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THERMODYNAMICS 

Thermodynamics is the branch of physics that deals with the relationships between heat 

and other forms of energy. In particular, it describes how thermal energy is converted to and 

from other forms of energy and how it affects matter.  

Thermal energy is the energy a substance or system has due to its temperature, i.e., the 

energy of moving or vibrating molecules. 

Heat 

Heat is another mode by which a system can exchange with the surroundings. Wherever 

a temperature difference exists between the system and surroundings heat either flows in or out 

of the system. It is not a state function because the quantity of heat involved in a process 

depends upon the path. Heat like work is an extensive property. 

It is not a property of system or surroundings. Heat as such cannot be measured at all, 

but the effects which it produces are measured. It was formerly measured by the increase in 

temperature of water. The amount of heat required to raise the temperature of 1 g of water by 

1°C becomes a unit of heat, the Calorie. 

In modern practice, it is defined in terms of Joule. Because Joule, in 1850, showed that 

there is a definite relationship between mechanical work done (w) and heat produced (H). i.e.       

 

  

‘J’ is known as mechanical equivalent of heat. Its numerical value is taken 

as   ergs = 4.185 Joules. 

Heat is an algebraic quantity and the convention used for heat is q. A + q shows that 

heat is added to the system and a – q means that the system has lost the heat. 

Work 

Mechanical work is done whenever there is a change (increase or decrease) in the 

volume of the system i.e. expansion or compression of a gas. 

 

This is known as Pressure volume work or PV work or Expansion work.  

Consider a gas enclosed in a cyclinder provided with a piston. If P is the pressure of the gas, it 

exerts a force F on the piston given by: 



                                                   F = PA  

where A is area of cross-section of the piston. This force can be balanced by an equal force, 

Fem acting on the piston, (fig). If there is an infinitesimally small movement of the piston (dl) 

outward, the small amount of work done (dw) by the gas (system) on the surroundings will be 

given by, 

 

 

 

where dV is the small increase in volume of gas that has taken place in the process. This process 

of expansion may be carried out in infinitesimally slowly (i.e. in a thermodynamic reversible) 

manner in a series of steps. The work done in each step will be given by PdV. 

If, ultimately, the volume of the system changes by a finite quantity, say, 

from  then the total work (w) done by the system on the surroundings will be obtained 

by the integration of the factor PdV. i.e. 

 

where P is a variable factor. 

On the other hand, if there is infinitesimal contraction of the gas resulting from 

infinitesimal movement of the piston inward, then the small amount of work done by the 

surroundings on the system will be given by: 

                                                        dw = PdV 

where ‘dV’ is the decrease in volume of the gas that has taken place in the process. If the work 

of contraction is carried out in the above manner in a series of steps, the work done (w) by the 

surroundings on the system is given by integration of the factor PdV. i.e. 

 

When the volume of the system decreases from . 

 Work done at constant pressure 

If the-pressure P remains constant throughout the process, the above integration gives 

 

i.e.    

where  is the volume of the system in the initial state,. Then , evidently, is the change in 

volume of the system. Thus,  

If  is positive i.e. the gas expands in the process, w will have a positive value. The work, 

in this case, is done by the system on the surroundings. 

If  is negative i.e. the gas undergoes contraction, w will have a negative value. The work, 

in this case, is done by the surroundings on the system. 



Work done at constant volume 

If the volume is constant,    dV  = 0,   then w = 0  

 Maximum work 

Suppose the pressure applied on the piston is negligibly small in comparison with the 

pressure of the gas inside the cylinder, the gas will then expand rapidly i.e. irreversibly. In this 

case, the work done by the system will be negligibly small since the opposing force has been 

negligibly small. 

If the opposing pressure on the piston is zero, the work done by the system will be zero.    

PdV = 0  

Hence, it follows that when a gas expands freely (free expansion ) i.e. when it expands 

against vacuum such that P = 0, no work is done by the system. 

It also follows from the above discussion that the magnitude of work done by a system 

on expansion depends upon the magnitude of the opposing (external) pressure. The close is the 

opposing pressure to the gaseous system in the cylinder, the greater will be the work performed 

by it on expansion. 

In other words, maximum work is obtained when the two opposing pressures differ 

only by an infinitesimally small amount from one another. 

This condition, evidently, is demanded for an ideal reversible process. Hence the 

condition for maximum work coincides with that for thermodynamic reversibility. 

Temperature 

The amount of heat transferred by a substance depends on the speed and number of 

atoms or molecules in motion. The faster the atoms or molecules move, the higher the 

temperature, and the more atoms or molecules that are in motion, the greater the quantity of 

heat they transfer. 

Temperature is "a measure of the average kinetic energy of the particles in a sample of 

matter, expressed in terms of units or degrees designated on a standard scale," Scientists 

worldwide, however, use the Kelvin (K with no degree sign) scale, named after William 

Thomson, 1st Baron Kelvin. 

Kelvin scale starts at absolute zero, the temperature at which there is a total absence of 

heat energy and all molecular motion stops. A temperature of 0 K is equal to minus 459.67 F 

or minus 273.15 C. 

Specific heat 

The amount of heat required to increase the temperature of a certain mass of a substance 

by a certain amount is called specific heat, or specific heat capacity. The conventional unit for 

this is calories per gram per kelvin. The calorie is defined as the amount of heat energy required 

to raise the temperature of 1 gram of water at 4 C by 1 degree. The specific heat of a metal 

depends almost entirely on the number of atoms in the sample, not its mass.  

 



Heat Capacity of gases 

Specific and molar heat capacity of gases 

Specific heat (or heat capacity) of a substance may be defined as the quantity of heat required 

to raise the temperature of 1 g of that substance by . it is expressed in calories or joules. 

Molar heat capacity may be defined as : 

Molar heat capacity = Sp. Heat × Mol. Mass 

Since the gases expand on heating, hence molar heat capacity of gases is termed as follows: 

(i) Molar heat capacity at constant pressure (Cp): it is the amount of heat in calories 

required to raise the temperature of one mole of a gas through  at constant pressure, while 

the volume is allowed to increase. 

(ii) Molar heat capacity at constant volume (Cv): it is the amount of heat in calories required 

to raise the temperature of one mole of a gas through  at constant volume, while the 

pressure is allowed to increase. 

With the help of kinetic gas euation it is calculated that, 

 (for mono atomic gas) 

And Cp – Cv = R 

or,                        

or,                        

CP/CV = (5/2) R / (3/2) R   = 1.66 

It means that ratio of Cp and Cv is equal to 1.66 for mono atomic gases. 

Heat transfer 

Heat can be transferred from one body to another or between a body and the 

environment by three different means: conduction, convection and radiation.  

Conduction is the transfer of energy through a solid material. Conduction between 

bodies occurs when they are in direct contact, and molecules transfer their energy across the 

interface.  

Convection is the transfer of heat to or from a fluid medium. Molecules in a gas or 

liquid in contact with a solid body transmit or absorb heat to or from that body and then move 

away, allowing other molecules to move into place and repeat the process.  

Radiation is the emission of electromagnetic (EM) energy, particularly infrared photons 

that carry heat energy. All matter emits and absorbs some EM radiation, the net amount of 

which determines whether this causes a loss or gain in heat.  

  



Zeroth law of Thermodynamics: 

 When a body ‘A’ is in thermal equilibrium with another body ‘b’, and also separately 

in thermal equilibrium with a body ‘C’, then body ‘B’ and ‘C’ will also be in thermal 

equilibrium with each other. This statement defines the zeroth law of thermodynamics. The 

law is based on temperature measurement. In simple terms, it can be said, “Systems that are in 

thermal equilibrium exist at the same temperature”. 

Concept of heat: 

Heat is energy in transit. We cannot consider work or heat in a body. Work is done by 

or on the body. Heat can flow from or into a body. If a body is at constant temperature it has 

both mechanical and thermal energies. It is not possible to separate them. If flow of heat stops 

heat cannot be considered. It is only used when there is transfer of energy. 

Heat Content or Enthalpy 

When the change of state of a system is brought about at constant pressure, there will 

be a change in volume. The heat transferred such a process is known as heat 

content or enthalpy and is denoted by H. 

It may be defined as: 

H = E + PV 

Where E is an internal energy. P and V are the pressure and volume of the system respectively. 

Heat change at constant pressure may be expressed as: 

 

  

Where,  = Heat of reaction at constant pressure 

 = Change in internal energy 

 = No. of moles of gaseous reactants 

R = Gas constant 

T = Absolute temperature 

If  are the heat of reaction at the temperatures  respectively, then 

 

  

Where =  Molar heat capacity of products — molar heat capacity of reactants at constant 

pressure. Similarly, if  are the change in internal 



 

Where  is the difference in the heat capacities of the products and reactants at constant 

volume. 

These relations of  are known as Kirchhoff’s equations. 

Enthalpy [Heat content] 

Let the change of state of a system be brought about at constant pressure. In such a case, 

there will be a change of volume. Let the volume increase from  at constant pressure 

‘P’. 

Then the work done (w) by the system will be: 

   

Substituting the value of w from equation, we get: 

 

This quantity E + PV is known as Heat content or Enthalpy of the system and is denoted by H. 

Thus, H = E + PV 

Since E, P and V are definite properties, it follows that ‘H’ is also a definite property depending 

upon the state of the system. 

Using the value in equation (3), we get 

 

So, that the increase of the heat content of a system is equal to the heat absorbed at constant 

pressure. Substituting the value of AH for q in equation (3), we get 

       

i.e. The change in heat content or enthalpy at constant pressure is equal to the sum of the 

increase in internal energy and mechanical work of the expansion. 

The equation (4) may also be written as : 

 

Where  = Difference in no. of moles of gaseous products and reactants 

R = gas constant and 

T = Temperature in Kelvin. 



It is clear that if     

Heat change at constant pressure and constant volume 

If the change of state is brought about at constant volume, then no mechanical work is 

done by the system i.e w = 0. Under such conditions, 

dE = q 

i.e. the whole of the heat absorbed by a system at constant volume is utilised to increase the 

internal energy. 

If the change is brought about adiabatically so that system is neither in a position to 

gain nor to lose heat then q = 0. Under such conditions, 

-dE = w 

(Decrease in internal energy in an abiabatic system is equal to the work done by the system). 

Internal Energy of a System 

Each substance is associated with a certain amount of energy which depends on its 

chemical nature, temperature, volume, pressure etc. Thus internal energy of the system is 

simply the sum of all types of energies associated with the substance in the system. It is denoted 

by E or U. 

…… 

Transitional energy 

  Kinetic energy 

 irrational energy 

Nuclear energy 

 Potential energy 

The exact measurement of internal energy is not possible so it is measured in terms of 

Internal energy change. Only change in its value can be measured. i.e.             

It depends only upon Temperature (for Ideal gas) Internal energy E’ is a state function 

hence  does not depend upon path or way of process or it depends upon initial and final 

states only. 

For path I: Internal energy change is  

For path II:  i.e. 

Here  



Internal energy 

 It is an extensive property. 

  is measured by using Bomb Calorimeter as follow 

 

M = molar mass; m = Mass of substance; C = Heat capacity of calorimeter;  = Rise in 

temperature 

If the state of the system is changed by supplying heat Q to the system and if W is the 

work done by the system during the change then increase in the internal energy of the system 

is 

                                       U2 – U1 = Q – W 

First law of thermodynamics 

 When a certain amount of heat Q is supplied to a system which does external work W 

in passing from one state to other, the amount of heat is equal to sum of the increase in the 

internal energy of the system and the external work done by the system. 

