = total internal force due to all other particles
(j = 1to N)on i th particle.

'

-
1l
=

According to Newton’s second law,
Fi = ma;= —= P

dvi dZT'i

o= mige =M

For all particles in the system,

) d?
Zpi = e me‘ “““ 2
i

Fromegn 1
Fl:Fie-I-zzFij —————— 3
tJ
ButF/ = — F}. Thatis, F/ + F! = 0. The second term in 3 becomes zero.

[the sum of equal and opposite forces cancel each other and becomes zero|

Now equating eqn 2 and 3



Centre of mass R of a system is defined as,

_ My _ 2imT;
2im M

R

Substitute eqn 5 in 4

Thus the acceleration of centre of mass is due to only external force.

Conservation of linear momentum

MR =me ————— 7
i

Differentiate the above eqn 7 with respect to ‘t’

Iy dR dry N dr, N
dr . Mge T Mgy

Fromegn 5

MV = mv; + myv, + -+ = Z m;v;



Zmivi =P

is the linear momentum of all the particles in the system. Therefore

Thus total linear momentum is equal to product of total mass of system and velocity.
Differentiate eqn 8 with respect to ‘t’

P _d - m -y ER
dt  dt o dt T dt?

From eqn 6, total external force,

Fe_MdzR_dP_d M) 9
PN der T dt T de
When F¢ =0
P=MV = Zmivi = constant — — — — — 10

Thus if total external force on the system is zero, its total linear momentum is constant.

Conservation of Anqular momentum

If Ly, Lo oooeaills are the angular momenta of various particles of a system, the total
angular momentum

L= L1+L2+"'=(T1Xp1)+(7'2><p2)+ .........

Therefore

N

L= Z(T’ixpi) —————— 11

i=1

Differentiate eqn 11 with respect to ‘t’

dL d dr; dp;

-3 o] - 3 6 <o)+ (152

dt o ldt o \dt ' PUodt
L l

= Z(ﬁ X p;) + (r; X p,)



[F = /g = P

= Z(vi X mv;) + (r; X F;)

In the above term the last term becomes zero.

Z(Ti X F;) = Z(Ti X Ff)
Z(ri xF)=N

From egn. 12 torque,

N dL
Cdt
Thus, the rate of change of angular momentum is equal to applied external torque on the

system. IfFN=0, L=Li+Lo+........... = constant. In the absence of external torque
the angular momentum is conserved.

Conservation of Energy for a System of Particles

Consider a system of particles located at r, 1o, ....... rnv and having masses my, m; ....m.
Forces acting on the particles can be derived from a potential function. Force on the it"
particle can be written as,

Newton’s second law takes the form



S dv. dp d
F = = —_— I — T —
ma=m = - =g ()

Substitute for F in egn. 1

Multiply by vi on both sides. Summing over i particles we get

N

N
d
Zmivi E vV = —z V; .Vi |2
=

i=1

Consider LHS

d . d 1 d
m;v; — v; can bewrittenas, — (1/ mv?) = -m2v = = my =
L ldt L dt 2 2 dt

LHS becomes

N
d 1 5
a ZE m;v; 4
=1
N
1 2
T = Z 5 MV
i=1
LHS = ar 5
Codt
Consider RHS,
_ dr‘i
LTdt
Therefore,
= L dv dr,

Z vvdri_
e Ladr;" dt
l=

i=1



RHS = v 6
= e s

5=6
dr__dv
e T,
dr dVv
ac T ar
dE_

—=0 ..8
dt

Where E=T+V is the total energy. Thus if the force acting on the ith particle can be

obtained as the gradient of a potential, then the total energy is given by E=T+V, is a
constant of the motion.

Constraints

The limitations or the geometrical restrictions on the motion of a particles or
system of particles are known as constraints.

Holonomic constraint

Letr, ,7,...T,, be the position coordinates of the system of particles. If the
conditions of the constraints can be expressed as the equations connecting the

coordinates of the particle having the form f(7; .75...7,.t)=0, then the constraints

are said to be holonomic constraints.

“Constraints on the position of a system of particles are called holonomic
constraints”.

Examples

e The constraints involved in the rigid body in which the distance between any

two particles is always fixed are holonomic.

e The constraints involved when a particle is restricted to move along a curve
are holonomic.



e Simple pendulum with rigid support

e A bead moving on a circular ring or in an abacus.

Non holonomic constraints

“Constraints on the velocities of the particles in the system are called non holonomic”

¢ Rolling disc on a rough surface without slipping.
e Molecules in a gas-constraints involved in the motion of molecules in a gas

container are non-holonomic.

Generalized Coordinates
The minimum possible number of independent coordinates required to specify

the configurations of a system at any intent of time is known as the generalized

coordinates.

It 1s denoted by the letters, q1.q>. Qu

Ifq1,q2. q are the generalized coordinates of the system then ;4> (. are the
components of the velocities corresponding to the above coordinates. The

generalized coordinates must satisfy the following two conditions.
1. The values of the coordinates determine the configuration of the system.
2. They may be varied arbitrarily and independently of each other, without violating the

constraints of the system.

Examples

1. Consider a particle which moves in space, we can fixed in the position of the particle
by using the coordinates X, y, z. Hence we require 3 generalized coordinates to fix the
particles which moves in space.

2. When a particle moves in a plane it may be described by Cartesian coordinates x and y
or the polar coordinate r, 8. So the generalized coordinates are two.

3. Consider a particle which is constraint to move only on a sphere of radius a. Then the
generalized coordinates required are 2 namely 8 and ¢ (longitude and latitude).

4. The beads of an abacus has the generalized coordinate x (the Cartesian coordinate
along the horizontal wire)



Degrees of freedom
“The number of coordinates required to specify the position of a system is called

the degrees of freedom of the system”. The number of independent ways in which a
mechanical system can move without violating any constraint is called the number of
degrees of freedom of the system. It is indicated by the least possible number of
coordinates to describe the system. The degree of freedom for a system containing n
particles is 3N- k where k is the number of constraints on the system.

1. Rigid body in a space - Consider an rigid object moving in three dimensional
space as in below diagram.

=7

v
o

Z
Here the object has three translational motion along X, Y and Z axis and three rotational
motion about X, Y and Z axis. Therefore, the total degrees of freedom (DOF) are six.
2. Rigid body in a plane

The rigid bar can be translated along the x axis, translated along they axis,

and rotated about its centroid. Therefore the degrees of freedom are three.



D’Alemberts Principle
(It 1s a differential method to obtain Lagrange’s equation)

This method is based on the principle of virtual work. For a system to be in
equilibrium the resultant force acting on each particle must be zero. i.e., Fi = 0, where F;
is the force acting on i particle.

The virtual work is given by

Fi.ér; =0
ér; is the virtual displacement
Summing all over the particles

i

From Newton’s second law,

dp, .
Fi - E - Pi
P; is the momentum of i" particle due to Fi
O |

Replace Fi by F; — P; in equation 1
i

If constraints are present in the system then Fjcan be written as

Fi = Fia + ]Cl bas sne men s wne wes wan .4
F? is the applied or actual force and f; is the constraint force
Putegn4in3

zzmﬂh+ﬁy—a)5n=o

Zi(Fia - Pi).5ri+2ifi. 6Ti =0
If constraint force vanishes second term is 0

Z(Fia — Pi).é‘ri =0..ue.nd

l

This is D’ Alembert’s Principle



Lagrange’s equation from D’ Alembert’s Principle

Consider a system of particles. The position vectors of the particles in a system
I.e., Iy, I, I3 ....... ri are expressed as the functions of generalized co-ordinates qi, g2, Q3

.....qn and time ‘t’.

r; = 1(qq, qg qut) ————— 1

Differentiating egn. 1 with respect to time partially,

dr; 0r; dqu 0r; dq, dr; dt

— = 5e, it + T T =

ar; . 0n
7 j a q; +E ————— 2
Virtual displacement §r; in terms of generalized co-ordinates from eqgn. 1 is given by
or; = ﬂ 6qgi—————— 3
7 94 ]

From D’ Alemberts principle (dropping superscripts)

Z(Fl - Pi).Sri =0————-4

i

Putegn. 3in4

. or;
F—P.E - 8q; =0
z( ' l) > aqj qj

i

We define the term

Putegn. 6in5



Consider second term in egn. 7

ZP-an Zmr —————— 8
_ la l '
i

Let,
d . a'l"i aTi . d ari
a\" "3q;,) " "aq, T @ \ag,
ar; d ar; d [0r;
i — i |-\l ————9
dq; dt aq; dt \0dq;
Putegn.91in 8
zpari6 _Z d . 0n d (0r; 5
PG, 01T 2@\ aq,) T e \ag, ) O
ij ij
_z d ar; d (0r; 5 10
L |dt v 9q; MV e aqj 4
ij
But,
d 67‘1 av;
=—_—————— 11
dt aqj aq;
Differentiate eqn. 2 with respect to g;
avi _ aT'i ______ 12

Putegn. 11 and 12 in egn. 10

Zaa zjw o2 i (22)]
2 {dt 04 (Z 2" )] B aiq][z %mw?]} 5q;

arl
Therefore, Pl 8q; = P 6q Bq §q; ————13
J J



Putegn. 13 inegn. 7

oT
I
aT 14
Z[dt(O_q])_a_q] S

This is the general form of Lagrange s equation.
For conservative system the force is derived from potential function V.

F,= -V, V = ov
L l arl
Generalized force
Q . z P ari
ar; av or; av
= V,V —=— ) — =
aq; dr; dq; aq;

ij

From egn. 14

Sfe(s)-s)--5

dt\dq; aqj aq;
o(T -"V)

Z[dt<6%>_ 84, ]:

(Since V is not a function of ¢; that is, aT'-:O)
]

d (a(T-V)\ a(T-V)]| _
Zj:[%< 94, >_ aq; ]_

Define a new function called Lagrangian L of the system (L = T-V)

Z[dt(iﬁ) g, = °

The above equation is known as Lagrange’s equation of motion.




Application of Lagrangian formulation

Simple Pendulum

A simple pendulum consists of a mass mhanging from a string of
length | and fixed at a point. When displaced to an initial angle and released,
the pendulum will swing back and forth with periodic motion.

© is the angular displacement of the simple pendulum from equilibrium

position. O is chosen as the generalized coordinate.

MMNICANNN
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[cos8

The kinetic energy is given by

1
T = — 2
zmv

[6=arc/radius =s/l.  Therefore, s=10. velocity v =ds/dt = d/dt(10)= 19 |

1 . 1 .2
- 2 = 2
T—zm(le) 2ml@

Potential energy is V= mgh = mg (OA-OC) = mg (I — | cos®) = mgl (1-cosO)
LagrangianL=T -V

1 .2
L= > ml?0” — mgl(1 — cos ©)

daL 1 ) )
— = —ml*206 =ml?6
00 2



daL

30~ —mgl sin®
Substitute in Lagrangian equation,

d <6L) oL 0

dt\ad/ 00

i(mlzé) + mgl sin® = 0
dt
ml?6 + mgl sin® = 0

é+%sin6=0

For small amplitude sin® =~ 6

é+%e=o

This is the equation of motion for simple pendulum.