    Q = (U2 – U1) + W 

For a very small change δQ = δU + δW 

 This law establishes an exact relation between heat and work, which means that it is 

impossible to get work from any machine without giving it an equivalent amount of energy in 

any form.  

The first law of thermodynamics states that the energy of the universe remains constant, 

though energy can be exchanged between system and surroundings, it can’t be created or 

destroyed.  

 Here no information about how much heat is converted into work and whether the 

transformation itself can takes place or not. The law which specifies the condition of 

transformation is second law. 

First law of thermodynamics (Law of conservation of energy) 

The first law of thermodynamics is simply a statement of the principle of conservation 

of energy. This law was first enunciated by Julius Robert Mayer (1842) and this great concept 

was first explained by Helmholtz in 1847. This law states that: 

‘The energy of an isolated system remains constant, although it may be changed from 

one form to the other’. Or Energy can neither be created nor destroyed but can be converted 

from one form to another form. 

Thus the heat supplied to a system is never lost but is partly converted into internal 

energy and partly in doing work by the system. 

In other words, 



 Heat supplied = Work done by the system + Increase in internal energy 

 Increase in internal energy = Heat supplied – Work done by the system 

This statement can be mathematically represented as: 

dE = q – w 

Where dE is the increase in internal energy in the system, q is the heat supplied and w is the 

work done by system. 

 Explanation:  

Consider a system represented by a state A in the figure. Suppose the conditions are 

now altered so that the system moves to B by the path I and then brought back to the state A 

by a different path II. As a consequence of first law of thermodynamics the total energy 

change at A is nil. 

 

If it is imagined that the energy involved in path I is greater than in the returning path 

II, then certain amount of energy would have increased in the system on its own  accord. This 

is against the first law of thermodynamics and so it must be concluded that the net energy 

change of a system will depend on the initial and final states but not on the path followed. Let 

E A represents the energy in the state A and EB in the state B, the increase in energy on passing 

from A to B may be given by: 

 

which is independent of the path taken. The quantity is called the internal or intrinsic energy. 

When a system changes from one state to another it may lose or gain energy as heat and work. 

Suppose the heat absorbed by a system is Q. If in a change from A to B the energy constant of 

the system is increased by AE, the work done being W, then according to first law: 

 

The above equation is a form of first law of thermodynamics. Thus the difference 

between heat absorbed and the total work done by the system is equal to the increase in the 

energy content. 

For infinitesimal change, the above equation may be put as: 

dE = dQ – dW 

or dE = q – w  



where dE is the small increase in energy and q and w represent small quantities of heat absorbed 

and external work done by the system, respectively. 

If as a result of a series of processes the system returns to its original state then its 

energy content remains unchanged so that  must be zero. In such a case, it is evident that 

work done is equal to heat absorbed in the process. i.e.  

                                            q = w 

This equation is an expression of the impossibility of perpetual motion of the first kind 

i.e. creation of energy out of nothing. This law has following limitations: 

(i)    Why heat cannot be completely converted into work. 

(ii)   It does not explain the spontaneity of the process. 

(iii)   It puts no restriction about direction flow of heat. 

 Points to remember: 

‘q’ is positive : If heat is absorbed by the system. 

‘q’ is negative : If heat is evolved by the system. 

‘w’ is positive:  If work is done on the system. 

‘w’ is negative:  If work is done by the system. 

For adiabatic process, q = 0,  

For isothermal and cyclic processes,  

 For isochoric process,  

 

Second law of thermodynamics 

Kelvin statement: It is impossible to get a continuous supply of work by cooling a body to a 

temperature lower than its surroundings. 

Clausius statement: it is impossible for a self acting machine unaided by any external agency 

to transfer heat from one body to another at a higher temperature. 

 

Entropy and Second law of thermodynamics 

 Entropy is a definite function of the thermal state of a body and is not affected in any 

way by the manner in which a particular state is reached. 

 The change in entropy passing from one state A to Another state B is given by 

  SB-SA = ʃ dQ/T    dQ-heat absorbed/rejected at temp T 

It is noted that entropy remains constant during an adiabatic change, in all reversible 

processes and increases in all irreversible processes.  



It is seen that entropy of the system in final state is greater than initial state. Though 

both the states are identical in energy point of view, entropy of the states is different.  

Thus, entropy characterises the direction of a thermodynamical process. That is all the 

thermodynamical   processes takes place in such a direction that the entropy of the system 

remains constant or increases. 

Second law of thermodynamics also stands for same and therefore it can be stated that 

A natural process that starts in one equilibrium state and ends in another will go in the 

direction that causes the entropy of the system plus environment to increase. 

If the two states are very much closer then,  

                              dS = dQ/T or    dQ = TdS 

Entropy is a measure of disorder: solid, liquid and gas 

Statistical definition of entropy: 

 The equilibrium state is the state of maximum entropy thermodynamically and most 

probable statistically. 

 The disorder of a system may be calculated by the theory of probability and expressed 

by a quantity ω known as thermodynamical probability. 

 The relation between entropy and probability is S = k log ω 

Where k is Boltzmann constant 

For entropy on the other hand, the fact that the heat capacity goes to zero as the 

temperature decreases has important consequences. Consider the change in the entropy of a 

pure substance whose heat capacity approaches some finite limiting value as its temperature 

decreases to absolute zero. For such a substance,  CP/T  becomes arbitrarily large as the 

temperature decreases, and the entropy integral approaches minus infinity as the temperature 

approaches zero. For real substances, this does not occur. In the neighbourhood of absolute 

zero, heat capacities decrease more rapidly than temperature. The entropy change approaches 

zero as the temperature approaches zero. 

The idea that the entropy change for a pure substance goes to zero as the temperature 

goes to zero finds expression as the third law of thermodynamics.  

If the entropy of each element in some crystalline state be taken as zero at the absolute 

zero of temperature, every substance has a positive finite entropy; but at the absolute zero of 

temperature the entropy may become zero, and does so become in the case of perfect crystalline 

substances. 



Implicitly, the Lewis and Randall statement defines the entropy of any substance, at 

any temperature,  T , to be the difference between the entropy of the constituent elements, at 

absolute zero, and the entropy of the substance at temperature  T . Equivalently, we can say 

that it is the entropy change when the substance is formed at temperature  T  from its constituent 

elements at absolute zero. Arbitrarily, but very conveniently, the statement sets the entropy of 

an element to zero at absolute zero. 

The distinction between perfect crystalline substances and less-than-perfect crystalline 

substances lies in the regularity of the arrangement of the molecules within the crystal lattice. 

In any lattice, each molecule of the substance is localized at a specific site in the lattice. In a 

perfect crystal, all of the molecules are in oriented the same way with respect to the lattice. 

Some substances form crystals in which the molecules are not all oriented the same way. This 

can happen when the molecule can fit into a lattice site of the same shape in more than one 

way. 

One important consequence of Botlzmann’s proposal is that a perfectly ordered crystal 

(i.e. one that has only one energetic arrangement in its lowest energy state) will have an entropy 

of 0. This makes entropy qualitatively different than other thermodynamic functions. For 

example, in the case of enthalpy, it is impossible have a zero to the scale without setting an 

arbitrary reference (which is that the enthalpy of formation of elements in their standard states 

is zero.) But entropy has a natural zero! It is the state at which a system has perfect order. This 

also has another important consequence, in that it suggests that there must also be a zero to the 

temperature scale. These consequences are summed up in the Third Law of 

Thermodynamics. The entropy of a perfectly ordered crystal at 0 K is zero. An entropy value 

determined in this manner is called a Third Law Entropy. 

Naturally, the heat capacity will have some temperature dependence. It will also change 

abruptly if the substance undergoes a phase change. Unfortunately, it is exceedingly difficult 

to measure heat capacities very near zero K. Fortunately, many substances follow the Debye 

Extrapolation in that at very low temperatures, their heat capacities are proportional to T3. 

Using this assumption, we have a temperature dependence model that allows us to extrapolate 

absolute zero based on the heat capacity measured at as low a temperature as can be found. 

Physical significance of Entropy 

The entropy of a substance is real physical quantity and is a definite function of the state of the 

body like pressure, temperature, volume of internal energy. 



It is difficult to form a tangible conception of this quantity because it can not be felt like 

temperature or pressure. We can, however, readily infer it from the following aspects: 

 1. Entropy and unavailable energy 

The second law of thermodynamics tells us that whole amount of internal energy of any 

substance is not convertible into useful work. A portion of this energy which is used for doing 

useful work is called available energy. The remaining part of the energy which cannot be 

converted into useful work is called unavailable energy. Entropy is a measure of this 

unavailable energy. In fact, the entropy may be regarded as the unavailable energy per unit 

temperature. 

 

  

or,           

The concept of entropy is of great -value and it provides the information regarding structural 

changes accompanying a given process. 

2.  Entropy and disorder 

Entropy is a measure of the disorder or randomness in the system. When a gas expands into 

vacuum, water flows out of a reservoir, spontaneous chain reaction takes place, an increase in 

the disorder occurs and therefore entropy increases. 

Similarly, when a substance is heated or cooled there is also a change in entropy. Thus increase 

in entropy implies a transition from on ordered to a less ordered state of affair. 

 3. Entropy and probability 

Why is disorder favoured? This can be answered by considering an example, when a 

single coin is flipped, there is an equal chance that head or tail will show up. When two coins 

are flipped, there is a chance of two heads or two tails showing up but there are double chance 

of occurrence of one head and one tail. This shows that disorder is more frequent than order.  

Changes in order are expressed quantitatively in terms of entropy change, . How 

are entropy and order in the system related? Since a disordered state is more probable for 



systems than of order(see figure), the entropy and thermodynamic probabilities are closely 

related. 

 

Features of entropy: 

 (1)    It is an extensive properly and a state function 

(2)    It’s value depends upon mass of substance present in the system 

(3)     

(4)    At equilibrium  

(5)    For a cyclic process  

(6)    For natural process  i.e Increasing. 

(7)    For a adiabatic process  zero 

 

Nernst’s Heat Theorem  

At the beginning of the twentieth century, Walther Nernst investigated heat capacities 

and heats of reaction at progressively lower temperatures. As a result of his studies, he 

enunciated an important principle that initially was restricted to the behaviour of reactions 

involving solids and liquids but which is now believed to apply to all processes and substances.  

If any reaction takes place at constant pressure, the heat gained or lost is an increase or 

decrease in enthalpy H. The heat of reaction is usually given as ∆H, being positive for an 

endothermic reaction (in which the system gains heat) and negative for an exothermic reaction. 

It should be noted that spontaneous reactions are by no means always exothermic; some 

spontaneous reactions result in the absorption of heat from their surroundings and in a 

corresponding increase of enthalpy.  



Nernst had noticed that, at progressively lower temperatures, the change in enthalpy 

and the change in the Gibbs function during a chemical reaction become more and more equal 

and the rate of change of the Gibbs function with temperature becomes less and less as the 

temperature is lowered. That this amounts to the same thing is evident from the Gibbs-

Helmholtz relation. 

                                            ΔH = ΔG – T( 𝜕 (ΔG)/ ∂T)P 

Nernst proposed was that, in the limit, as the temperature approaches zero, the changes 

in the enthalpy and Gibbs function are equal – or, what amounts to the same thing, the 

temperature rate of change of the Gibbs function at constant pressure approaches zero at zero 

temperature. And since 

                                                  (∂ (ΔG)/ ∂T)P = -ΔS 

this implies that chemical reactions at a temperature of absolute zero take place with no 

change of entropy. This is Nernst’s Heat Theorem. 