Atwood’s Machine

Atwood’s Machine is a system of two masses, connected by an inextensible string
passing over a small smooth pulley. It is an example conservative system with
holonomic constraint.

The schematic representation of Atwood’s machine is shown below. It consists of two
masses m: and mz suspended over a frictionless pulley of radius ‘r’ connected by a string
of length ‘I’. Let ‘X’ be the vertical distance from the pulley to mass mi. Then mass m;
will be at a distance I-x from pulley. PA = x, PQ =1 and QA = I-x. Here x is the

independent coordinate.
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Pulley
'Y
A
X I-x
P
e
m,
Q 7
B
m3
1
Kinetic energy of mass my; = > m, x2
L
Kinetic energy of mass m, = 5 m, %2
o r ., 1
Total Kinetic energy of the system =T = 5 M x% + 5 M2 x?
1 5
T = > (my +my)x
Potential energy of mass my = —my gx
Potential energy of massm, = —m, g(l —x)

Total Potential energy of the system =V = —m,; gx+(—m, g(l — x))
V=-mygx—myg(l—x)
Lagrangian L =T —V

1
L=E(m1 +m,)x% + my gx + my g(l — x)

1
L=E(m1 +m,)x% + my gx + m, gl —m, gx

1
L=§(m1 +m,)x% + gx(m; —my) + my,gl



oL
a =(my —my)g

JL )

P (my +my)x
Lagrange’s equation of motion,

d <6L) oL

de\ox) odx

d ) B
a[("ﬁ +my)x]—(my —my)g=0

(my +my)x& = (my-my)g

_ (my;-my)g
(m; +my)

This is the required equation of motion of a system of two masses, connected by an
inextensible string passing over a small smooth pulley.



UNIT - 11 MOTION UNDER CENTRAL FORCE

‘Central force is that force which is always directed towards or away from a fixed

centre and magnitude is a function of distance from the centre point’
F =f@®)7f
f (r) is the function of r and 7 is the unit vector.

The problem of finding the motion of a particle under a central force is one of the
most important problems in physics, because it is closely related to mechanics of nature,
that is, motion of planets, satellites etc.

The force between two interacting particle is primarily a central force. If one of
the particle is heavier than other, although due to Newton’s third law, force acting on
both the particles will be the same. The acceleration of heavier particle will be too small
than lighter one and it can be neglected and heavier particle can be regarded at rest. By
locating origin at heavier particle, the problem of two bodies simply reduces to one body
problem.

f (r) < 0 - attractive force
f (r) >0 - repulsive force

F (attractive)

/ F (repulsive)

m

\ Center of Force

X
Thus central force is the force on a body or an object is always towards a fixed point

(origin). OR “‘central force is the force that is directed along the line joining the object
and the origin.



Some examples of central forces are
1. Gravitational force.
Coulomb force
Simple harmonic motion
Projectile motion
Uniform circular motion
Electrostatic forces and magneto static forces.

ok wn

Conservation of energy
Motion of a particle with mass ‘m’ subject to a central

F(r)=f @7

Unit vector # = -

I

If V/(r) is potential energy then,
dv(r)
dr

f)=-

F(r)=-VV(r)
V (r) is a scalar function.
The curl of gradient of scalar function is zero.

Thatis,VxVV(r)=0

VxF=0
Thus central force is always a conservative force.
Conservation of angular momentum
Torque

Thus N = E=0
dt

Angular momentum L through the central force is constant.

force



KEPLER PROBLEM
The inverse square law of force is most important of all the central force laws. It

results in the deduction of Kepler’s laws. The planets move around the sun under the
influence of gravitational force which is an inverse square law of force. Hence we
deduce the Keplers laws on the basis of inverse square law of force.

Inverse square law of force is given by,
k
fr)=- )

Law of elliptical orbit - All the planets move in an elliptical orbit around the sun being at

one of the foci.

Law of areas - The radius vector connecting the sun and the planet sweeps at equal areas
is equal intervals of time. ie, areal velocity is constant.

Harmonic law - The square of the period of revolution of any planet about the sun is

proportional to the cube of the semi major axis.

Deduction of first law:
The central force varies inversely as the square of the distance. That is

f)=—-5-—-—-—- 1
K is the constant. The corresponding potential energy will be
K
V(ir)=——
Tr

For u = 1/r, the inverse square law force [ f(7) = - K/rz] 1s given by

f(l) = — Ku®
u

Thus the differential equation of the orbit can be expressed as
d'u . m : : ;
— e Ku? [« f(r)=- Kuz]

do‘ . Ju

L.

J is the angular momentum and u is a variable.
v % d*u mK
" . & T

_>3



Let x=.u‘——m£.

Then ——tx=l —

L5 4
which has the solution
x =A cos (9—9')—|_>5

where 4 and 6 ' are the constants of integration.

. mK | :
Smcex=u.—-:,7 and ¥ =—, we can write eq. 5 as
r
I mK
__m_z- =Acos(60-0")
roJ .
1 mK ;
or - =—+A4cos(0-6")
_ S Los
Multiply by J?/ mK
JEimK 2 .
£ =1+J—Acos(9-9')
r mK
[
—=]+ecos(8-6) —
4 > 7
Where
J J* 4
mK o mK %
L 8

In the above equation ‘e’ is known as eccentricity.
Equation 7 represents a conic section and therefore coinciding with Kepler’s first law of
planetary motion.

l

- 9
r 1+ e cosf



general equation of a conic section with one focus at the origin and eccentricity e, given by

2EJ*
e =qf1+—
e —L 10
mK?
- 2 ) ————— 11
2 (e )
 The magnitude of e decides the nature of the orbit,
Value of e Value of total ene}gy E ' Conic
e>1 E>0 Hyperbola
e=1 _ E=0 ' Parabola
e<l E<0 Ellipse
0 o JAE Circl
- = ircle
e | | 2 r

Deduction of Kepler’s second law
When planet moves in orbit the radius vector sweeps equal area in equal interval of time.

Areal velocity viry = var




If vector r rotates by an angle d© in time dt, the area swept out by r in time dt.
1
dA = o7 (rdo)

dA 1 ,d8 1 _.

e

dt 2 dt 2 2m
Thus areal velocity is constant. Thus second law is proved.

Deduction of Kepler’s third law

For e <1 or E < 0, the orbit is elliptical

From equation 7

i'=] +ecos(0-0")
=

J? 2EJ*
where s and e= /1% 2

When 6- 6" =0 or cos (6 - 8') =1, the value of r =r, is
minimum and when 6 - 6 ' = &t or cos (8 -@) = - |, the value
of r = r IS maximum . The apsidal distances i and
r,-are known as perihelion and aphelion and are given by

/ /

—=l+eorr, =

v

12

n 1 1+e

v

13

and




The semimajor axis (a) of the ellipse is one-half the sum of these two apsidal (tuming) distances, i.e.,

=.r|+_r2=_l.[ ! - l ]: ! » 14
2 2l1+e 1-e] 1-¢?
From equation 11
mK?
— 2 _
E = 2 (e 1)
2E]?
2 _ =
(e 1) 2
\
(1-e?)= - 2L
mK?2

]2 > 15

fromeqn.8 we have, | =

mK
. ) _/
Substitute15 in egn 14
_ JP o mK® K
mK 2EJ* 2E
K
O e > 16
% 2a

Thus in case of an elliptical orbit, the total energy depends solely on the major axis.

If T'be the p"nodlC time in whxch the particle or radius vector completes one revolution then the area of
the orbitis

A= _[dA I( 26) -L%dw% — > 17



But area of the ellipse 4 = mab, —— 3
where @ and b are the semi-major and semi-minor axes of the ellipse respectively.

Equating egn. 17 and 18

T 2m abm . 19
J
From eqgn. 14
I - 2 , JZ
= e =g = m—;
1-e° mK(l-e mKa

But according to the property of the ellipse
’ 72
b=avVl-e® =qa—
. mKa

Substitute the above egn. in T

1 | -

8]

a

V%
2nam a’?J 32 |M
T = —e—— or T=27a 1’-— » 20
o vmK . K

This gives the time period in the elliptical orbit.

Squaring both sides of equation 20,

ol T S
['2=41ta3*12 0rf.o<a3

Thus the square of period of revolution of a planet around the sun is proportional to the cube of
semi-major axis of the elliptical orbit. This is known as Kepler's third law of planetary motion. .



Virial Theorem (R.E. Clausius, 1870)

Let us consider a system of parcitcles with position vector r;and applied force F; According to
Newton's second law, the equations of motion are

: F' =p;
We introduce a quantity A ; defined by
A’ = ? p,‘ ¢ r,‘ > 1
where the sum is taken for all particles of the system.
The total time derivative of A is
d\ : 2
—_— oF + er,
R AL A
First term on RHS can be written as
B AP 2
?p‘.‘ b= ? mE. T, =Ymyv; =27
{
Second term can be written as
‘Zp'.' ri=lz L o
d. d ’
—_—=— or. |=2T+ Y F.or
Hence, dt  di [?,p, :J ‘Z i

The time average of above equation over a time interval 7 is obtained as

v
N

B . M amm —
=[2G = 2 3T TR or LA A0 = T
t'[0 =2 ZF1; or —[a)-20)] 2T+ 3F.T

In case of periodic motion, 7 is chosen as period and all coordinates repeat after this interval of time. In
such a case, A(1) = M0) and then left hand side of eq. 2 vanishes, ie.,

2T+3F, or; =00t T=-;3Fx -
i {

Eq. 3 is called the Virial theorem and the quantity =1 T F, +1; is'known as'the Virial of Clausius.



Scattering in a Central Force field

Let us consider a uniform beam of particles incident on a centre of force. All the particles of the beam
have the same mass and energy. The intensity of the beam I is the number of particles crossing unit area
per unit time normal to the direction of the beam. This /, is also called flux density. We assume that the
force between an incident particle and the particle at the centre of force falls off to zero at large distances.

. When a particle approaches the centre of force, it will interact [for example, an o-particle (+ve charge)
will experience replusion from the positively charged nucleus] so that its path will deviate from the

Scattering
Centre

e -d—f= (Zm'si:: )rdé L
(i s,

Séatfering—?mpact parameter (p) and angle of scattering (¢)

incident straight line trajéctory. After passing the centre of force, as the particle goes away, the force acting
on it will decrease and finally at large distances, the force will become. zero. This results again in the
straight.line motion but in general in a different direction and we say that the particle has been scattered.