Planck later extended this to suppose that, not only does ∆G →∆H, but that, as , T → 0 

the enthalpy and the Gibbs function of the system approach each other asymptotically in such 

a manner that, in the limit, as T→ 0, G→H  and (∂G / ∂T)P →0. 

Thermodynamic Potentials (Chemical Potential ) 

It is a truth universally acknowledged that, if we add some heat reversibly to a closed 

thermodynamic system at constant volume, its internal energy will increase by (∂U/∂S)V dS or, 

if we allow it to expand without adding heat, its internal energy will increase by (∂U/∂V)S dV. 

(In most cases the derivative (∂U/∂V)S is negative, so that an increase in volume results in a 

decrease of internal energy.) If we do both, the increase in internal energy will  

                       dU = (∂U/∂S)V dS + (∂U/∂V)S dV 

By application of the first and second laws of thermodynamics, we find that this can be written  

                                   dU = TdS − PdV. 

Likewise, it is a truism that, if we add some heat reversibly to a closed thermodynamic system 

at constant pressure, its enthalpy will increase by (∂H/∂S)P dS or, if we increase the pressure 

on it without adding heat, its enthalpy will increase by (∂H/∂P)S dP If we do both, the increase 

in internal energy will be 



                                   dH = (∂H/∂S)P dS + (∂H/∂P)S dP 

By application of the first and second laws of thermodynamics, we find that this can be 

written 

 .                                 dH = TdS + VdP 

Likewise, it is a truism that, if we increase the temperature of a closed thermodynamic system 

at constant volume, its Helmholtz function will increase by (∂A/∂T)V dT or, if we allow it to 

expand at constant temperature, its Helmholtz function will increase by (∂A/∂V)T dV (In most 

cases both of the derivatives are negative, so that an increase in temperature at constant volume, 

or of volume at constant temperature, results in a decrease in the Helmholtz function.) If we do 

both, the increase in the Helmholtz function will be 

                                     dA = (∂A/∂T)V dT + (∂A/∂V)T dV 

By application of the first and second laws of thermodynamics, we find that this can be written 

.                                    dA = − SdT – PdV 

Likewise, it is a truism that, if we increase the temperature of a closed thermodynamic system 

at constant pressure, its Gibbs function will increase by (∂G/∂T)P dT (In most cases the 

derivative (∂G/∂T)P is negative, so that an increase in temperature at constant pressure results 

in a decrease in the Gibbs function.) If we increase the pressure on it at constant 8 temperature, 

its Gibbs function will increase by (∂G/∂P)T dP If we do both, the increase in Gibbs function 

will be 

                                     dG = (∂G/∂T)P dT + (∂G/∂P)T dP 

By application of the first and second laws of thermodynamics, we find that this can be written 

.                                   dG = − SdT + VdP 

However, we can increase any of these thermodynamical functions of a system without adding 

any heat to it or doing any work on it – merely by adding more matter. consider a system 

consisting of several components. Suppose that we add dNi moles of component i to the system 

at constant temperature and pressure, by how much would the Gibbs function of the system 

increase? We might at first make the obvious reply: “dNi times the molar Gibbs function of 

component i”. This might be true if the component were entirely inert and did not interact in 

any way with the other components in the system. But it is possible that the added component 

might well interact with other components. It might, for example, shift the equilibrium position 



of a reversible reaction A + B ↔ C + D. The best we can do, then, is to say merely that the 

increase in the (total) Gibbs function of the system would be (∂G/∂Ni)T, P, Nj dNi. Here, Nj refers 

to the number of moles of any component other than i.  

In a similar manner, if dNi moles of component were added at constant volume without 

adding any heat, the increase in the internal energy of the system would be be (∂U/∂Ni)V, S, Nj 

dNi. Or if dNi moles of component were added at constant pressure without adding any heat, 

the increase in the enthalpy of the system would be  be (∂H/∂Ni)P, S, Nj dNi Or if dNi moles of 

component were added at constant temperature and volume, the increase in the Helmholtz 

function of the system would be (∂A/∂Ni)T, V, Nj dNi. If we added a little bit more of all 

components at constant temperature and volume, the increase in the Helmholtz function would 

be ∑(∂A/∂Ni)T, V, Nj dNi, where the sum is over all components. Thus, if the system is not 

closed, and we have the possibility of adding or subtracting portions of one or more of the 

components, the formulas for the increases in the thermodynamic functions become 

dU = (∂U/∂S)V dS + (∂U/∂V)S dV + ∑(∂U/∂Ni)V, S, Nj dNi 

dH = (∂H/∂S)P dS + (∂H/∂P)S dP + ∑(∂H/∂Ni)S, P, Nj dNi 

dA = (∂A/∂T)V dT + (∂A/∂V)T dV +  ∑(∂A/∂Ni)T, V, Nj dNi 

dG = (∂G/∂T)P dT + (∂G/∂P)T dP + ∑(∂G/∂Ni)T, P, Nj dNi 

The quantity (∂U/∂Ni)V, S, Nj is same as (∂H/∂Ni)S, P, Nj or as (∂A/∂Ni)T, V, Nj or as (∂G/∂Ni)T, P, Nj 

and it is called the chemical potential of species i, and is usually given the symbol µi . Its SI 

units are J kmole−1 . If we make use of the symbol µi , and the other things and from application 

of the first and second laws,  

          dU = TdS − PdV + ∑µidNi 

          dH = TdS + VdP + ∑µidNi  

          dA = − SdT − PdV + ∑µidNi 

and . dG = − SdT + VdP + ∑µidNi 

It will be clear that 

(∂U/∂S)V, Ni  = T;              (∂U/∂V)S, Ni  = -P;           (∂U/∂Ni)V, S, Ni  = µi       

(∂H/∂S)P, Ni  = T;              (∂H/∂P)S, Ni  = V;             (∂H/∂ Ni)P, S, Ni  = µi       



(∂A/∂T)V, N i = -S;             (∂A/∂V)T, Ni  = -P;           (∂A/∂Ni)V, T, Ni  = µi      

(∂G/∂T)P, Ni  = -S;              (∂G/∂P)T, Ni  = V;             (∂G/∂ Ni)P, T, Ni  = µi       

Since the four thermodynamical functions are functions of state, their differentials are exact 

and their mixed second partial derivatives are equal. Consequently we have the following 

Maxwell relations: 

                                   (∂T/∂V)S, Ni  =   - (∂P/∂S)V, N i 

                                   (∂T/∂P)S, Ni  =    + (∂V/∂S)P, N i 

                                   (∂S/∂V)T, Ni  =   + (∂P/∂T)V, N i 

                                   (∂S/∂P)T, Ni  =   - (∂V/∂T)P, N i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

UNIT II 

KINETIC THEORY  

 

 

 

 

 

 

 

 

 

 

 



MAXWELL-BOLTZMANN DISTRIBUTION 

The distribution of molecular velocities in a gas, established first by Maxwell and later 

proved rigorously by Boltzmann, is given by a function F and is today known as the Maxwell-

Boltzmann velocity distribution function. Since this probability function depends upon the 

specified velocity u, F = F(u) and is defined such that F(u) dudvdw gives the probability that a 

molecule selected at random will, at any instant, have a velocity u with Cartesian components 

in the ranges u to u + du, v to v + dv, and w to w + dw. 

The Maxwell-Boltzmann velocity distribution function refers specifically to a gas 

which is at rest (in the sense that no macroscopic flow exists) and in a state of thermodynamic 

equilibrium. Subject to these assumptions, the distribution law states that 

 

where m is the mass of one molecule, k is Boltzmann's constant, and c = |u| is the speed of the 

molecule. Note that F is given as the product f(u)f(v)f(w) and that the velocity components in 

different directions are therefore uncorrelated. In other words, the probability of the molecule 

possessing a specified velocity u in the x direction is not influenced by the values of v and w 

for that or any other molecule. The function f is thus a velocity distribution function for motion 

in a specified direction, and is given by 

 

where q represents one of (u,v,w). 

The distribution function Fc(c) for molecular speed, irrespective of direction, is easily 

found by: 

 

Various 'average' molecular speeds may be obtained easily from the distribution 

function Fc as follows: 

The most probable speed (maximum Fc): ĉ = (2kT/m)1/2 

The mean speed: 
 c  =  = (8kT/πm)1/2 

The root-mean-square speed: 
 = (  )1/2 = (3kT/m)1/2 

 

The Maxwell-Boltzmann equation, which forms the basis of the kinetic theory of gases, 

defines the distribution of speeds for a gas at a certain temperature. From this distribution 



function, the most probable speed, the average speed, and the root-mean-square speed can be 

derived. 

The kinetic molecular theory is used to determine the motion of a molecule of an ideal 

gas under a certain set of conditions. However, when looking at a mole of ideal gas, it is 

impossible to measure the velocity of each molecule at every instant of time. Therefore, the 

Maxwell-Boltzmann distribution is used to determine how many molecules are moving 

between velocities v and v + dv. Assuming that the one-dimensional distributions are 

independent of one another, that the velocity in the y and z directions does not affect 

the x velocity, for example, the Maxwell-Boltzmann distribution is given by 

dN/N=(m/2πkBT)1/2e−mv2/2kBTdv 

where 

 dN/N is the fraction of molecules moving at velocity v to v + dv, 

 m is the mass of the molecule, 

 kb is the Boltzmann constant, and 

 T is the absolute temperature.1 

Additionally, the function can be written in terms of the scalar quantity speed c instead of the 

vector quantity velocity. This form of the function defines the distribution of the gas molecules 

moving at different speeds, between c1c1 and c2c2, thus 

f(c)=4πc2(m/2πkBT)3/2e−mc2/2kBT 

Finally, the Maxwell-Boltzmann distribution can be used to determine the distribution of the 

kinetic energy of for a set of molecules. The distribution of the kinetic energy is identical to 

the distribution of the speeds for a certain gas at any temperature.2 

 

BOLTZMANN'S TRANSPORT EQUATION 

With ``Kinetic Theory of Gases'', Boltzmann undertook to explain the properties of 

dilute gases by analysing the elementary collision processes between pairs of molecules. 

The evolution of the distribution density in mu  space, , is described 

by Boltzmann's transport equation. A thorough treatment of this beautiful achievement is 

beyond the scope of our discussion. But we may sketch the basic ideas used in its derivation. 

If there were no collisions at all, the swarm of particles in mu space would flow according to 

 

(1) 

where  denotes an eventual external force acting on particles at point . The time 

derivative of  is therefore, in the collisionless case, 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/States_of_Matter/Properties_of_Gases/Gas_Laws/The_Ideal_Gas_Law


 

(2) 

Where  

 

(3) 

 

and 

 

(4) 

 

 

To gather the meaning of equation 2 for free flow, consider the collisionless, free flow 

of gas particles through a thin pipe: there is no force (i. e. no change of velocities), and mu-

space has only two dimensions, x and vx  

At time  a differential ``volume element'' at (x,vx) contains, on the 

average,  particles. The temporal change of f(x,vx)is then given by 

 

(5) 

To see this, count the particles entering during the time span  from the left (assuming 

,  and those leaving towards the right, . The 

local change per unit time is then 
  

 

(6) 

  
 

 

(7) 

      
 

  
 

 

(8) 

      
 

  
 

 

(9) 



The relation  is then easily generalized to the case of a non-vanishing force, 

 

(10) 

  

All this is for collisionless flow only. 

In order to account for collisions a term  is added on the right hand side: 

 

(11) 

The essential step then is to find an explicit expression for . Boltzmann solved this 

problem under the simplifying assumptions that 

- only binary collisions need be considered (dilute gas); 

- the influence of container walls may be neglected; 

- the influence of the external force  (if any) on the rate of collisions is negligible;  

- velocity and position of a molecule are uncorrelated (assumption of molecular chaos). 

The effect of the binary collisions is expressed in terms of a ``differential scattering cross 

section''  which describes the probability density for a certain change of velocities, 

 

(12) 

 

 

(  thus denotes the relative orientation of the vectors  and ). The 

function  depends on the intermolecular potential and may be either calculated or 

measured. 

Under all these assumptions, and by a linear expansion of the left hand side of 

equ. 2.1 with respect to time, the Boltzmann equation takes on the following form: 

 

(13) 

where ,  etc. This integrodifferential equation describes, under the 

given assumptions, the spatio-temporal behaviour of a dilute gas. Given some initial 

density  in mu-space the solution function  tells us how this density 

changes over time. Since  has up to six arguments it is difficult to visualize; but there are 

https://homepage.univie.ac.at/franz.vesely/sp_english/sp/node7.html#EQBMG1


certain moments of  which represent measurable averages such as the local particle density 

in 3D space, whose temporal change can thus be computed. 

Chapman and Enskog developed a general procedure for the approximate solution of 

Boltzmann's equation. For certain simple model systems such as hard spheres their method 

produces predictions for  (or its moments) which may be tested in computer 

simulations. Another more modern approach to the numerical solution of the transport equation 

is the ``Lattice Boltzmann'' method in which the continuous variables  and  are restricted to 

a set of discrete values; the time change of these values is then described by a modified 

transport equation which lends itself to fast computation. 

The initial distribution density  may be of arbitrary shape. To consider a simple 

example, we may have all molecules assembled in the left half of a container - think of a 

removable shutter - and at time  make the rest of the volume accessible to the gas particles:  

 

(14) 

where  is the (Maxwell-Boltzmann) distribution density of particle velocities, 

and  denotes the Heaviside function. The subsequent expansion of the gas into the 

entire accessible volume, and thus the approach to the stationary final state (= equilibrium state) 

in which the particles are evenly distributed over the volume may be seen in the 

solution  of Boltzmann's equation. Thus the greatest importance of this equation is its 

ability to describe also non-equilibrium processes. 

  The Equilibrium distribution  is that solution of Boltzmann's equation which 

is stationary, meaning that 

 

(15) 

 

It is also the limiting distribution for long times, . 

It may be shown that this equilibrium distribution is given by 

 

(16) 

where  and  are the local density and temperature, respectively. 

 

 

 



Kinetic theory of gases 

D. Bernaulli (1738) forwarded this theory which was developed by Clausius, Maxwell, 

Boltzmann, Kelvin etc. 

The following are the main postulates of kinetic theory of gases: 

(i)    Every gas consists of very large number of minute (tiny) particles called molecules. The 

actual volume of these molecules is negligible as compared to the total volume of the gas. 

(ii)    The molecules of a gas are not stationary but are always in a state of rapid random motion 

in all possible directions with widely differing velocities. They travel in straight lines, but on 

collision with another molecule or with the sides of the containing vessel, direction of motion 

is changed. 

(iii)    The molecules are spherical and perfectly elastic and therefore exert no appreciable 

attraction on each other. Hence there is no loss of kinetic energy on collision or mutual friction. 

(iv)   The pressure exerted by a gas is due to the bombardment of the moving molecules on the 

walls of the containing vessel. 

(v)    The motion imparted to the molecules by gravity is negligible in comparison to the effect 

of the continued collisions between them. 

(vi)   The kinetic energy of a perfect gas depends on the temperature and not on the nature of 

the gas. 

MEAN FREE PATH (How Far, How Fast, How Long) 

The mean free path λ of a gas molecule is its average path length between collisions 

Mathematically the mean free path can be represented as follows: 

λ=12√πd2NV 

   Let us look at the motion of a gas molecule inside an ideal gas, a typical molecule inside 

an ideal gas will abruptly change its direction and speed as it collides elastically with other 

molecules of the same gas. Though between the collisions the molecule will move in a straight 

line at some constant speed, this is applicable for all the molecules in the gas. 

It is difficult to measure or describe this random motion of gas molecules thus we 

attempt to measure its mean free path λ. 



      As its name says λ is the average distance travelled by any molecule between collisions, 

we expect λ to vary inversely with N/V, which is the number of molecules per  unit volume or 

the density of molecules because if there are more molecules more are the chances of them 

colliding with each other hence reducing the mean free path, and also λ would be inversely 

proportional to the diameter d of the molecules, because if the molecules were point masses 

then they would never collide with each other, thus larger the molecule smaller the mean free 

path, and it should be proportional to π Times Square of the diameter and not the diameter itself 

because we consider the circular cross-section and not the diameter itself. 

 

Derivation of Mean Free Path 

Let’s assume that the molecule is spherical, and the collision occurs when one molecule 

hits the other, and only the molecule we are going to study will be in motion and rest molecules 

will be stationary. 

Let’s consider our single-molecule to have a diameter of d and all the other molecules to 

be points this does not change our criteria for collision, as our single-molecule moves through 

the gas, it sweeps out a short cylinder of cross-section area πd2 between successive collisions, 

for a small-time t it will move a distance of vt where v is the velocity of the molecule, now if 

we sweep this cylinder we will get a volume of πd2*vt so the number of point molecules inside 

this volume will give us the number of collisions the molecule might have, 

Since N/V is the number of molecules per unit volume, the number of molecule in the 

cylinder will be N/V multiplied by the volume of cylinder i.e.πd2vt, the mean free path can be 

derived as follows, 

λ = length of path during the time tnumber of collision in time r ≈ vtπd2vtNV = 1πd2NV 

The equation is approximated the equation is because we have assumed that all the 

particles are stationary with respect to the particle we are studying, in fact, all the molecules 

are moving relative to each other, two velocities have been cancelled in the above equation but 

actually the v in the numerator is the average velocity and v In the denominator is relative 

velocity hence they both differ from each other with a factor 2–√ therefore the final equation 

would be, 

λ = 12√πd2NV 

https://byjus.com/physics/average-velocity/


Following are the mean free path factors: 

 Density 

 Radius of molecule 

 Number of molecules 

 Temperature, pressure, etc. 

 

The mean free path or average distance between collisions for a gas molecule may be estimated 

from kinetic theory. If the molecules have diameter d, then the effective cross-section for 

collision can be modeled by 

 

using a circle of diameter 2d to represent a molecule's effective collision area while treating 

the "target" molecules as point masses. In time t, the circle would sweep out the volume shown 

and the number of collisions can be estimated from the number of gas molecules that were in 

that volume. 

 

The mean free path could then be taken as the length of the path divided by the number of 

collisions.  

https://byjus.com/physics/mean-free-path-factors/
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/kinthe.html#c1


The problem with this expression is that the average molecular velocity is used, but the 

target molecules are also moving. The frequency of collisions depends upon the 

average relative velocity of the randomly moving molecules. 

The intuitive development of the mean free path expression suffers from a significant 

flaw - it assumes that the "target" molecules are at rest when in fact they have a high average 

velocity. What is needed is the average relative velocity, and the calculation of that velocity 

from the molecular speed distribution yields the result 

 

which revises the expression for the effective volume swept out in time t 

 

The resulting mean free path is 

 

The number of molecules per unit volume can be determined from Avogadro's 

number and the ideal gas law, leading to 

 

It should be noted that this expression for the mean free path of molecules treats them 

as hard spheres, whereas real molecules are not. For noble gases, the collisions are probably 

close to being perfectly elastic, so the hard sphere approximation is probably a good one. But 

real molecules may have a dipole moment and have significant electrical interaction as they 

approach each other. This has been approached by using an electrical potential for the 

molecules to refine the calculation, and also by using the measured viscosity of the gas as a 

parameter to refine the estimate of the mean free path of molecules in real gases. 

http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/menfre.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/menfre.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/kintem.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/kintem.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/kintem.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/idegas.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/idegas.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/idegas.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/elacol.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/dipole.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/visgas.html#c1


Transport phenomena   

The molecule of a gas possesses momentum energy and mass which it carries as it 

moves about in the gas. The molecule of the gas also serve as carriers or transporters of 

momentum, energy or mass from one region to another through a series of successive 

collisions.  

In a steady state or equilibriuin state of a gas, the transport of velocity, kinetic energy 

or molecular concentration in one direction is just balanced by an equal transport of the same 

quantity in the reverse direction and thus there is no net transport in any direction. But in non-

equilibrium or disturbed state of a gas, there may be an excess of any one of these quantities in 

one region and a deficit in another. Molecules therefore may transport the quantity concerned 

from the former to the latter region to restore the equilibrium.  

Viscosity  

The different parts of the gas may have different velocities. This will result in the 

relative motion of the different layers of the gas with respect to one another. In such a case the 

layers moving faster will impart momentum to the layers moving slower to bring about an 

equilibrium state. This gives rise to the phenomenon of viscosity.  

Conduction  

The temperature of the gas may be different in different regions of the gas. In such cases 

the molecules of the gas will carry kinetic energy from regions of higher temperature to the 

regions of lower temperature to bring about equilibrium state. This gives rise to the 

phenomenon of conduction.  

Diffusion  

The different parts of the gas may have different molecular concentrations. That The 

moi is, the number of molecules per unit volume is different at different parts. In such case the 

molecule from higher concentration to regions of lower concentration to bring about 

equilibrium state. This will give rise to the phenomenon of diffusion. 

In a gas the transport of momentum, thermal energy and mass from one region -to another 

region gives rise to the phenomenon of viscosity, thermal conduction and diffusion respectively 

which are known as transport phenomena.  



Viscosity of gases-Transport of momentum  

The different layers of gas in non-equilibrium condition may have different velocities. 

This will result in the relative motion of the different layers with respect to one another. In such 

a case the layer moving faster will impart momentum to the layer moving slower to bring about 

an equilibrium state. Thus the transport of momentum gives rise to the phenomenon of 

viscosity.  

Let A, B and C be layers of a gas parallel to the plane OXPY at rest, A, be the distance between 

the layers and let there be a velocity gradient dv/dz in the Z-direction. 

 

Let the drift velocity of B = v  

The drift velocity of A = v + λ dv/dz  

The dfift velocity of C = v – λ dv/dz 

The momentum of a molecule in A due to the drift velocity = m (v + λ dv/dz) 

The momentum of a molecule in B due to the drift velocity = m (v - λ dv/dz) 

The molecules existing in B at any instant can be considered to have come from A or C where 

they have suffered a previous collision. Thus a change in momentum takes place in B due to 

the arrival of these molecules. The change in momentum in B due to a molecule arriving from 

A and another from C  

m(v + λ dv/dz) -m( v + λ dv/dz) = 2mλ dv/dz 

If 'n' be the number of molecules per unit volume of the gas with 'c' as mean velocity of each 

molecule, then out of 'nc' number of molecules, only nc/3 will on an average move along the 

Z-direction, half of them upward and half downward.  