Scattering cross-section : Consider a uniform beam of particles, moving with a flux of /, particles pér
unit area towards a scattering centre (e.g., an atom of a target). Imagine that the scattering centre presents
an area do perpendicularto the path of the beam such that whatever particles hit do area are scattered into

a solid angle dQ. Thus the number of particles, scattered into dQ solid angle per second are [, do. If /(QQ)
(intensity of the scattered particles) is defined as the number of particles scattered in the dlrectlon Q per
unit solid angle per unit time, then the number of scattered particles in the small solid angle dQ about Q
direction is given by :

I = () dQ

- ; ; ; : : o o
The quantity o =0(Q) is called differential scattering cross-section or simply scattering cross-
e

section for scattering in Q-direction i.e.,

Thus the differential scattering cross-section is the ratio of the number of the scattered parficles per
second per unit solid angle and the flux density of the incident particles.

The total cross-section (0) is given by

do

jc(Q)dQ .J—dQ

Scattering hngle (¢ ) : The angle between the incident and scattered directions of the particle is called
scattering angle and"is denoted by ¢.

Impact Parameter ( p) : If we draw a perpendicular on the direction of the incident particle from the
scattering centre, then the length of this perpendicular is known as impact parameter p..

As the force is central, there must be complete symmefry about the axis (XX") of the incident beam.
The solid angle dQ is given by*
dQ = 2n sing d



RUTHERFORD SCATTERING CROSS-SECTION

In the Rutherford scattering a positively charged paft_iclc of charge ze and mass m is scattered by a
heavy nucleus V. The nucleus is assumed to be at rest during the collision. The chargé on the nucleus is Ze,
where Z is the atomic number. Suppose the positively charged particle is moving towards the heavy
nucleus with initial velocity v,. As the paniblc approaches the nucleus, the repulsive force (Zze2/4nxorz)
increases rapidily and the particle changes from a straight line path to a hyperbola 4DB, having one focus
at N as shown in Fig, The asytptotes A0 and BO to the hyperbola give the direction of the incident
and scattered particle. The angle COB is the scattering angle ¢ and N is the impact parameter p.

The charged particle is moving in a central force field, hence the equation of its path is given by

-r-=1+e0039 > 1

3 2 )
where [ = J 2/mK, e= "l + 3’5(/2 and 6", the constant of integration, has been taken to be zero. Here the

force F is given by



Zze*

Therefore, ‘K=~ -
4ne,
- 2 - 2EJ(4ne, ) -
S I=—J 4re ande=ﬁr 2(2 40)
Zze’m . Z°z°%e'm

As the initial velocity of the particle is v,, its total energy is given by

E= %mvg , Whence mv0.=,/2m5
According to the law of conservation of angular momentum,

J
_ A o
my,p = mr 0 = J, whence mvy=
Therefore, i = 1’2)7}5 or J o p ,szE

P

This gives

2 . 7 >
2E(p 2mE | (4ne,)” [2Ep 4ne, )
e=1/1+ - ore=fl+|———=—
mz*Z*%¢* zZe

Obviously, e >1,because (2Ep/zZ¢°)’ is a positive quantity.
Hence equation 1 represents the path of the charged particle as a hyperbola

Since the hyperbolic path must be symmetric about the direction of the periapsis, the scattering angle
¢ is given by ;
¢

n
=R -2000rQ=———
¢ 2 2

where ot s the angle between the direction of the ircoming asymptote and the periapsis direction (OD).



Further the asymptotic direction is that for which r is infinite (o0 ) and then 6 — a.

From equation 1

1+ ecos =0 or cosa=--l- orcos(-’-[--i)=-l or sin.g.%- .l_
- e e

Thus cosec , e
2
Squaring it, we get

2Ep 4ne, T

cosecz(b ol or1+cotz(b l+[ 3
2 L zZe

( 2Ep (4
-coti =_’_,._(_;[.-.S.Pl
zZe

From which one can find the scattering angle ¢.

expression for impact parameter

_ 2Ze*cot § /2
2E(4n80)
Differentiating it, we get
2 )
@ ool



Substituting the value of p and dp/d@ in the differential cross-section o (&) eqgn.

zZeicot 9— . Ze2'
o(¢)=- - - cosec’ =
? cos? | 4E (4me,) 2

2E (4neg) 2smm 5 GO

i a2t T e
o(9) 1 [W} cosec 2

This is the well known expression for the Rutherford scattering cross-section. Thus the scattering cross-
section or the number of particles scattered per-second along the direction ¢ are proportional to

i d

) cosec —
(1 cosec' 7,

(2) the square of the charge on the nucleus (Ze),
(3) the square of the charge on the particle (ze), and
(4) inversely proportional to the square of the initial kinetic energy E.

Thus if ¥ f is the number of particles scattered along the angle ¢ per second, then one can represent

N¢ = Qcosec“ ¢ 12

where C is a.constant



ARTIFICIAL SATELLITES

We have studied the motion of a planet and its orbit around the sun. In fact, a body which revolves
constantly round a comparatively much larger body is said to be satellite. We know. that the earth and
other planets revolve round the sun in their specified orbits. The moon revolves round the edrth and the
planets Jupiter and Saturn have six and nine moons respectively revelving around them. All these are
the examples of natural satellites. Each one of these satellites is allractad by its primary with a force,

given by Newton’s law of gravitation.

Scientists have also been able to placed man-made satellites, revolving round the earth or sun.
They are called artificial satellites. The theory discussed above for the orbits and planetary motion is

valid for the discussion of satellites.

‘An antificial satellite of the earth is a body, place in a stable orbit
around the earth with the help of multistage rocket. In order to launch a
satellite in a stable orbit, first it is necessary to take the satcllite to the
altitude -h, where at the point P by some mechanism, it is given the
necessary orbitting velocity, called the insertion velocity v;

The total energy of the satellite at P relative to the earth is given by

I 2 GMm
E=Smvi- 30k

where m is the mass of the satellite and M that of the earth, having radius
R.

The orbit will be an ellipse, a parabola or hyperbola, depending on
whether E is negative, zero or positive. In each case, the centre of the
earth is at one focus of the path.

Therefore, the satellite will be moving in an elliptical orbit if

, 2GM
Yi"< R+h

£ ¥

Elliptical path of a
body projected horizontally
from a height habove
the earth’s surface for
v?<2GM/ (R + h)



The total energy E determines the size or semi-major axis
of the orbit. However the shape or eccentricity e of the orbit is
determined by both total'energy E and angular momentum J by
the relation :

2EJ?
mK?
wi.thv K = GMm. For elliptical orbits, layer the angular
momentum, the less elongated is the orbit

‘e= 11+

" ...(64)

- Elliptical orbits for different
values of the angular momentum J
with same enegry E; various orbits

have the same focus and semi-major
axis, but differing in eccentricity. -



Geostationary Orbit : If the height of an artificial satellite at equator above the eath’s surface is
such that its period of revolution is exactly equal to the period of rotation of the earth, then the satellite
would appear stationary over a point on earth's equator. Such a satellite is called geostationary satellite
and its orbit is called geostationary orbit. Therefore for a geostationary ‘satellite, we ‘must have the”
orbit (i) to be geosynchronous (ii) to be circular and (iii) to stay over the geo_graphtcal equator of the
earth. ' | % |
The height of geostationary satellite is

h =a,-R=135786km.

The geostatinary orbu is often called parking orbit. Amﬁcnal satellites used for telecasting are put
in parking orbits.

Uses of Artificial Satellites : Artificial satellites are used in the following :

(1) Distant transmission of radio and TV signals.

(2) To study upper regions of the atmosphere.

(3) High altitude satellites for astronomical observations (as the effects of atmosphere are not
present).

(4) Weather forecasting.

(5) Eearth measurements (gravitation and magnetic fields).



UNIT — 111 RIGID BODY DYNAMICS AND SMALL OSCILLATIONS

A tigid body is defined as a system of particles in which the distance between any two particles remains
fixed throughout the motion. Thus a system of N particles is said to be a rigid body if it is subjected to
holonomic constraints of the form

r.=C.
. 7F

where 7, is the distance between ith and jth particles and C is
the constant.In a rigid body motion, the deformations,
occurring in actual bodies, are neglected and a rigid body
maintains its shape during its motion.

We may describle the motion of a rigid body by using two coordinate systems —
(1) Body coordinate sysfem : A coordinate system, fixed in the ngld body, is called a body coordinate

system and its axes are-called body set of axes.

(2) Space coordinate system : The axes of such a coordinate system are fixed in the space are callcd
space set of axes.

XYZ represents the space reference system with origin O and X'Y'Z' the body coordinate
system, fixed in the rigid body with origin 0", We choose the origin O of the body set of axes to coincide with
the centre of mass of the rigid body. Clearly three coordinates are required to specify the origin O' of this body
set of axes relative to the origin O of the space reference system.

XYZ - Space set of axes ; X'Y'Z'—Body set of axes



‘LetR (X, ¥, Z) be the position vector of O' relative to O. Further, for the general motion of the rigid body,
the orientation of the body set of axes X'¥'Z" is described by three angles relative to a coordinate system with
common origin O’ and axes parallel to the space set of axes ( XYZ ).
Thus three coordinates of the origin O' and these three angles constitute
six independent coordinates which provide complete configuration of
the rigid body in motion at any instant of time.

For convenience, first consider the origins of space set of axes
and body set of axes to be the same (0). In order to specify the
orientation of the body set of axes, we may use the direction
cosines of body set of axés (X'Y'Z') relative to the space set of axes
rz).
" Leti,],kbe the unit vectors along X, ¥, Z axes and i',j k'
along X', ¥, Z' axesrespectively. If C, ,, C, ,,C,, be the direction cosines /
of the X" axis (or i’ unit.vector) thh respect to X, Y, Z axes
respectively, then

XY Z - Space set of axes ;
X'Y'Z' - Body set of axes

C,,=cos (X', X) =cos (i',i) =i'si

€= cos (X, ¥) =cos (i',j) = i'] -1
C,y=cos (X', Z) = cos (i k)= ik
~ o % s ™
Thus i'=Cyi+Cpj FG 3k
or i'= ()i + () + (kok 2
Similarly, j'= Gyl + Gy + Ok
- and ' k'= Cyji + Cppj + Cyk >
where C,,, C C,, are the direction cosines of ¥" -axis and Cp Ci» G, those of Z'-axis with respect to

21 e I 73

X, Y, Z axes mpecnvely

These sets of nine direction cosines then completely specify the orientation of the X, Y, Z'axes with respect
to X, ¥, Z axes. With the help of these direction cosines, we can also relate the coordinates of a gwcn point from
one system to another. If r be thqposntxon vector of a point with coordinates (x, y, z) and (x', ', ') in the two
systems, then

r’=xi+yi+zl.c

and r - xl §l+yl'j|+zl ﬁl



Now, x'=(r i) = (xi + yj + 2K) *(C,yi + Cppj + C3k)

or ¥=Clx+Cy+Cz
Similarly, y=Cx+Cy+Cy
and 2=CitCpiCy
2=2
- .EULER’S ANGLES

We are interested in knowing three independent parameters to
specify the orientation of body set of axes relative to the space set of
axes. For this purpose, we use three. anglés. These angles may be
chosen in various ways, but the most commonly used set of three
angles are the Euler’s angles, repmented by ¢, 6 and y.