Thus the change in momentum on unit area of B in one second due to nc/6 molecules '  



coming from A and nc/6 molecules from C = (nc/6) 2m λ dv/dz = (mnc/3) λ dv/dz 

This is the viscous drag (F) on unit area of B when the velocity gradient is dv/dZ.  

F = ηAdv/dz  

Since A =1 m2 and η is the coefficient of viscosity of the gas we can write,  

ηAdv/dz = (mnc/3) λ dv/dz 

The coefficient of viscosity η of the gas being the viscous drag on unit area per unit velocity 

gradient,  

                           η = mnc λ/3 = ρc λ/3 

where mn = p the density of the gas.  

The density p is directly proportional to the pressure and the mean free path λ is 

inversely proportional to the pressure of a gas. Thus ρλ is a constant for a gas at constant 

temperature. Moreover the average molecular speed 'c' is independent of pressure. Hence the 

coefficient of viscosity of a gas is independent of pressure.  

The density ' p' of the gas decreases with increase in temperature but 'λ ' the mean free 

path increases in the same proportion so that ' pλ. ' remains constant. Since the average 

molecular speed 'c' is proportional to the square root of absolute temperature, the coefficient of 

viscosity must be directly proportional to the square root of the absolute temperature of the gas. 

This result was first predicted by Maxwell from theoretical consideration.  

Thermal conductivity-Transport of thermal energy  

The different layers of gas in non-equilibrium condition may have different 

temperatures. The molecules in these layers have different energies. The molecules will carry 

the kinetic energy (heat) from regions of higher temperature to the region of lower temperature 

to bring about an equilibrium state. Thus the transport of thermal energy gives rise to the  

phenomenon of thermal conductivity.  

Let A, B and C be layers of a gas parallel to the plane OXPY, λ, be the distance between 

the layers and let there be a temperature gradient dϴ /dz in the Z-direction.  



 

Let the temperatures of the layer B be ϴ.  

The temperature of the layer A which is at a distance of λ above layer B be ϴ + λ(dϴ /dz) 

The temperature of the layer C which is at a distance of A below layer B is ϴ- λ(dϴ /dz) 

Considering unit area of B, the number of molecules reaching this area in one second 

either from A or C = nc/6 where 'n' is the number of molecules per unit volume and 'c' is the 

average velocity of the molecule. If 'm' is the mass of each gas molecule, then the mass of gas 

crossing unit area of layer B above or below per second = mnc/6. 

If CV is the specific heat of the gas at constant volume then, heat energy carried by the 

molecules in crossing unit area of the layer B in the downward direction per second  

= mass x specific heat x temperature = (mnc/6) CV (ϴ+λ(dϴ /dz)  

Similarly, heat energy carried by the molecules crossing in unit area of the layer B in the 

upward direction per second is (mnc/6) CV (ϴ-λ(dϴ /dz)  

Therefore the net transfer of energy per unit area of layer B per second  

Q = (mnc/6) CV (ϴ+λ(dϴ /dz) - (mnc/6) CV (ϴ-λ(dϴ /dz)  

    = (mnc/6) CV 2λ(dϴ /dz) = (mnc/3) CV λ(dϴ /dz) 

Since mn = p the density of the gas, we have Q = (ρc/3) CV λ(dϴ /dz)  ……(1) 

The coefficient of thermal conductivity K of the gas is defined as the quantity of heat that flows 

per unit area per unit temperature gradient.  

Q = K (dϴ /dz)   ……(2)   

Comparing the two equations (1) and (2) we have  

K (dϴ /dz)   =  (ρc/3) CV λ(dϴ /dz)  



K = (ρc/3) CV λ 

The density ρ of the gas decreases with increase in temperature but ' λ ' the mean free 

path increases in the same proportion so that ' pX, ! remains 6onstant. Since the average 

molecular speed 'c' is proportional to the square root of absolute temperature, the coefficient of 

thermal conductivity is directly proportional to the absolute temperature of the material. In 

other words, the coefficient of thermal conductivity increases with increase in the temperature.  

Diffusion-Transport of mass  

The phenomenon of diffusion is due to the transport of mass from a region of higher 

concentration to the region of lower concentration to bring about equilibrium. Let A, Band C 

be layers of a gas parallel to the plane OXPY, λ be the distance between the layers and let there 

be a concentration gradient dn/dz in the Z-direction.  

 

Let the concentration of the layer B be n. The concentration of the layer A which is at 

a distance of λ  above layer B be n + λ dn/dz. The concentration of the layer C which is at a 

distance of 2, below layer B is n- λ dn/dz. The number of molecules coming from layer A and 

crossing B downward per unit area per second  

= (1/6) c (n+(λ dn/dz.)) 

The number of molecules coming from layer C and crossing B upward per unit area per second  

= (1/6) c (n-(λ dn/dz.)) 

Therefore the net number of molecules crossing per unit area per second of layer B  

= (1/6) c (n+(λ dn/dz.)) - = (1/6) c (n-(λ dn/dz.)) = (1/3) c(λ dn/dz) 

The coefficient of diffusion is defined as the ratio of the number of molecules crossing per unit 

area in one second per unit concentration gradient.  

Coefficient of diffusion  D = (1/3) c(λ dn/dz) /(dnldz) = (1/3) cλ 
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STATISTICAL PHYSICS  

It is impossible to solve the problem of a macroscopic body which consists of a very 

large number of individual particles by the use of ordinary laws of mechanics. Such problems 

have been successfully solved by the method of statistical mechanics. Statistical mechanics is 

the branch of science which establishes the interpretation of the macroscopic behaviour of a 

system in terms of its microscopics properties. The quantities, temperature and pressure refer 

to the macroscopic or bulk state of a gas and can be measured by ordinary apparatus. On the 

other hand, the position and velocity of individual molecules in the gas belong to the 

microscopic state and a complete knowledge of the continually changing motion of the 

molecules is not known. Statistical mechanics correlates these two states and thereby 

conclusions are drawn.  

The statistical methods applied by Maxwell, Boltzmann, Gibbs, etc., are known as 

classical statistics or Maxwell - Boltzmann statistics. The classical statistics explained 

successfully many observed physical phenomena like temperature, pressure, energy, etc. But, 

it could not explain several other experimentally observed phenomena like black - body 

radiation, specific heat at low temperature etc. For explaining such phenomena Bose, Einstein, 

Fermi and Dirac made a new approach using new quantum idea of discrete exchange of energy 

between the systems. The new statistics, known as quantum statistics, is subdivided into two 

types.  

(i) Bose - Einstein statistics (ii) Fermi - Dirac statistics 

The first one holds good for photons while the other for elementary particles such as electrons. 

The classical statistics is only the limiting case of quantum statistics.  

PRINCIPLE OF STATISTICAL MECHANICS  

Statistical mechanics combines the laws of probability and dynamic principle to predict 

the properties of physical systems that are macroscopic in nature, i.e., the distribution of 

velocities among the molecules of an ideal gas, distribution of energy with wavelength in the 

case of electromagnetic radiation of energy among the free electrons of a conducting material. 

Many other thermodyamic properties and functions have been evaluated.  

 

PHASE SPACE  



In the theory of mechanics, the motion of a dynamical system is specified by three space 

coordinates x, y, z and three momentum coordinates Px., Py, Pz.. There are now six dimensional 

space in which the co-ordinates are x, y, z, Px., Py, Pz.. This six dimensional space for a single 

molecule is called phase space or mu-space. The instantaneous state of a particle in the phase 

space is represented by a point known as phase point or representative point. The concept of 

phase space is very useful while dealing with dynamical systems. The volume element dx dy 

dz dPxdPydPz, in six dimensional space is called a cell. The phase space can be divided into a 

large number of cells.  

In classical physics, the volume of the cell can be made as small as possible and it can 

even approach zero. However, in quantum statistics the volume of the phase cell is determined 

using Heisenberg's uncertainty principle, Δx ΔP≥ h  

Volume of the phase cell = Δx Δy Δz ΔPx ΔPy ΔPz; = h3 where h is Planck's constant. 

It is now possible to study the distribution of particles of a dynamical system among the 

compartments and 'cells in the phase space. 

ENSEMBLES  

An ensemble is defined as collection of large number of identical but essentially 

independent systems. For example, a gas containing a large number of molecules may be 

assumed to be an ensemble with each of its gas molecules forming a system. The temperature, 

energy, etc., are considered as the average property of the constitutent molecules. Statistical 

mechanics is used to discuss this type of a average property of the ensemble.  

The ensemble is divided into three types:  

(1) Microcanoical ensemble (2) Canonical ensemble (3) Grand - canonical ensemble  

The ensemble in which system has the same fixed energy and also the same number of particles 

is called a microcanonical ensemble. The ensemble which describes those system which are 

not isolated but are in thermal contact with a heat reservoir is called a canonical ensemble.  

The ensemble which allows the sub system to exchange energy as well as the number of 

particles with the reservior is called a grand - canonical ensemble. 

Microcanonical ensemble 

The microcanonical ensemble is collection of essentially independent systems having 

the same energy E, volume V and number of particles N. For simplicity, it is assumed that all 



the particles are identical. The individual systems of a microcanonical ensemble are separated 

by rigid, impermeable and well insulated walls such that the values of E, V and N for a 

particular system are not affected at all by the presence of other system. 

 

Consider a closed system for which the total energy remains constant. The locus of all 

such phase points having equal energies in phase space is called an Energy Surface or ergodic 

surface. A family of such energy spaces surfaces can be drawn in phase space. Consider any 

two such energy surfaces with energies very close to each other. Each energy Surface divides 

the phase space into two parts one on higher and other of lower energy and hence they will 

never intersect with each other. As they enclose same phase volume in between them, a certain 

number of phase points are included. The number of phase points between them will be a 

constant.  According to Gibbs, a very useful and ensemble can be obtained by taking energy 

density constant in a narrow selected energy ranges and vanishes outside. 

Canonical ensemble 

The Canonical ensemble is a collection of essentially independent systems having the 

same temperature T, volume V and number of identical particles N. This is achieved by 

bringing all the systems in thermal contact with the large heat reservoir at constant temperature 

T or by simply bringing all of the systems in thermal contact with each other. 

 

 Figure represents symbolically a Canonical ensemble. The individual systems of the 

Canonical ensemble are separated by rigid, impermeable but diathermic walls.  As the 



separating walls are conducting, heat can be exchanged between the systems till they reach a 

common temperature. Thus, in Canonical ensemble, systems can exchange energy but not the 

matter. 

Grand Canonical ensemble  

In going from microcanonical ensemble to Canonical ensemble, the condition of 

constant energy has been relaxed. This simplifies the calculation in thermodynamics, where 

the exchange of energy takes place. Now the next logical step is to abandon the condition of 

same number of particles. Actually, in chemical process, this number N varies in various 

physical phenomena problems. Thus, the Grand Canonical ensemble is collection of large 

number of essentially independent systems having same temperature T, volume V and chemical 

potential μ. The individual systems of the Grand Canonical ensemble are separated by rigid 

permeable and conducting walls as shown. 

 

 As the separating walls are conducting and permeable, the exchange of heat energy as 

well as that of particles between the systems takes place in such a way that all the systems 

arrive at common temperature and the chemical potential. Thus an ensemble in which the 

systems exchange energy but not matter is called them Canonical ensemble, that is which both 

energy and matter are exchanged between the systems is called a Grand canonical ensemble 

and that in which neither energy nor matter is exchanged is called microcanonical ensemble.  

Specific choice of ensemble maybe thought of as corresponding to a particular physical 

situation. The microcanonical ensemble is fundamental and refers to the simple situation in 

which constituent systems are isolated and not influenced in any way by external disturbances.  

 Therefore it is the best suited for isolated systems. However, there is always some 

energy exchange with the surroundings. Hence, Canonical ensemble have been found to be 

more appropriate for dealing such systems. Besides, Canonical approach gives results 

applicable even when the constituents interact strongly. 



POSTULATES OF STATISTICAL MECHANICS  

1. Any gas may be considered to be composed of molecules which are in motion and behave 

like very small elastic spheres.  

2. All the cells in the phase space are of equal size.  

3. All accessible microstates corresponding possible macrostates are equally probable. This is 

called the postulate of equal a prior probability.  

4. According to Boltzmann, entropy (S) = k log W where k is Boltzmann constant and W is the 

probability.  

5. The equilibrium state of a system corresponds to the maximum probability and entropy.  

6. The total number of molecules is constant. 

 

LIOUVILLE’S THEOREM  

Local Gas Density Is Constant along a Phase Space Path 

The falling bodies phase space square has one more lesson for us: visualize now a uniformly 

dense gas of points inside the initial square. Not only does the gas stay within the distorting square, 

the area it covers in phase space remains constant, as discussed above, so the local gas density stays 

constant as the gas flows through phase space. Liouville’s theorem is that this constancy of local 

density is true for general dynamical systems. 

Landau’s Proof Using the Jacobian 

Landau gives a very elegant proof of elemental volume invariance under a general 

canonical transformation, proving the Jacobian multiplicative factor is always unity, by clever use 

of the generating function of the canonical transformation. Jacobians have wide applicability in 

different areas of physics, so this is a good time to review their basic properties, which we do below, 

as a preliminary to giving the proof. 

Jacobian for Time Evolution 



It have been established that time development is equivalent to a canonical coordinate 

transformation, 

(pt,qt)→(pt+τ,qt+τ)≡(P,Q). 

Since we already know that the number of points inside a closed volume is constant in time, 

Liouville’s theorem is proved if we can show that the volume enclosed by the closed surface is 

constant, that is, with V′ denoting the volume V evolves to become, we must prove 

∫V′dQ1…dQsdP1…dPs=∫Vdq1…dqsdp1…dps 

If you’re familiar with Jacobians, you know that (by definition)  

∫dQ1…dQsdP1…dPs=∫Ddq1…dqsdp1…dps 

where the Jacobian 

D=∂(Q1,…,Qs,P1,…,Ps)∂(q1,…,qs,p1,…,ps). 

Jacobians  

Suppose we are integrating a function over some region of ordinary three-dimensional space, 

I=∫Vf(x1,x2,x3)dx1dx2dx3 

Let there is a change of variables of integration to a different set of coordinates (q1,q2,q3) such 

as, for example, (r,θ,ϕ).  The new coordinates are of course functions of the original 

ones q1(x1,x2,x3), etc.,  and we assume that in the region of integration they are smooth, well-

behaved functions.  We can’t simply re-express f  in terms of the new variables, and replace the 

volume differential dx1dx2dx3 by dq1dq2dq3, that gives the wrong answer—in a plane, you 

can’t replace dxdy with drdθ, you have to use rdrdθ. That extra factor r is called the Jacobian, 

it’s clear that in the plane a small element with sides of fixed lengths (δr,δθ) is bigger the further 

it is from the origin, not all δrδθ elements are equal, so to speak.  The task is to construct the 

Jacobian for a general change of coordinates. 

The volumes in the three-dimensional space represented by dx1dx2dx3 and 

by dq1dq2dq3. Of course, the xi ’s are just ordinary perpendicular Cartesian axes so the volume 



is just the product of the three sides of the little box, dx1dx2dx3. Imagine this little box, its 

corner closest to the origin at (x1,x2,x3) and its furthest point at the other end of the body 

diagonal at (x1+dx1,x2+dx2,x3+dx3) Let’s take these two points in the qi coordinates to be 

at (q1,q2,q3) and (q1+dq1,q2+dq2,q3+dq3) . In visualizing this, bear in mind that the q axes 

need not be perpendicular to each other (but they cannot all lie in a plane, that would not be 

well-behaved).     

For the x coordinate integration, we imagine filling the space with little cubical 

boxes.  For the q integration, we have a system of space filling infinitesimal parallelepipeds, in 

general pointing different ways in different regions (think (r,θ) ).  What we need to find is the 

volume of the incremental parallelepiped with sides we’ll write as vectors in  x -

coordinates, dq→1,dq→2,dq→3 .  These three incremental vectors are along the 

corresponding q coordinate axes, and the three added together are the displacement 

from (x1,x2,x3) to (x1+dx1,x2+dx2,x3+dx3)≡(q1+dq1,q2+dq2,q3+dq3).  

Hence, in components, 

                   dq→1=(∂q1∂x1dx1, ∂q1∂x2dx2, ∂q1∂x3dx3). 

              Now the volume of the parallelepiped with sides the three vectors from the 

origin a→,b→,c→ is a→⋅b→×c→ (recall ∣∣∣b→×c→∣∣∣ is the area of the parallelogram, then 

the dot product singles out the component of a→ perpendicular to the plane of b→,c→ ). 

So, the volume corresponding to the increments dq1,dq2,dq3 in q space is 

dq→1⋅dq→2×dq→3=∣∣∣∣∣∣∂q1∂x1∂q2∂x1∂q3∂x1∂q1∂x2∂q2∂x2∂q3∂x2∂q1∂x3∂q2∂x3∂q3∂x3

∣∣∣∣∣∣dx1dx2dx3=Ddx1dx2dx3, 

writing D (Landau’s notation) for the determinant, which is in fact the Jacobian, often denoted 

by J. 

The standard notation for this determinantal Jacobian is 

D=∂(q1,q2,q3)∂(x1,x2,x3), 

So the appropriate replacement for the three dimensional incremental volume element 

represented in the integral by dq1dq2dq3 is 



dq1dq2dq3→∂(q1,q2,q3)∂(x1,x2,x3)dx1dx2dx3. 

The inverse 

D−1=∂(x1,x2,x3)∂(q1,q2,q3), 

this is easily established using the chain rule for differentiation.    

Thus the change of variables in an integral is accomplished by rewriting the integrand 

in the new variables, and replacing 

I=∫Vf(x1,x2,x3)dx1dx2dx3=∫Vf(q1,q2,q3)∂(x1,x2,x3)∂(q1,q2,q3)dq1dq2dq3. 

The argument in higher dimensions is just the same:  on going to dimension n+1, the 

hypervolume element is equal to that of the n dimensional element multiplied by the 

component of the new vector perpendicular to the n dimensional element.  The determinantal 

form does this automatically, since a determinant with two identical rows is zero, so in adding 

a new vector only the component perpendicular to all the earlier vectors contributes. 

It have been seen that the chain rule for differentiation gives the inverse as just the 

Jacobian with numerator and denominator reversed, it also readily yields 

∂(x1,x2,x3)∂(q1,q2,q3)⋅∂(q1,q2,q3)∂(r1,r2,r3)=∂(x1,x2,x3)∂(r1,r2,r3), 

and this extends trivially to n dimensions.  

It’s also evident form the determinantal form of the Jacobian that 

∂(x1,x2,x3)∂(q1,q2,x3)=∂(x1,x2)∂(q1,q2) 

 identical variables in numerator and denominator can be canceled. Again, this extends easily 

to n dimensions. 

Jacobian proof of Liouville’s Theorem 

  After this rather long detour into Jacobian theory, recall we are trying to establish that 

the volume of a region in phase space is unaffected by a canonical transformation, we need to 

prove that 



∫dQ1…dQsdP1…dPs=∫dq1…dqsdp1…dps , 

and that means we need to show that the Jacobian 

D=∂(Q1,…,Qs,P1,…,Ps)∂(q1,…,qs,p1,…,ps)=1. 

 Using the theorems above about the inverse of a Jacobian and the chain rule product,    

D=∂(Q1,…,Qs,P1,…,Ps)∂(q1,…,qs,P1,…,Ps)/∂(q1,…,qs,p1,…,ps)∂(q1,…,qs,P1,…,Ps).  

Now invoking the rule that if the same variables appear in both numerator and denominator, 

they can be cancelled, 

D={∂(Q1,…,Qs)∂(q1,…,qs)}P=constant/{∂(p1,…,ps)∂(P1,…,Ps)}q=constant. 

Up to this point, the equations are valid for any nonsingular transformation—but to 

prove the numerator and denominator are equal in this expression requires that the equation be 

canonical, that is, be given by a generating function, as explained earlier. 

Recall now the properties of the generating function Φ(q,P,t), 

dΦ(q,P,t)=d(F+∑PiQi)=∑pidqi+∑QidPi+(H′−H)dt, 

from which 

pi=∂Φ(q,P,t)/∂qi, Qi=∂Φ(q,P,t)/∂Pi, H′=H+∂Φ(q,P,t)/∂t. 

In the expression for the Jacobian D, the i,k element of the numerator is ∂Qi/∂qk. 

In terms of the generating function Φ(q,P) this element is ∂2Φ/∂qk∂Pi. 

Exactly the same procedure for the denominator gives the i,k element to 

be ∂Pi/∂pk=∂2Φ/∂qi∂Pk. In other words, the two determinants are the same (rows and columns 

are switched, but that doesn’t affect the value of a determinant). This means D=1, and 

Liouville’s theorem is proved. 

 

 



Simpler Proof of Liouville’s Theorem 

Landau’s proof given above is extremely elegant: since phase space paths cannot 

intersect, point inside a volume stay inside, no matter how the volume contorts, and since time 

development is a canonical transformation, the total volume, given by integrating over volume 

elements dqdp, stays the same, since it’s an integral over the corresponding volume 

elements dQdP and we’ve just shown that dQdP=dqdp. 

The points in the volume represent a “gas” of many systems in the two 

dimensional (q,p) phase space, and with a small square area Δq,Δp, tagged by having all the 

systems on its boundary represented by dots of a different color. What is the incremental change 

in area of this initially square piece of phase space in time dt? 

Begin with the top edge: the particles are all moving with velocities (q˙,p˙), but of 

course the only change in area  comes from the p˙ term, that’s the outward movement of the 

boundary, so the area change in dt from the movement of this boundary will be p˙Δqdt. 

Meanwhile, there will be a similar term from the bottom edge, and the net contribution, top 

plus bottom edges, will depend on the change in p˙ from bottom to top, that is, a net area change 

from movement of these edges (∂p˙/∂p)ΔpΔqdt . 

Adding in the other two edges (the sides), with an exactly similar argument, the total area 

change is 

(∂p˙/∂p+∂q˙/∂q)ΔpΔqdt . 

But from Hamilton’s equations p˙=∂H/∂q, q˙=−∂H/∂p, so 

∂p˙/∂p=∂2H/∂p∂q,  ∂q˙/∂q=−∂2H/∂p∂q 

and therefore 

∂p˙/∂p+∂q˙/∂q=0, 

establishing that the total incremental area change as the square distorts is zero. The conclusion 

is that the flow of the gas of systems in phase space is like an incompressible fluid, but with 

one important qualification: the density may vary with position!  It just doesn’t vary along a 

dynamical path. 



MAXWELL - BOLTZMANN DISTREBUTION LAW (CLASSICAL STATISTICS)  

Maxwell - Boltzmann statistics is also known as classical statistics. This is applicable to the 

identical distinguishable particles of any spin. The molecules of a gas are the particles.  