We can reach an arbitrary onentanon of the body set of axes X"
Y' Z' from space’set of axes (X Y 2)! by making ‘three successwe
rotations performed in a specific order. Euler s angles - First

(1) First rotation (¢) : First the space set of axes is rotated through otation ¢, deﬁnmg precession angle.

an angle ¢ counter-clockwise about the Z-axis so that Y-Z plane takes the new position Y- Z, and this new
plane ¥ - Z, contains the Z“axis of the body coordinate system. Now the new position of the coordinate

system is X, ¥, Z, (with Z= Z,) If i",',K" are the unit vectors along X, Y, Z axes and il,j,,kI
along X, Y|, Z, axes respectively, then the transformation to this new set of axes from space set of axes is
represented by the equations

i, =cos¢§ +sin¢j

j,—?-s{iiw,.i +cos¢j

k, =k

Eu cos¢  sing O)[i
o j1 |=|—sin¢ cosd O {

k] TO 0o 1|k

Thus XYZ axes are transformed to X, ¥, Z, by the matrix of transformation



cos¢ sing 0
D=|-sm¢ cos¢ 0
0 0 l
The angle ¢ is called the precession angle. :
(2) Second rotation (6) : Next intermediate axes X' Y, Z, are rotated
about X, axis counter-clockwise through an angle 6 to the position X,
Y,Z,sothat ¥ [ Z axes acquire the positions ¥,, Z, with Z,=.Z'|
This also results the plane XY, inplane X' ¥".If i, ],k are unit
vectors along X, Y., Z, axes respectively, then

' T
i, =1

jz =cosei, +sin9l2,

ﬁz =—sin9}, +cos()lh(l

. Euler’s angles - Second
rotation 6, defining nutation angle

iy ) 1 0 i
i =0 cos® sin® ||j,
k,] 0 ~—sin® cos®)|k

In this case the matrix of transformation is

1 0 0
C=|0 cos B sin 9‘
0 -sinB cosH

 Theangle s called the nutation angle. The X,= X, axis is at the intersection of the X-¥ and X - planes
and is called the line of nodes. |
(3) Third rotation (y) : Finally the third rotation is performed about Z;= Z' axis through an angle
counter-clockwise so that X,,Y, axes coincide X;= X', Y=Y
Thus these three rotations ¢, 6 and y bring the space set of axes to coincide with body set of axes. The §,

8and y are the Euler’s angles and completely specify the orientation of the X ¥' Z'system relative to the X Y Z
system. These ¢, 6.and y angles can be taken as three generalized coordinates. Now



i =i'=i,cos y +j, siny

jy=i=-isiny +j, cos

ﬁ3 = Iz'_ ﬁz
2 _ A W
i cosy siny 0)|h
j’ =|-siny cosy O jz
! 0 0 1|k
\kJ , '\I_(ZJ

So the transformation matrix is given by

cosy siny 0
B=|-siny cosy 0
0o -0 1
The angle W is called the body angle.
The complete matrix of transformation A will be A = BCD.
(cosy smy 0)(1 0 0" Y(cosd sing O

A=BCD =|—siny cosy 0||0 cosO sinf ||—-sind cosd 0
(0 -0 1){0-sin6cos®)( O 0 I

(cosy  siny 0) {cos¢ sin ¢ 0
~|-siny cosy 0| |-cos®sin¢ cosOcos¢ sinB
L0 0 1) (sin O sin ¢ —-sinBcos¢ cosb

The inverse transformation matrix from body set of axes to space set of axes is given by A™' = A because
A represents a proper orthogonal matrix, Thus

(cos y cos ¢ © —siny cos ¢ sin @ sind )
~cosBOsingsiny - —cos\y cos 6 sind
A '"=|cos y sin¢ —siny sin¢ | —sinBcos ¢

+sinycos® cos¢ +cosy cosOcos

| sin y sin O cos y sin 6 cos O )



Moments and Products of Inertia

If a rigid body is taken as a rigid collection of particles then angular momentum is

given as,
I = z m (r; X v;)
i

Lx, Ly, Lz are angular momentum component. wx, wy, w; are angular velocity .

Let Ly, 1y, L1z Leys Iy 2o Lpxy Lyx 17y, I, D mine coefficients. They are written as 3x3

matrix.
Lx Ixx Ixy Ixz Wy
Ly )=\ bx lyy Lz | | @y
Lz sz Izy Izz Wy,
L=Iw

When | operates on angular velocity vector w a physically different vector, the angular
momentum L results.

Therefore | is termed as moment of inertia tensor.

L= ) G =xP) = ) myF +27)
Ly, = Zmi(riz -y = zmi(ziz +x7)

I, = zrni(ri2 _Ziz) = Zml(xlz +yi2)

are called moment of inertia coefficients.

L., - moment of inertia of the body about x-axis.
I,,,,- moment of inertia of the body about y-axis.

1, - moment of inertia of the body about z-axis.
Ixy = Iyx = _Z m;x;yi

Iyz = Izy = _Z m;y;z;

Iy =1, = _Z m;z;x;

are termed as products of inertia.



Euler’s equation of motion for a rigid body

Lagrange’s method
Euler’s angles completely describe the orientation of the rigid body when it is

rotating with one point fixed. The Euler’s angle @, 6, W are taken as generalized
coordinates and components of the applied torque as the generalized forces
corresponding to these angles. The Lagrangian is given by,
L=T-V
L=T($ 6% 06,¥)-V(®6¥)

1
L=> (Lo? + Lo? + ;w?) - V(®,0,¥) — — — -1

l1, I2, 13 are the principal moment of inertia.

For a fixed point, the kinetic energy depends on Euler’s angle @, 6, ¥ via the
angular velocity components along the principal axes x, y and z.

The angle ¥ happens to be the angle of rotation about the principal z-axis, so
that angular velocity wy = ¥ and the generalized force or the z-component of
torque is

oY
Therefore, the Lagrange’s equation for W- coordinate is
Sy N
dt\o¥¢/ J¥ v

For convenience, we reproduce here the angular velocity components expressed in
terms of Euler’s angles and kinetic energy expressed in terms of wx, wy , w, as referred
to the principal axes. wy, wy, w; are angular velocity components.

wy, = ®sinOsin¥ + O cos ¥
Wy = ®sinBcos ¥ — Bsin¥
w, = dcos O — ¥

Kinetic energy T = % (w2 + Low? + l;w?)



Therefore,

0w, _ 6& _ dw, _
0w ow oy
0w, dw, dw,

v Y By T FI

oT _ 0T 0w,  OT dw, 0T da,
oV Odw, OV  dwy, 0¥  Odw, 0¥

dT

a_LiJ - Il(l)x. O + Iz(l)y O + 13(1)2. 1
dT
a_lP = 13(1_)2 ———-=3

Similarly,

OT 9T dw, N T dw, N aT dw,
oY  Ow, 0¥  dw, 0¥  dw, 0¥

dT
FTi [jwywy, + Lw, (—wy) + 130,.0
ﬁ - (11 - Iz)wxwy ______ 4

Substitute eqn. 3 and 4 in 2

= 00.) = (1 = Ly, = N,
30, — wxwy(ll —Ip)=N;——-5
Similarly by cyclic permutation,
[y, — wywz(lz —I3)=N,——-6

Iz(ljy - wzwx(l3 - Il) == Ny - - = 7

Equations 5,6 and 7 are known as Euler’s equation.



MOTION OF A HEAVY SYMMETRICALTOP

Let us consider a-spinning symmetrical top in a uniform gravitational field with onepoint O on the
symmetry axis fixed in space. Such a top is called a heavy symmetrical top and its examples are child's top,
gyroscope etc. Let G be the centre of gravity of the top and / be the distance from the fixed point O to C.G. We
take the symmetry axis as one of the principal axes and choose it Z-axis fixed in the body so that X, ¥ are the
other two principal axes [ Fia.1 |and =1, The force acting on the top is Mg, the force due to gravity. Let
Xo Yo Zo be the fixed set of axes; X and Y, are in the horizontal plane and Z, is vertical. As O is the fixed point
of the top, the motion can be described in terms of the three Euler’s angles ¢, 6 and y':

| Z, (vertical)

Euler’s angles specifying the orientation of a heavy symmetrical top ( /,= 1,)

() s the angle of inclination of Z-axis from the vertical (Z -axis).
(i) ¢ is the azimuth of the top about vertical (Z -axis), i.e., the angle in the horizontal plane between
X and line of nodes, and

(iii) y is the rotation angle of the top about its own Z-axis i.c., the angle between line of nodes and X-
axis (body axis).



The Lagrangian for the top is
L=T-V =%I,(w,2 +m§)+%13m§ — Mgl cos 6
where /. is the principal moment of inertia about the symmetry axis.
From Euler’s geometrical equation,
‘cof +02 =07 +¢? sin’® and 0} =y +§ cos 6)’

So that L=%I|(éz +¢72sin29)+%13(\{1 +éwse)2—MglcosQ

Theory of Small Oscillations

Normal modes and frequencies

Consider three springs arranged as shown below.
k m k m
The two masses are equal. Let x1 and x2 be displacements of the left and right masses.
The middle spring is stretched or compressed by X2 - Xu.
Solving for x1 and x2 we get,
X, = A; cos(w,t + @) + A, cos(w,t + D)
X, = Ay cos(w t + @) — A, cos(w,t + Dy)
A, and A, are amplitudes of mode 1 and mode 2 respectively.
@, and @, are phase constants of mode 1 and mode 2.
If4, =0
x, = A; cos(w,t + @y)
X, = Ay cos(w t + ;)

If A, =0
X, = A, cos(w,t + D,)
X, = —A, cos(w,t + Dy)



Thus if A, = 0, the two masses oscillate together in phase with frequency w; .
If A, = 0, the two masses oscillate with frequency w, opposite to each other.. that is out
of phase by .

“the two such modes of oscillation involving a single frequency are called normal
modes of vibration”
For a given normal mode, all the coordinates (x: and x2) oscillate with same frequency.

w, and w-,are known as normal frequency.

Linear triatomic molecule
Let us consider a linear triatomic molecule of the type AB, (e.g., CO,) in which A atom is in the middle
and B atoms are at the ends [Fig. .. ]. The mass of 4 atom is M and that of each of the B atom is m. The
interatomic-force between 4.and B atom is approximated by elastic force of spring force constant k. The
motion of the three atoms is constrained along the line joining them. There are three coordinates marking the
positions of three atoms on the line. Ifx , x, and x, are the positions of the three atoms at any instant from some

arbitrary origin, then

(a) o ) o

2
v

1

v

Longitudinal oscillations of a linear symmetric triatomic molecule
(a) Equilibrium configuration, (b) Configuration at any instatnt ¢



R AT
T=im[x‘2+x32]+-2-Mx§

2 2
and V=%k.(x2;-x,—xo) +%k(x3—x2-xo)

where x  is the distance between any 4 and B atoms in the equilibrium configuration.
Let us define the generalized coordinates as

Gy =X = Xg1: Gy T Xy —Xgy 1 q3 T Xy Xgg,

where X2 = X1 = Xo3 ~ Xg| = X
Then T=3mgf+d3)+ 5 Mg
- Z | 2,1 2 |
and V=5kg,-q)-+37kg:-9,)

Thus the T and V matrices are

m 0 0 k -k 0
T=|0 M Ofand V=|-k 2k -k
0 0 m 0 -k &k
The secular equation is
k - ma? -k 0
p-o1|={ -k~ 2k-Ma?-- -k |=0
| 0 -k k-mo?
whence B 2(k-mo )[k(M +2m) -0’ Mm]= -0

The solutions of this equation are

0,=0,0, =J§ and m,="£[l+%)
m

The' first eigen value @ =0 corresponds to non-oscillatory motion and refers to translatory motion of the
molecule as a whole ngldly



To determine the eigenvectors, we use the equation

k-mo}  —k 0
V-0iT)a, =0or| -k 2%-Mogp -k
0 -k k —mo

. Let us now discuss the eigen vectots for the three modes of vibrations.
(1) Form=0, '
. k. -k 0 a Vi
-k 2% -k||ay|=0
0 -k p k as
or ay ~ay = 0,-ay +2ay ~ay, =0, -0, *a; =0
or @y, = ay =ay =0 (say).

Thus for = 0, the eigen vector is given by

a
a=|a
a
(2) For (o2=,fk/m,
0 =k 0
Mk “
-k 2k ~— -k |[|ay (=0
m 0 )
\ 0 ~k 0 |\9
or | ay =0, —a;; ~a;; =0

Therefore, a,, =0, a,, =-a;, =B (say)

p
Thus, fore, = 1[Ic/m, a,=| 0
-p



k 2m
F .=
. R ; G s 3 m (l+ M)’.

\
M ap
-k —-;- —k (123 =(
. a3
0 -k -—M

which yields
m M 2m
—ap ta,y =0 a3+—a, +ta, =0, ay +—a,, =0
[Vt ay » 413 m 23 Tay px M OB

Therefore, d,; = ay; =y (say) and a,; =—(2m/M)y

Y
W, = .E. l+2_"’. a =-A—-—2—mY
Thus for " 3 m\ M) M
| : . y
Now, the A matrix is
q [ B ¥ 4
an ap ap J
A=|ay ay, ay|=|a 0 42"—'7
21 Gy ap Y
a3 4y au| |, -B ¥ |
We impose the condition
ATA=1
[
« o alfm o 0)f* P 2’: 1 00
ie., B0 -BJ[0 M Offa 0 -—y|=l0 10
M
2m 0 0 m 0 01
¥ Sy a -p ¥
\ M




(
o’@2m+M) 0 0
or : 0 28°m 0
2m
0 0 2l 14—
\ o M
| =

B A B
b <@ - o -
) B A . B
© <@ @ -
B A B
tongitudinal normal modes of the
triatomic molecule :

(a) Mode 1, all the three atoms-are displéced equally

in the same direction,

(b) Mode 2, A atom does not vibrate and B atoms
oscillate with equal amplitudes but in opposite
directions,

(c) B atoms vibrate in phase with equal amplitudes
and the middle atom A vibrates in opposite phase
with different amplitude.

o o -

S - O

-_— o O



UNIT -1V

HAMILTON’S FORMULATION

Hamilton’s canonical equations of motion

The Hamiltonian, in general, is a function of generalized coordinates qk, generalized momenta p, and
time /, i.e., .

H H(qlaqz' !qka 0q”0p|)p2) lpk) npn t)
We may write the differential dH as

dH = Z—qu Z—dpﬁ—dt

v
=

H =% p; 4, — L and hence
k

dH =Y g dp; +) pydiy-dL ———> 2
k k

Also, L=L(q;,95 g9, 9 19 290 G res G s 1)

Therefore, dL = Z—qu Z—qu +—dt

But P _oL and p, ~_6£_
a‘l.k 0qy

Therefore, ~ dL= Y p dg; + Y. py di, + 2L
- . ot

Substituting for dL

e e
dH = qi dpi =) pidgy -—dt —— 3
k k



Comparing the coefficients of dp,, dg, and dtinegs 1and 3

Gy i oH = )
B
- Opy : . ;
> This equation is known as Hamilton’s
) oH | equations or Hamilton’s canonical
PR 'aqk- ‘ equations of motion.
o J
oL  oH
ot ot

DEDUCTION OF HAMILTON’S EQUATIONS FROM VARIATIONAL
PRINCIPLE

According to Hamilton’s principle

"
S| Ldr=0

h
where L =T~V = L(g;.q; 1) .
in terms of Hamiltonian H

H(pyqpst) = %Pk‘h = L(qg, 4 )

Hence the Hamilton’s principle in the new form is obtained as
D
0 [Zpk—qk - H]dt =0
Lo\ &

This is known as modified Hamilton’s-principle.



The &-variation. of g, and p, coordinates at constant f can be expressed in terms of a parameter o
common to all points of the path of integration in phase space [(similar to eq.(3)] as

dq, =%i—‘5a= n: 0a and dp, =%8a=n'k&x

where 1, and 1 are arbitrary subject to the conditions

0 () =M, (6) = Wy (1) =W{ty) = 0
Therefore, the d-variation of the integral s

T —l= [ ][ Bt o B S0
J) [’E”*"*"’]‘” J ?[(aa" F o) gy 20y B 5"]"’_

f i 04 oH oH
=da g+ = - dt -
'[. )E.[le qe ™ Pk 5 Nk o4, Nk apk]
0 d | &g y  dy
But kg placlfl oo d_:f hatd /. 4
p"aa F L.p*dt[au]l :,p" dt «

t t - ‘ . e
= [Pk,'ﬂk ],2 = J:zpmkdt = 'J" IPk‘hdf - n, () =) = 0]
) ! i

Also in view the modified Hamilton's pfiﬁciple [eq."(25)], the 5-variation of the integral must be zero.
Therefore, we obtain from (28)

-dat Z[[ —%:)m [pﬁ%)m]dt =0

! oH
ik —— [P =| Py T — dt=0
or J;‘ ‘ %[[Qk apk'] Px ['Pk % ]&h} !
Since ék and p, are independent variables, the integral will be zero, when
q‘k—éli—Oand +_6_Ii___0 or g, = K andpk—--q-!-{-
Opy G . 4y

These are the desired Hamilton’s canonical equations.



PRINCIPLE OF LEAST ACTION

According to the principle of least action for a conservative system

!2 .
AJ Y pigidt =0 > 1
hok ’

where the quantity ' = J.”Z PyGydt 1s sometimes called abbreviated action.
hA

Eq. 1 was established by Maupertuis (1668-1759) and therefore it is usually referred Maupertuis
principle of least action.
Proof : Let us consider Hamilton’s principle function (or action integral) S, given by

h
S=|Ldt
h
: Tl}e A-variation of S is

{
As=AJ"Ld:=[5+Ni] 'L dr
4 dt M,

noo ) t , 1 .
=5(" L+ L ard(L)=8[ Lars[Lad], =Jl. 8L do +[ LA .- () = o]

f

[l sy, ——

& h Gt 5 ' .
In the present case 8¢,# O at the end points, hence§ | L dt is not equal to zero. Now, according to
i

Lagrange’s equations, we have
1[&]&4, i_i[f’t]
dt| 3qy | - Og; oqy  dt| &g,

S : . _ d
Also . gy = Z[S‘h]

v

v
N

Using 2 and 3 the quantity in the first term of eqn 1 is

i aL .' afaal” ad dic ]
o dr[aqt}* ™ drlaq ‘JTE["‘&“] T



A-operation is

pegnpl
dt

dgq : ,
Aqy = Bqy+ir d_,‘ or 8, = Aqy- Atq, ot pda,= pAq- pig, Al

oL oL d. .
Hence —k&h %, 8, = [Pt Bqy]- P [Pegit]

2 O d d p ty
AS = A : Ldt = _[ :;[Z[p‘Aqk]—E-[p‘ qkm]] dr+[L At],'
= ?J"? [d (Pké‘h- )-d (Pk‘hA’)] L A’]::
= %[Pk/".’&]:f = «"E[Pk?kA’]:f +[L A

As Ag= 0 at the end points, [P4Aq: ]:: =0

t, "
Al Ldt =[(L‘2pqu)m]
4 k 4

W, ot :AJ"II_.dt-—_--[HA_t]:’ , [’.‘H=%pkék-L] )
i = HA, .

Now, if we restrict to systems for which 0H/0t = 0 and to variations for which / remains constant
(conservative systems), then

AJ" Hdt = I” Hd(At) = [HAL?
h h
Substituting for [HN] i
A Ldt = —AJ Hdt o AJ[’H+ Lydt =
s

or Ar‘% Prgydt =0 [ H= %Pkék = L] |

This is what is known as principle of least action.



CANONICAL TRANSFORMATION

In several problems, we may need to change one set of position and momentum coordinates into
another set of position and momentum coordinates. Suppose that g, and p, are the old position and
mommentum coordinates and O, and P, are the new ones. Let these coordinates be related by the followmg
transformations : : :

B = BPis Pases Pas Gis G2eves G 1)
and o . ' 1)
Qk a5 Qk(pl’ pZ""_’ Prs Q1 Gys-oes Gy t)
Now, if there exists a Hamiltonian /4" in the new coordinates such that
. . OH' ~
Ph=-— and @, =—
=30, O ) O
‘where L e P/ch L - ’ : o " ak3)
3 T ' o N .o
and L' substmned in the Hamilton’s pnncxplc
5 j Ldi=0 | ~ | (4

gives the correct equations of motion in terms of the new coordinates P and 0, then the transformations (l)
are known as canonical (or contact) transformations. '

Legendre Transformations

This is a mathematical technique used to change the basis from one set of coordinates to another, If
f(x, y) is a function of two variables x and y, then the differential of this function can be written as

df =-gédx +-§fy—dy or df =udx+vdy .(5)
where u=0f[ox and v =0f /oy A6)

Now, we want to change the basis from (x, ) to (4, ) so that « is now an independent variable and x
is a dependent one. Let £ * be a function of u and y such that

f=fou (7
Then, df "= df - u dx-- x du '
" Substituting for df from (5), we get
df'=u dx + vdy—udx—xdu



or df '=vdy-xdu
But /' is a function of u and y, therefore
: of' of'
. df'=——dut-—d
s P
Comparing egs. (8) and (9), we get
" o’