Let us consider a system of N distinguishable molecules of a gas. Suppose n1, of them have 

energy E1, n2 have energy E2 and so on. Let each energy level (compartment) be divided into equal 

sized cells and g1, g2,….  cells corresponding to the energy intervals E1, E2,…… 

The total number of particles N is a constant. Then,  

N=n1 +n2 +n3 + = a constant ...(1) 

or dN = Σdni =0 ...(2) 

The total energy of the gas molecules is also a constant. Then  

E= n1E +n2E2 + = a constant ...(3) 

dE=E1dn1 +E2dn2 + …… =0 ...(4) 

or ΣEi dni =0 ……. (5) 

The number of ways for arranging n1 particles from N particles = N! /n! (N—n1)! 

The number of ways for arranging n2 particles from the remaining (N — n1) particles =  

( N-n1)! /n2! (N—n1-n2)! 

and so on. Hence the number of ways in which n1,n2,n3 particles can be choosen from N particles is 

given by  

W1 = (N! /n1! (N—n1)!)( ( N-n1)! /n2! (N—n1-n2)!) ……… 

W1 =  N! /n1! n2! n3!...                 ......   (6) 

The total number of ways in which ni molecules can be distributed in gi cells is given by  

W2 = (g1)n1 (g2) n2…..                  …….(7)  

Applying classical statistics, the thermodynamic probability for the most probable macrostate is given 

by  

W = W1W2 = (N! /n1! n2! n3! ......)( = (g1)n1 (g2) n2……)             …………(8) 

Taking natural logarithms on both sides,  

log W =log N!+ Σni log gi – Σlog ni!                       …………….(9) 



By Stirling's Theorem, loge N! = N loge N- N  

log W = N log N – N + Σni log gi – Σni log ni – Σni 

= N log N + Σni log gi – Σni log ni     

For the most probable state, d (log W) = 0  

0 = 0 + Σdni log gi – Σdni log ni - Σni (1/ni) dni  

0 = Σdni log gi – Σdni log ni - Σdni 

Σ(log gi -log ni)dni = 0            …………..(10) 

Multiplying equation (2) by -α and equation (5) by -β and adding to equation (10)  

Σ(log gi – log ni – α - βEi)dni = 0             

As the various dni are independent of one another, the expression within the bracket should be zero 

for each value of i.  

log gi - log ni - α - βEi = 0  

log (ni/gi) = - α - βEi 

Taking exponentials,  

(ni/gi) = e - α – βEi 

 ni = gi e - α – βEi      ...(11)  

Since ni is the number of molecules having energy Ei , the right hand side should be 

dimensionless. Since Ei is expressed in energy unit, β should be the reciprocal of the energy unit. The 

product β and Ei should be a dimensionless quantity. For this 1/β should be equal to 1/kT where k is 

the Boltzmann constant and T is the temperature in kelvin (kT = joules).  

ni = gi e - α – Ei/kT      or    ni/gi =  e - α – βEi    ………(12)   

This result is called Maxwell - Boltzmann distribution law.  

APPLICATION OF MAXWELL - BOLTZMANN STATISTICS TO AN 

IDEAL GAS  

According to the Maxwell - Boltzmann distribution law,  

ni = gi e - α – Ei/kT                       



Suppose an ideal gas contains N molecules with continuous distribution of molecular energies. Then 

the number of molecules having energies between E and E + dE is  

n(E)dE = g(E)dE eα  e– Ei/kT        

where g(E) dE represents the number of states that have energies between E and E + dE.  

E = ½ mv2 = ½  m2v2 /m   = p2/ 2m  

p = √2mE  = √px
2+ py

2+ pz
2           

Let us consider a momentum space with co-ordinate axis Px, Py, Pz. The number of momentum states 

g(p) dp available to a particle that have momentum between p and p + dp is proportional to the 

volume of a spherical shell in momentum space of radius p and thickness dp. Volume of this spherical 

shell is 4лp2dp . Hence  

g(p)dp = βp2dp  

where β is a constant. Since each momentum magnitude p corresponds to a single energy,  

g(E)dE = βp2dp 

p2 = 2mE . 

dp= mdE/p = mdE / √2mE 

g(E)dE = √2βm3/2 √E dE 

n(E)dE = √2βm3/2 e-α  √E e– Ei/kT dE 

Let √2βm3/2 e-α   = a constant, C 

Hence,  n(E)dE = C√E e– Ei/kT dE 

Using normalization condition, the constant C is evaluated. C = 2лN/(лkT)3/2 

Therefore                    n(E) = 2лN/(лkT)3/2√E e– Ei/kT  

This equation is known as Maxwell’s law of distribution of energy. The total energy of the system is 

E = ∫E n(E)dE 

    =     2лN/(лkT)3/2 ∫E e– Ei/kT dE 

    =     3/2 NkT 

The average energy of an ideal gas molecule is given by E/N = 3/2 kT. Then the number of molecules 

with speeds between v and v+dv in an assembly of gas containing N molecules at T K is given by  



n(v)dv = (√2лN(m3/2) v2) / e-mv2/2kTdv 

This eqution is known as Maxwell’s law of distribution of velocity. 

LAW OF EQUIPARTITION ENERGY  

This law is related to the distribution of thermal energy throughout an ensemble like 

the molecules of a gas. Maxwell first stated that for a molecule in translatory motion, the energy 

is equally distributed between the degrees of freedom. Boltzmann extended the equal energy 

distribution for a the translatory, rotatory and vibratory motions of a rigid body. The law of 

equipartition energy may therefore be stated as the total mean kinetic energy of a molecule 

distributed between the total numbers of degrees of freedom.  

The principle of equipartition energy applies only for those degrees of freedom which 

involves energy in terms of velocity co-ordinates. Thus, if the molecules are considered to be 

rigid bodies we have three degrees of freedom for the translatory motion.  

Let u2,v2 and w2 represent the mean square velocities of the molecules moving in X, Y, and Z 

directions.  

c2 represents the mean square velocity of the molecules 

c2 = u2 + v2 + w2 

Since the molecules are alike,  

u2 = v2 = w2 . Therefore c2 = 3u2 = 3v2 = 3w2 

The average kinetic energy of a molecule per degree of freedom  

½ mu2 = ½ mv2 = ½ mw2 

= ½ m (1/3 c2) = 1/3 (½ mc2) 

But, PV = (1/3) Mc2 = RT 

M = Nm 

(1/3)Nmc2 = RT 

mc2 = 3(R/N) T = 3Kt 

Since  R/N = k 

½ mc2 = (3/2) kT 



Hence, the average kinetic energy of a molecule per degree of freedom  

= (1/3)(3/2) kT = ½ kT 

Therefore, the average kinetic energy associated with each degree of freedom is ½  kT 

whether it is translatory or rotatory or vibratory motion. This is known as the Boltzmann law 

of equipartition energy. Hence, this law is stated as the total energy of a dynamical system in 

thermal equilibrium shared equally by all its degree of freedom and the energy associated per 

molecule per degree of freedom is equal to (3/2) kT where k is the Boltzmann constant and T 

is the absolute temperature of the gas.  

 

PARTITION FUNCTION 

 Let us consider an assembly of ideal gas molecule obeying classical statistics i.e 

Maxwell – Boltzmann distribution law. Using this distribution law, let ni molecules occupy ith 

state with energy between Ei and Ei+dEi and degeneracy gi, then 

ni = gi ni = gi e - α  e -  Ei/kT       

= gi A  e –β Ei       where A=  e - α    and β = 1/kT     

So the total number of molecules in the system  

N = Σni   =    A Σgi e –β Ei   ;  N/A =   Σgi e –β Ei      

=    Z    where Z is called the Boltzmann’s partition function or simply the partition function.  

The term Σgi e –β Ei represents the sum of all the Σgi e –β Ei   terms for every energy state of the given 

molecule. Consequently, the quantity Z indicates that how the gas molecules of a system are distributed 

or partitioned among the various energy levels and hence is called partition function. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT  IV 

QUANTUM STATISTICAL 
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QUANTUM STATISTICS – BASIC CONCEPTS 

Postulatory Foundations Of Quantum Mechanics :  

Postulate I : In classical mechanics, the state of a system is specified by its generalized 

coordinates q and generalized momenta p at a particular time t. In quantum mechanics; the 

complete knowledge of a dynamical state (values of p and q at a time t) cannot be determined. 

The state of the system is completely determined by the state function or wavefunction ψ(q, t).  

The wavefunction, in general, is complex, finite, single valued and continuous. ψ ψ* 

denotes the probability of finding the system in a volume dq at time t, where ψ * is the complex 

conjugate of ψ. All the possible information about the system can be derived from this 

wavefunction.  

In general the state of a system cannot be measured directly. We measure certain 

physical quantities such as energies, momenta etc which are called observables.  

Postulate II : Any observable or dynamical variable can be represented by an operator say A 

(p, q, t). An operator A is a mathematical operation which may be applied to a function f(x) 

whieh changes the function to another function g(x). This can be represented as  

Af(x) = g(x) 

Moreover, the operators must be so chosen that for any pair of operators A and B  

(AB - BA) = (h/2лi) [A,B] 

...(2)  

where (AB - BA) is known as commutator of the two operators and [A,B] is an operator 

associated with the classical poisson bracket 

Postulate III : For an assembly of N identical system, with N->α, all in the state ψ (q, t) at the 

time t, and if a measurement of a (p, q) is made at t on all these systems, then the average value 

a of a (p, q) is found from the following equation 

 a(t) = ʃψ*(q, t) A (p, q)  ψ (q, t) dq / ψ * (q, t) ψ (q, t) dq  

where ψ * stands for the complex conjugate of ψ.  

Postulate IV : The time variation of a quantum mechanical state is determined by the equation  

H ψ(q.t) = (ih/2л) ψ(q,t)/t 



Ψ(q,t) = ψ(q)e-(2лi/h)Ent 

Where H is the Hamiltonian operator. 

TRANSITION FROM CLASSICAL STATISTICAL MECHANICS TO QUANTUM 

STATISTICAL MECHANICS :  

The two important concepts of quantum mechanics which have greatly influenced the 

transition from classical statistical mechanics to quantum mechanics are   

(1) Physical quantities, in quantum mechanics, in general are assumed to have discrete 

spectra. This fact requires that finite sums or infinite series be used in place of the usual 

integrals of classical mechanics.  

(2) Physical quantities, in addition to depending on the usual Hamiltonian variables of 

classical mechanics, depend on 'spin' variables which are essential to quantum physics and have 

no analogue in classical mechanics. Assemblies of particles with integral spins and zero spin 

are found to obey Bose-Einstein statis-tics, and assemblies of particles with half spins are found 

to obey Fermi-Dirac statistics. In classical mechanics the state of the system is uniquely 

determined if all the physical quantities associated with the system are known, whereas in 

quantum mechanics, the state of a system defines the physical quantities only a random 

variables i.e., it determines the laws of distribution obeyed by the physical quantities and not 

their values. 

DISTRIBUTION LAWS  

A study of statistical mechanics can be classified mainly into two divisions :  

(a) classical statistics or Maxwell-Boltzmann statistics,  

(b) quantum statistics.  

The quantum statistics was developed by Bose, Einstein, Fermi and Dirac. This can 

again be put in two categories :  

(i) Bose-Einstein (B—E) statistics.  

(ii) (ii) Fermi-Dirac (F—D) statistics.  