=—2— and v=—
x v v

Thesé are the necessary relations for Legendre transformations. --

Generating Functions

A8)

(9)

-(10)



For canonical transformauons, thc Lagrangian L in p, , g, coordinates and L' in P, Qk coordmates must
satisfy the Harmltons prmcnple, ie.,

/.
sj Ldt=0 and 8| L'dt=0 (1)
(A h
But L= ):pk gy—H and L'= iP, 0, - H',
- k-l = I
A . .
therefore, SL Zm4r44¢=0 (12)
: I L& ?
Al
and 8_[, . Z P O - J =0 (13)
h L
Subtractmg eq. (13) from eq. (12), we get |
f ' .
8'[ [me ] [ZP.Q. H) dt=0 . -{14)

In §-variation process, the condition 8 J fdt=0is to be satisfied, in gcner_él, by f = dF/dt , where F is

an arbitrary function. Therefore,

h dF
8| —dt=0
f o dt i . -413)
where dffdt=L-L' {16 a)
dF 9 ) . "
or ?=(§-Pt i “H)‘(Pl: le'h) ..{16b)

The function F is known as the generating function. The meaning of the name will be clear later on.
The first bracket in (16) is a function of p,, ¢, and 1 and (he second as a function of P\, O, and 1. F'is
therefore, in general, a function of (4n +1) vanabks Pp Qp Pp Oy and £. Tt is to be remembered that the
variables are subjected to the transformation equations (1) and thereforc F may be regarded as the function
of (2n +1) variables, comprising ¢ and any 2n of the p,, q;, Py, O} Thus we see that F can be written as a
function of (2n +1) independent variables in the following four forms :

(i) Fi(gp Op 1), (@) Fylgp Po0), (17)
(iii) Fy (py» Op 1), and ) Fy (s P



The choice of the functional form of the generating function F depends on the problem under
consideration.

Case I : If we choose the form (i), i.e.,
Fl= Fl(ql’ Qoo Ql' QZ""'Qk""'QR") - - .(18)

dFf, _ _oF, . aF 3
the ! L Wl (19
n . ;a{“ - GQ. —L0 a: (19)

Subtracting (19) from (16 b), we can write

: oF F oF;
z(p,,~—— —z[ SQ']Q.H{' S

[ gy K f
oF, BF, { _6F, ] .

or : -—Lldg, -Z| P + d H- dt =0 ~(20)

%[Pk 34“] % %[ t* 30, ] O Py _
As g, O,-and 1 may be regarded as independent variables,

0

pt,=¥"ﬁ(‘IhQA-z’)) P = ”'a?kﬁ(quQt, t) SRR S

and H - H=§F‘,(q,,Q,,l) ' : ...(2.1) :

In principle, first equation of (21) may be solved to give

Oi = 094, Pit) - (22)
Substituting this in the second equation of (21), one gets
P, = P(qk, Pest) @ , _ (23)

" In fact, these are the transformation equations (1). Thus we find that transformation equations can be
derived from a knowledge of the function F. This is why F is known as the generating function of the
transformation.

~ Case II : If the generating function is of the type F,(q,, Pk, t ), then it can be dealt with by affecting
a'Legendre transformation of F 1@ O D). -
In case of Legandre transformation (7) :
f'=f- ux, where u = df /ox
Here, since P, =-0F P0Q, ,wehaveu=-P,x=0Q,f'=F,andf=F,

Therefore , FZ("k'Pk")'-_ ﬁ(qk»Qtv’)+§Pka .(24)

Evidently, F, is independent of Q) variables, because

ai=_6i+& =—P+P =0 as -Q-FL=-P,( in (21).

00, 00 00



Using eq.(16)

; ; Y _dF, d
(zpvii-)-(z0-#r) -G - 41,3 R0
or B s i SO H-H | 25)
dt & 5

Total time derivative of Fy(g,, P, ) is

dF, _ aF an an
& yag it 26}
From (25) and (26), we get
oF, aF.
=22 =2 H -H==22 .(27)
e O g -

 If we look (21) and (27), we find %?' %’i Furtheras 2L = 22 | first equation of (21) and that
k k

of (27) are identical. Second equation of (27) appears to be different from the second equation of (21), but
in fact it is a rearrangement of it.

Case IIT : We can again relate the third type of generating function Fy(p,, O,, f) to F, by a Legendre
transformation in view of the relation p, = oF /dq,. Here u = p,, x = q,, f '= F, and f = F, . Therefore,

F(pe. Q. 0) = F.(qu..t)-th .(28)

or (960 = F;(Pth ’)*ZP&‘I&

Using eq. (16), we have

- dF, d
& K _df _d F
[%Pt‘h ] [Z P*Qe ) dr dl( 1 zpk?k)
dFy
or —dT— ‘ZPk‘h thQk +H'-H
- dFy oF;
Also, dt 'Zk: apk i‘: %0, o =

Therefore, the new transformation equations are .

q‘=_§fl ﬂ__aF and H' - H-é’i’. Lo -(29)
0

.



Case IV : Using Legendre transformations, the generating function F( p, , P, , 1) can be connected to
F4(Ptvﬂ,’)=ﬁ(qA-Qk:’)+§”tf Ok "%Pt 9 .(30)

Using eq. (16), we have
d
[ZPNM ) [ZPka )=d-[&'ZPkQA+‘£PUh]
4 k k

dF, ; .
or A=Y n IO B tH -H
dt N k
dF, oF, oF, 5F
But D Tl MR ey i

@ T, M aa "o

A comparison of the above two equations gives the fourth set of transformation equations:
.. 1 . T (31)
3 TS e S - —JeE. & PP
o . OR ot '

POISSON’S BRACKET

we have shown that in the case of infinitesimal contact transformations, the
changes in the conjugate variables p, and g, are given by

oG oG
dq, =e— and &p G T ;
i o, f} aq; y B (1)

where € is an infinitesimal parameter and the generating function G(qk, p,) is arbitrary. Now let us
consider some function F(g,, p,). The change in the value of F(g,, p,) with the changes 8g, and 8p, in the
coordinates g, and p, respectively can be expressed as

dqy P
If the transformation (1), generated by the function G, is applied, we get

s il

Since the parameter € is mdcpcndent of g, and Py W have

5 = z[_aiﬁ_a_FiG_] , . T E

oqy Opy  Opy Ogy ’
The quantity in the big bracket in (3) is called the Peisson bracket of two functions o dynamical
variables F (g, p,) and G (g,, p,) and is denoted by [F G). This definition of Poisson bracket is true for F and G,

beirig functions of time. Thus
OF =€ [F, G} .(4)

OF = Z(—&h —Sm] ' A2)



If the functions F and G depend ifao'p the position coordinates g,, momentum coordinates p, and time ¢,
the Poisson bracket of F and G is defined as
a(F oG OF 8G
[ri6), = Z[——-—-‘—] A5)
«=\.04, Op; .0p; q,

For brevity, we may drop the subscripts g, p and write the Poisson bracket as [F, G].
The total time derivative of the function F can be written as

el o R

dF _oF a(oF .  OF J ©
dt 0t =1\ 0q; opy "

. OH . .
Using, Hamilton's equations i =a" and —p, = %H— , €q. (6) is obtained to be
k k

dF . OF n[ar oH oF aﬂ]

a T Bl o e n

L O i (1)

In view of the definition of Poisson's bracket given by eq. (5), we-obtain

dF _ oF
e +[F, H]‘ | _ -(8)

From this equation we see that the function F is a constant of motion, if

dF oF : -
—= —+|F,H|=0
dt 4% ot [H] o _ . ©)

Now, if the finction F does not depend on time explicitly,%‘i = () and then the condition for F to be

constant of motion is obtained to be
[F,H]=0 ~ S L(10)

Thus if @ function F does not depend on time explicitly and is a constant of motion, its Poisson bracket
with the Hamiltonian vanishes. In other words, a function whose Poisson bracket with Hamiltonian vanishes
is a constant.of motion. This result does not depend whether #{ itself is constant of motion.

‘Equations of motion in Poisson bracket form : Special cases of (8) are

(l) F=qka qk =[qksH] | .(lla)
(2) F=py, 1?4‘=[puH'] .(11b)
o F=H, =2 ' | ' (11¢)

ot .



Properties of Poisson brackets and Fundamental Poission brackets : The Poisson bracket has the
property of antisymmetry, given by ;
[F,G]=-[G, F] : -(12)

oF aG oF oG oG o0F 0G oF
=-[G,F]
0q, 8p, aPk 04, k| 04y Op; 5Pk aq,

Thus Poisson bracket does not obey the commutative law of algebra. As an application of the Poisson
brackets, we are giving below some of the special cases :

because [F,G]= z[

(1) When G =¢, ,
oF g oF 8q,] oF
Foq)= S| k- il | = -5 —5
[ ql] [a‘h dpy  Opy Oy k Opy *
oF
or F.ql=-—— -(13)
_[ "oy
Also if F =g, [q..m]=-2ﬂ-=0‘ ' £ A st e e i(14)
opy
and'if F=p,, [m.q;]=-%=-5u . (15)
. opy _
aF ‘\\
(2) When G = p), [F, pj]= 8,
& Ogy
_OF | '
or F, Cov - o .(16)
IFpil=
For F=p,  [prp]=2t=0 | | (17)
! -
and for F = ¢, [qk,lh]:%=5u ..(18)
o 1
The above results can be summarized as follows : 7 . '
[9i.9:]=[pe: i) =0 ' : : : ' -(19)
and o laer]=8 o (20)

where 8, is the kronecker delta symbol with the property
‘ 6u=0 for ktl andﬁu-'-‘l for k=1
Equations (19) and (20) are called the fundamental Poisson's brackets.



Further from the definition of Poisson bracket of any two dynamical vanables or functions, one can
obtain the followmg identities :

(D) [FF]= ; .(21)
(ii) [F, C] = o, C = constant - .(22)
(1) [CF ,G] =C[F, G] .(23)
(v) [F\+ Fy, G] =[F,, G1 +[F,G] ..(24)
() [F G,G,] = Gy[F, Gy] + [F, )]G, -(25)
oF oG
V) [F G] = [ G] [F 3]_ | .(26)
(vii) [F, [G, K 1] * [G, [K, F ]] + [K, [£, G]] =.0 (Jacobi’s identity) . «A27)

INVARIANCE OF POISSON BRACKET WITH RESPECT TO CANONICAL
TRANSFORMATION

Poisson brackets are invariant under canonical transformations. First we shall prove this statement for
fundamental Poisson brackets and then in general.

Fundamental Poisson brackets'under canonical transformation : The fundamental Poisson brackets
are invariant under mnomcal transforxmuon means that if

[Qh?l] [P:uPl] 0, [QhPI] Sy -{37)

and the transformation (g,, p,) — (Q,, P;) is canonical, then

[0:.0]=[~.B]=0, [0 R]=84 +(38)
According to the definition of Poisson bracket [eq. (5)], we have
oF 8G oF oG
F.Gl =¥|——F7——
[F.6l,, E[aq, > o, aq,] 49
Therefore,
00, 60, 00 0Q |- . , ,
[Qt QIL 4 [811, TR 54,'} : ...(40)

O . 0 OF _ @ oF _ 0of - (41)
00, 0Q, éq, 0q, 00 Oy '




py _ @ 0F, _ 8 oF _0Q,
BB, 0P dg; 0qs OB, g

g _ 8 8F _ 0 0F, _0R

00, 00, 0py  Opy 00, Opy
o, ORdp dp OB Op
Hence eq. (40) is [using (41)and (43)]

[Qk a QI ]q,p Lo :

I

oq; 0P, op; R,
because O, and P, are independent variables. Also we note that

(O Qlpr =X

i

o0 o P, %0,
Therefore, [Q"’Q’]v-p =[o ,Q,]Q‘P =

Similarly we can prove
[PIUPI]q.p = [Pk! PI]Q.P =0

Now, [Ql’ Pl](;',.,.% %{ 0q; 51_ —3;547]

Using eqs. (41) and (43), we obtain

90 %0 00 i) 3k _,
=R

[;'agk %0, an-'aQ,]z.o

_ | 9O Oq; 00, dp |_ 00k _
[Q*’F;]qp—‘Z( k 4 Xk )_aQ’;

dg; 00, dp; 00
By definition  [Qs, Blgr =8k -

Thus [Qh Pl]q'p =[QbPI]Q_p =sk!

.(42)
..(43)

.(44)

.;.(4.5)

..(46)

(47)

..(48)

.(49)

«(50)

Egs. (46) , (47) and (50) show the invariance of fundamental Poisson brackets with respect to canonical

transformation.



Show that transformation defined by
¢=\2Psin0, p=vIPcosQ
is canonical by using Paiss_o-rx bra-cket: A . '
Solution : The transformation is
q=s/2—PsinQ. p=w/2—PCOSQ

From these equations, we can write the transformation as

th;% and P=%(q2+p2} ' - . i)
In order to show that the given transformation is canonical, the Poisson bracket conditions are
[0.0]=[P,P]=0 and [0,P]=1 ‘ i)
5 :
Here, . [2.0]= %%5%-%%= (i)
Similarly, [P,P]=0 (i)
o0Q 0P 0Q oP :
Also B o e )
e %
But from (i),
seczg.a_g.,:‘l_ _a!:n nga_Q=__q_ a_P=q

aq pw Y oo

Substituting these values in (v), we get

2 2 2
cos cos
[0.P]= pr+q 7 Qq=cos’Q+-——:’)2 cpsZQ

= cos’Q [1 + é] = cos?Q [1 + tan’Q]
me | Q)

”COSZQSOCZQ"'-‘I ...(Vi)
Thus we prove the conditions (if) which means that the given transformation is canonical.



HAMILTON - JACOBI METHOD

Solution to harmonic oscillator problem

Let us consider a one-dimensional harmonic oscillator. The force acting on the oscillator at a' displacement

qis
=~ kg

where k is force constant.

.
Potential energy, 4 =J:) kg dg = -;- kq*

Kinetic energy, I= %mv2 = :—m
Hamiltoxﬁan, - A H=T+V (conservative system)
or H= -Ez- + 2 kg’
2m %
But p =-§- , therefore

Hence the Hamilton-Jacobi equation corresponding to this Hamiltonian is
2 ,
L ) +Lkg? + o) =0
2m| dq &3 a1

As the explicit dependence of S on ¢ is involved only in the last term of left hand side ofeq  ,a solution
to this equation can be assumed in the form

5=5,(q)+ 5,(1)

2
s - A[ET 0 S
2m| dq 27T T

Setting cach side of eq.  equal to a constant, say &, we get

5 .
.L .aﬂ. +_l_qu=a and —-a—gz-=
2m| oq - Y ot



as,= 1,2 a§,=
Sl AR meies

Integrating, we get

S, =J.\,2M(a-§qu)dq+cl and S=-or+C,
Therefore, s=vl.‘f2m(d-;k4’)éq-m+c '

“ where C=(C,+ C,) the constant of integration. It is to be noted that C is an additive constant and will not

-affect the transformation, because to obtain the new position coordinate (Q = dS/dP or f = dS/da ) only

~partial derivative of § with respect to & (= P, new momentum) is required. This is why this additive constant
C has no effect on transformation and is dropped. Thus

' S=H2'" (o~ 3k4") dg -z

We designate the constant o as the new momentum P. The new constant coordinate (Q = B)is obtained
by the transformation

BJL@I di o [mf 4,
da Z 2
M lqu o : kql

m . k = & k k
Therefore, J— 1’—= "_= Lo+
erefore 7 Sy t+[i<>r:;quol m(tﬂ)

Writing @ = k/m , we obtain

q j’—za—z sino (t+6)
m®

which is the familliar solution of the harmonic oscillator,



UNIT -V

RELATIVITY

In Newtonian mechanics; space and time are completely separable and the transformations connecting
the space-time coordinates of a particle are the Galilean transformations. These transformations are valid as
far as Newton’s laws are concerned, but fail in the field of electrodynamics. Principle of relativity, when
applied to the electromagnetic phenomena, asserts that the speed of light in vacuum is a constant of nature.
This starement has been confirmed by several experiments and led Einstein to formulate the special theory
of relativity, In view of this theory, space and time are not independent of each other and the cormrect
transformation equations are Lorentz transformations.

Principle of Relativity

Absolute velocity of a body has no meaning. The velocity has a meaning only when it is measured
relative to some other body or frame of reference. If two bodies are movmg with uniform relative velocity,
it is impossible to decide which of them is at rest or which of them is moving. This is known as principle
of relativity. However, acceleration has an absolute meaning. For example, if we are sitting in a windowless
accelerated aircraft, we can perform an experiment and measure its acceleration. But if the aircraft is
moving with uniform velocity, we cannot measure its velocity. Of course, we measure its velocity relatlve
to a body outside. Thus the principle of relativity can be alternatively stated as follows :

It is impossible to perform an experiment which will measure the state of uniform velocity of a
system by observations, confined to that system.

The motion of a body itself has no meaning unless, we do not know with respect to which this motion
has been measured. This led Newton to think about the absolute space and it represents an absolute frame
with respect to which every motion should be measured. However, in view of this principle of relativity,
we cannot perform an experiment which will. measure the uniform velocity of a reference system relative
to the absolute frame by observations confined to that system. A

[n the unaccelerated windowless ship all .experin‘ients performed inside it will appear the safme whether
this ship is stationary or in uniform motion. Newton stated the principle of relativity as follows :

The motions of bodies included in a given space are the same among themselves whether that space
is at rest or moving uniformly forward in a straight line.



Study of the physical laws involves the measurements of accelerations, forces etc among bodles The
principle of relativity can be stated in an elegant form as follows : :

The basic laws of physics are identical i in all inertial systems which move with um[orm vdocity wuh'
respect to one another.

This principle is called Galilean or Newtonian prulciple of relativity and somenmes it is named as
hypothesis of Galilean invariance. In fact, the principle of relativity is a fundamental postulate and is
entirely consistent with the theory of special relativity. If any two inertial systems, moving with constant
relative velocity, are connected by Galilean transformations, the principle of relativity is modified as :

The basic laws of physics are invariant in form in two reference systems connected by Galilean
transformations.

This statement is somewhat special than the principle of relativity in the sense that it means the
assumptions that the time and the space intervals are independent of the frame of reference. We shall see
later in the theory of special relativity that the Galilean transformations are not correct, but the
appropriate exact transformation equations are the Lorentz transformation equations for connecting any
two frames in uniform relative motion. Thus, the principle of relativity may be stated as :

The basic laws of physics are invariant in form in two inertial frames connected by Lorent;
transformations.

Postulates of Special theory of Relativity

The two fundamental postulates of the special theory of relativity are the following :

(1) All the laws of physics have the same form in all inertial systems, moving with constant velocity
relative to one another. This postulate i is just the principle of relativity. . :

(2) The speed of light is constant in vacuum in every inertial system. This postulate is an expenmenml
fact and asserts that the speed of light does not depend on the direction of propagation in vacuum and the
relative velocity of the source and the observer. In fact, the second postulate is contained in the first
because it predicts the speed of light c to be constant of nature.

The name special theory of relativity comes from the fact that this theory permits the independence of
the physical laws of those coordinate systems which are moving with constant velocity.relative to one
another. Later, Einstein propounded his general theory of relativity which allows for the independence of
the physical laws of all coordinate systems, having any general relative motion.

 These two postulates of special theory of relativity look to be very simple, but they have revolutionised
the physics with far reacbmg consequences. First we deduce transformation equations, connecting any two
inertial systems moving with constant relative velocity. The transformation should be such that they are
applicable to both Newtonian mechanics and electromagnetism. Such transformations were deduced by

Einstein in 1905 and are- known as Lorentz transformations because Lorentz deduced them first in his
theorv of electromaenetism



Four Dimensional formaulation — Minskowski’ space

" In accordance with the two postulates of the special theory of relativity, namely the constancy of the
speed of light in vacuum and the invariance of the basic laws of physics in inertial frames, we deduced earlier
the Lorentz transformations. These transformations connect the space-time coordinates of an event in two

inertial frames S and §' and are given by

VX

1'.=Y(x.""), y'=y, =z and f'=Y(f-:;)

where y = l/ Jl —v? I ¢* , the frame S'is moving with constant velocity v along X-axis relative to the frame S.

We find that in relativistic mechanics, the space and time coordinates depend on each other. The time
coordinate of one inertial system depends on both the space and time coordinates of another system [t' = g (t
-vx/c%). Therefore, instead of treating the space and time coordinates separately, it is natural to seck the way
so that both the coordinates are dealt together similarly. In fact, H. Minkowski was the first to dcvelop a
procedure in which the time coordmatc is treated similar to the three space coordinates. :

Minkowski considered a four»dimms.ibnal cartesian space in which the position is specified by three
coordinates %, , z and the time is referred by a fourth coordinate ict. If we write x, = x, X; =y, x; =¢ and

X4 = ict, then an event is represented by the position vector (x,, x,,x;,x, ) in this four dimensional space. Of
course the fourth dimension, referring to time, is imaginary. This four dimensional space is called Minkowski
or world space. It is also referred as space-time continuum and sometimes briefly as four-space. The square
of the magnitude of the position vector in such a four-space has the form

: =x,2+x§+x3z+x}=x2 +-yz+zz—czt2 (1)

Lorentz transformations are designed so that the speed of light remains constant in § and §' inertial

frames (S'is moving with constant velocity v relative to §) and this condition is equivalent to require that the
position vector in the four-space is he_ld invariant under the transformations, Le.,

shi=xt eyl P eyt 4 -

|

T R PR N PO SRl I
o S EX X AN X =X Xy A Xy Xy
. B & o 48 ; .
. or S=ELX, =Ly -(2)



This équation is analogous to the distance-preserving orthogonal transformation for rotation from one
frame of reference to another in three dimensional space. Thus the coordinates, x,, x,, X,, X, chosen above,
form an orthogonal coordinate system in four dimensions and eq. (2) implies that the transformations which
e are seeking, correspond to a rotation in a fourdimensional space. In fact, these orthogonal transformations
in the four-dimensional Minkowski space are the Lorentz transformations.

Deduction of Lorentz Tansformations : In order to prove the statement that the Lorentz transformations
can be regarded as orthogonal transformations due to rotation of axes in the Minkowski space, we deduce
these transformations in the four-space,

The frame S' is moving with constant velocity v along X-axis relative to the inertial frame § and hence
we may have

y= y and 7=z or xz-xz and x'y=x, o mmes «(3) .
Thus from (2), the transfomatxons should be such that

Xl +X4—x|+x‘ '“(4)
In order to keep this requirement, we consider two orthogonal coordinate systems X, X, and X\ X'yin

the same plane (plane of the paper) with the same origin O. The axes of X', X'y system correspond t0 rotation

B with respect to those of X X, system, i.e., the axes of the former coordinate system are inclined with the
later through an angle 0 . We observe that ’ '

2_ .2 2
0P =x+ x}= 21+ 1%

where the coordinates in two coordinate systems are related as

x| = x,c086 + x,sinb

.(5)

-
= X'y =—x, sin +x,cosO

-—In matrix notation

' x"‘f‘ - 6059 sind X, . '
J Bl | 6
xy) \-sinb cos ) \x, | _ _ '



Also, X, = ¥, cos0 — x', sind

A . OFrald v
x, =x';sinf + x'; cosB A7) " N
Whel'l X'l = 0 > X| = “X}4 Siﬂe
and X =x'qcosf
Sothat tan@=-Ll=-—=2 (8)
Xy i ¢
where x', = x'=0 corresponds to the coordinate of the point
O' ( §-frame) relative to O (S-frame); e, y=yt or 2= Rotation of orthogonal
t coordinates axes and invariance of

-y 2 _y"
OPz-x,+x‘ X2 +x%

Therefore from (8),

iv/c iyv 1 |
sinf = —====="—""and cosb = =y sa
JI-viie ¢ ;]l-vz/c2 "

Hence egs. (5) can be expressed as
i P ¥ i sy iv
Xy =yt =Xy =Y("‘xl + "’%] and x'y = iy —x, +yx, = Y["—xl + x4)-
c ¢ e:" c
" Ifweadd X;= X, and X=X, the trinsfofniatibn equations are
J .V 1 ; { ' o
Xy =Y(x| +l‘c"X4),X2=X2,X3= X3, and X‘=Y("l'c-xl +I4J ...(9)

In fact, these are the Lorentz transformations. This may be seen by putting x, = % X, =y,%; =2 and
xy =ictineq.(9), ie, '

X=y(-w), y=y, 2=z and r=y(t-wx /). C u(10q)



In matrix notation, the Lorentz transformations from S-frame to S'-frame can be represented as

() (v 0 0 iBﬂ (x,) |
x'y 0 1 0 0| (x
glfilea o==d .0l - (10)
Wl e 00y ) e
or | o= ila",x, - . | ~(10¢)

where B=v/c and y = l/\}l-Bz .and a,, are the elements of the abo've'squarc matrix .

Ihe inverse Lorentz transtormanons are

(x) (v 0 0  -ipy) ()
xnl |0 10 0 | [x
Xy ) 0 0 1 0 x'y ~(11a)
s Wy 0 0 Y / \xXy)
or x, = ;:.a‘"‘x'" .(11b)

because Za,,”x,', = ):avugja\,lx,. = %%:avu&vkx& =§8p1x1 =%u-
v v ’

Remember that for orthogonal transformations

. %—aapvaxv =Zavuavl =5.m

Here x, and x', satisfy the condition (2), ie.,

4 2 4
I PFED
nwl =l
The four coordinates x;,X,, x;and x, or x, y, zand ict, define the position vector in the four-space and
may be termed as four-position vector. We shall discuss more about four-vectors later.



WORLD POINT AND WORLD LINE

A physical event in Minkowski space is described by a point with four coordinates (x;,x,,X3,x4)

(x4 =ict) . This point in the four-space is called world point. In this space, the motion of a particle (i.c., a
particle at various instants) corresponds to a line, known as world line. A particle in uniform rectilinear
motion corresponds to a straight world line. The relative position (in space-time) of one event with respect to
another would be represented by line element, joining the two events.

In order to show the interdependence ef space arid time more clearly and to represent them geometrically,
we consider only one space axis, X-axis and ignore ¥ and Z axes. The time axis is represented perpendicular
" to X-axis by T'= ct, so that the dimensions of the coordinates are the same. -

The Lorentz transformations for x and ¢ are

x=y(x-v) or x'=y(x-pT) (12)

and "=Y(‘_1J2£J or T'=Y(T‘BX). . .(13)
c

where p =vlc.

We observe that the Lorentz transformations for space and
time in this form possess symmetry. In this X-T coordinate system
in the Minkowski space, we have represented the motion of a

- particle by a world line [Fig.14.2]. The inclination « of a tangent
at any point £ of a world line is given by '

i ey A1) Y
ar ot c .. X
‘where we must have « < ¢ for a material particle. This means that 0 World line

a < 45° for a material particle. If the particle velocity (u) is

constant, tana is also constant. Hence the world line for a particle moving with constant velocity is a straight
line. For light signal, = cand therefore = 45°. Thus the world line for light signal is a straight line making

an angle 45" with the X-axis.



FOUR-VECTORS

A vector in four dimensional Minkowski space is called a four-vector. Its components transform from
one frame to another similar to Lorentz tmnsfonmuons

An event in four domensional spacc is reprwented by a world point (Ihx‘z»xhxd) The Loremz
transformations from S-frame to S'-frame correspond to orthogonal transformations in the four-space and are
represented as ; .

() (1 0 0 ipy) (x)

Hllo 10 oy

x‘l'= i awxv or =
vel Ao 0o 1 of|x

Ax'y) Py 0 0 Y ) \xy/

with the condition

EX—Zx
p=l1 p=l
We may represent the position vector of a world point by

X, = (X1, X5, X3,%4) = (v, ict)
where (x;,x;,x;) or (X, ,2) represent the position vector r of a point in three dimensional space and x, = ict
or x4 = iT.r(=x,,2) is the space part and ict is the time part of the four dimensional position vector X, -

A four-vector A_ is a vector in four dimensional space with components A;,A,,A; and A, and is
represented as

A, = (A A, A, A) = (A iA)

where A(= A, A,,A;) is the space component arid A, (=4,) is the time component. These components
transform from S-frame to §"-frame similar to Lorentz transformations, i.e.,



(A (v 0 0 ify) (A)
A 0 1 0 0|4,

Ayl |0 0 1 0f]|A

Ay =iy 0 0 Y ) \A)
' - 4 .I ‘

or Ap =2 avav

v=l

i-e.,A'l = Y (Al +iBA4 ), A'Z = ‘Az ,A'3 = A],A.4 =Y (- iBAl + A4 )
These transformations are governed by the condition

G ox &
Y. Ay=2 A or A'“A'u=A”Au
" . :
The square of the magnitude of the four vector is given by

2o 2% a9 43
AuAu—zA' +A; + A7+ A, ‘

or A= A2+ A2+ AT AT

T M-

Let two vectors A, and B, be A, =(4,4), A, Ay) with A, =iA, and B, =(B,,B,,B;,B,) with
B‘ =iBl'

The scalar product of the four-vectors A, and B, is defined as

A“B"| = A|B| + A282 + A383 +A4B4
or AHBII =A|Bi+Asz +A383"A‘B‘



This scalar product is invariant under Lorentz transformations i.e.,
A, B, =AB
because A"} B'\+A", B',+A', B+ A" B,

=y (A, +IDA)(B, +iDB,) + A,B, +AsBy +y°(-iPA, + A)(-iBB, +B,)
= A By 'z(l = Bz)."L‘AzBZ +AyBy + A Byy 2(—02 * l)
= A,B, + A,B, + AB, + AB,

Momentum four vector Py : The components of four-momentum py, are defined by

pl =’"o“1 =T%='mux =P,
1-u’le
mgol..

Py = mglyy = | 2)/2=m“)=p)
- Ic
molt,

Py = mguy = =mu; = p,
1-u?lc?

p4 - m°u4 = mO‘C =inc= ‘£
-1/ ¢

Hence,

Py =(P1sP2P3sPs) = Py Py P, vime) = (p,iE [ ¢) with p=mu
The square of the magnitude of the four-momentum is given by ‘

_ B,
PPy =P ——=~(E =pc’) I or pup, =-mgc’
€

This Py is also called energy- momentum four—vectbr.



THOMAS PRECESSION

“Thomas precession is a kinematic effectin the flat space time of special

relativity. In the curved space time of general relativity,”

For a given inertial frame, if a second frame is Lorentz-boosted relative to it, and a
third boosted relative to the second, but non-collinear with the first boost, then the
Lorentz transformation between the first and third frames involves a combined boost and
rotation, known as the "Wigner rotation" or "Thomas rotation". For accelerated motion,
the accelerated frame has an inertial frame at every instant. Two boosts a small time
interval (as measured in the lab frame) apart leads to a Wigner rotation after the second
boost. In the limit the time interval tends to zero, the accelerated frame will rotate at

every instant, so the accelerated frame rotates with an angular velocity.

The precession can be understood geometrically as a consequence of the fact that
the space of velocities in relativity is hyperbolic, and so parallel transport of a vector (the
gyroscope's angular velocity) around a circle (its linear velocity) leaves it pointing in a
different direction, or understood algebraically as being a result of the non-

commutativity of Lorentz transformations.

Elements of general theory of relativity

General relativity, also known as the general theory of relativity, is
the geometric theory of gravitation published by Albert Einsteinin 1915 and is the
current description of gravitation in modern physics.
General relativity generalizes special relativity and refines Newton's law of universal
gravitation, providing a unified description of gravity as a geometric property
of space and time or four-dimensional spacetime.  In  particular,  the curvature of
spacetime is directly related to the energy and momentum of

whatever matter and radiation are present.

Some predictions of general relativity differ significantly from those of classical

physics, especially concerning the passage of time, the geometry of space, the motion of
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bodies in free fall, and the propagation of light. Examples of such differences
include gravitational time dilation, gravitational lensing, the gravitational redshift of
light, the gravitational time delay and singularities/black holes. The predictions of general
relativity in relation to classical physics have been confirmed in all observations and
experiments to date. Although general relativity is not the only relativistic theory of

gravity, it is the simplest theory that is consistent with experimental data.
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