The classical statistics is based on the classical results of Maxwell-Boltzmarin velocity 

distribution of particles of an assembly in equilibrium. This successfully explains the observed 

phenomenon such as pressure, temperature, energy etc. This fails to account several observed 



phenomenon like black body radiation, specific heat at low temperature, photoelectric effect 

etc.  

In order to deduce the Planck's radiation law, Bose in 1924, formulated certain 

fundamental assumptions which were different from classical statistics. On the basis of these 

assumptions he derived the radiation law. On the same year, Einstein utilised practically the 

same principles and explained the kinetic theory of gases. The new statistics developed by Bose 

and Einstein is known as Bose Einstein statistics.  

In 1926, Fermi and Dirac modified Bose-Einstein statistics using some additional 

principles suggested by Pauli in connection with -electromagnetic structure of atoms. 

According to Pauli principle no two electrons having all the quantum numbers same, may be 

in the same state. In statistical form two or more phase points cannot possibly occupy the same 

phase cell. In this way the new quantum statistics developed by Fermi and Dirac is known as 

Fermi-Dirac statistics. Now we consider the following three kinds of identical particles :  

(a) Identical particles of any spin which are separated in the assembly and can be 

distinguished from one another. The molecules of the gas are particles of this kind. 

(b) Identical particles of zero or integral spin which cannot be distinguished from one 

another. These particles are known as Bose particles or Bosons. The do not obey Pauli's 

exclusion principle. Photons, a-particles, etc. are the particles of this kind.  

(c) Identical particles of half integral spin and which cannot be distinguished from one 

another. These particles obey Pauli's exclusion principle. Electrons, protons, neutrons are 

particles of this kind.  

The first kind of these particles are classical particles while the second and third kinds 

of particles are quantum particles. The essential distinction between classical statistics and 

quantum statistics is that in classical statistics the particles of a system are distinguishable 

among themselves and are individually recognisable, while in quantum statistics the particles 

are not distinguishable.  

To understand the distinction between Bose-Einstein (B—E) statistics and Fermi Dirac 

(F—D) statistics, let us divide a volume accessible to a system into number of cells, then 

according to Bose-Einstein statistics more than one particle can occupy the same cell, while 

according to Fermi-Dirac statistics, only one particle, or none can occupy the same cell. 



 

BOSE-EINSTEIN STATISTICS 

The conditions of Bose-Einstein statistics are : 

1) The particles are indistinguishable from each other so that there is no distinction 

between the different ways in which ni par-ticles can be chosen.  

2) Each cell or sublevel of ilk quantum state may contain 0, 1, 2...,n; identical particles.  

3) The sum of energies of all the particles in the different quantum groups taken together 

constitutes the total energy of the system.  

For this distribution, let us imagine a box divided into gi sections and the particles are 

distributed among these sections. The choice that which of the compartment will have the 

sequence, can be made in gi ways. Once this has been done, the remaining (gi-1) 

compartments and ni particles i.e. total particles can be arranged in any order i.e. number 

of ways doing this will be equal to  

(ni+gi—l)! ….(1) 

Thus the total number of ways realising the distribution will be gi (ni+ gi-1) ! ….(2) 

The particles are indistinguishable and therefore rearrangement of particles will not 

give rise to any distinguishable arrangement. There are ni ! permutations which correspond to 

the same configuration, hence equation 1 should be divided by ni ! Secondly, the distributions 

which can be derived from one another by mere permutation of the cells among themselves, do 

not produce different states, the equation 1 should also be divided by gi ! We thus obtain the 

required number of ways as  

gi (ni+gi-1)! /gi ! ni ! …….(3) 

or (ni+gi-1)! / ni! (gi-1)!  ….(4) 

Similar expressions will be for the various other quantum states. Therefore, the total 

number of ways in which n1 particles can be assigned to the level with energy E1, n2 to E2 …. 

and so on is given by the product of such expressions as given below 

W = ∏ ( (ni+gi-1)! / ni! (gi-1)! ) x constant    (5) 

So to obtain the condition of maximum probability take log on both the sides we have 

log W = Σ (log (ni +gi-1) ! – log ni! - log (gi-1) !  ) + constant                   …………….(6) 



By Stirling's Theorem, loge N! = N loge N- N  

log W = Σ(ni+gi) log (ni+gi) – (ni+gi) - ni log ni +ni – gi log gi +gi        ……(7) 

= Σ(ni+gi) log (ni+gi) - ni log ni - gi log gi    …(8) 

For the most probable state, d (log W) = 0 ….(9) 

0 = Σ(log (ni+gi) – log ni) dni    ……(10) 

Multiplying Σdni by -α and Σ Ei dni by -β and adding to equation (10)  

Σ(log (ni+gi) – log ni) – α - βEi)dni = 0             

As the various dni are independent of one another, the expression within the bracket should be 

zero for each value of i.  

log (ni + gi) - log ni - α - βEi = 0  

log (ni+gi/gi) = α + βEi 

Taking exponentials,  

(ni+gi/gi) = e - α – βEi 

 ni = gi / e - α – βEi   -1   ...(11)  

Since ni is the number of molecules having energy Ei , the right hand side should be 

dimensionless. Since Ei is expressed in energy unit, β should be the reciprocal of the energy 

unit. The product β and Ei should be a dimensionless quantity. For this 1/β should be equal to 

1/kT where k is the Boltzmann constant and T is the temperature in kelvin (kT = joules).  

ni = gi /e – (α – Ei/kT) – 1     …..(12) 

This equation is known as    Bose-Einstein distribution law.  

 

FERMI-DIRAC STATISTICS 

In the case of Fermi-Dirac statistics, the problem is assigning ni indistinguishable 

particle to gi distinguishable levels under the restriction that only one particle will be occupied 

by a single level ; obviously, gi, must be greater than or equal to ni, because there must be 

atleast one elementary wave function available for every element in the group.  



Thus in Fermi-Dirac statistics, the conditions are  

(1) The particles are indistinguishable from each other i.e., there is no restriction 

between different ways in which ni particles are chosen.  

(2) Each sublevel or cell may contain 0 or one particle. Obviously g, must be greater 

than or equal to ni.  

(3) The sum of energies of all the particles in the different quantum groups taken 

together constitute the total energy of the system.  

Now the distribution of ni particles among the g, states can be done in the following 

way: It is easily find that the first particle can be put in any one of the ith level in gi ways. Now 

according to Pauli exclusion principle no more particles can be assigned to that filled state. 

Thus we are left with (gi - 1) states in (gi —1) ways, and so on.  

Thus the number of ways in which ni, particles can be assigned to gi states is  

gi (gi-1) (gi-2) (gi—ni+1) gi!  

gi! /(gi-ni) !      ……(1)  

The permutations among identical particles do not give dis-tinct distribution, and hence 

such permutations must be excluded from equation (1), which can be done on dividing it by 

ni!. Thus we have the required number as  

 gi !/ (gi—ni)!  

The total number of eigen states for which whole system is given  

by  

W = gi / ni!(gi - ni)! 

The probability of the specific state is  

W = ∏ (gi! / ni! (gi-1)! ) x constant    (5) 

So to obtain the condition of maximum probability take log on both the sides we have 

log W = Σ (log gi ! – log ni! - log (gi-ni) !  ) + constant                   …………….(6) 

By Stirling's Theorem, loge N! = N loge N- N  

log W = Σgi log gi – gi - ni log ni +ni – (gi+ni) log (gi -ni) + (gi-ni)        ……(7) 



= Σgi log gi – ni log ni - (gi+ni) log (gi -ni) …(8) 

For the most probable state, d (log W) = 0 ….(9) 

0 = Σ(log (gi - ni) – log ni) dni    ……(10) 

Multiplying Σdni by -α and Σ Ei dni by -β and adding to equation (10)  

Σ(log (gi+ni) – log ni) – α - βEi)dni = 0             

As the various dni are independent of one another, the expression within the bracket should be 

zero for each value of i.  

log (gi + ni) - log ni - α - βEi = 0  

log (gi – ni)/ni) = α + βEi 

Taking exponentials,  

(gi – ni /ni) = e α +βEi 

 ni = gi / e α +βEi   +1   ...(11)  

Since ni is the number of molecules having energy Ei , the right hand side should be 

dimensionless. Since Ei is expressed in energy unit, β should be the reciprocal of the energy 

unit. The product β and Ei should be a dimensionless quantity. For this 1/β should be equal to 

1/kT where k is the Boltzmann constant and T is the temperature in kelvin (kT = joules).  

ni = gi /e(α + Ei/kT) + 1     …..(12) 

This equation is known as    Fermi - Dirac distribution law. 

  

Bose-Einstein Condensation 
 

A state of matter in which atoms or particles are chilled to such low energies that they 

‘condense’ into a single quantum state. The atoms are bosonic in nature; that is, their total spin 

must possess an integral value, such as 0, 1, 2. Particles, like everything, have wave properties, 

such as wavelength. The trick is getting into a regime where the wave properties emerge. The 

wavelength (called Debroglie wavelength) of an atom is related to its temperature - the colder 

the atom, the longer the wavelength. At room temperature, atoms can be treated like billiard 

balls bouncing around. At low temperatures, the wavelengths become longer, and so the wave 



properties become relevant. For sufficiently low temperature, a few millionths of a degree 

above zero temperature, the bosonic atoms effectively become overlapping waves that share 

the same phase. The atoms become a BEC, which has quantum mechanical behavior. 

The BEC phenomenon was first predicted by Satyendra Bose and Albert Einstein in the 

1920s, hence the name. BEC was first noted to exist in liquid helium.  

Consider a gas of weakly-interacting bosons. It is helpful to define the gas's chemical 

potential, 

 

(1) 

 

 

whose value is determined by the equation 

 

(2) 

Here,  is the total number of particles, and  the energy of the single-particle quantum 

state  . Because, in general, the energies of the quantum states are very closely spaced, the 

sum in the previous expression can approximated as an integral. Now, the number of quantum 

states per unit volume with wavenumbers in the range k to k+dk is 

 

(3) 

However, the energy of a state with wavenumber  is 

 

(4) 

where  is the boson mass. Let  be the number of bosons whose energies lies in 

the range  to  . It follows that 

 

(5) 



where  is the volume of the gas. Here, we are assuming that the bosons are spinless, so that 

there is only one particle state per translational state. Hence, 

 

(6) 

and Equation (2) becomes 

 

(7) 

  

However, there is a significant flaw in this formulation. In using the integral 

approximation, rather than performing the sum, the ground-state,  , has been left out. 

Under ordinary circumstances, this omission does not matter. However, at very low 

temperatures, bosons tend to condense into the ground-state, and the occupation number of this 

state becomes very much larger than that of any other state. Under these circumstances, the 

ground-state must be included in the calculation. 

We can overcome the previous difficulty in the following manner. Let there be N0 

bosons in the ground-state, and Nex in the various excited states, so that 

 

(8) 

Because the ground-state is excluded from expression (7), the integral only gives the 

number of bosons in excited states. In other words, 

 

(9) 

Now, because the ground-state has zero energy, its mean occupancy number is 

 

(10) 

Moreover, at temperatures very close to absolute zero, we expect  , which implies 

that 

https://farside.ph.utexas.edu/teaching/sm1/Thermalhtml/node111.html#e8.121e
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(11) 

 

We conclude that 

 

(12) 

for large  . Hence, at very low temperatures, we can safely set  equal to 

unity in Equation (9). Thus, we obtain 

 

(13) 

Furthermore,  , and  . Hence, 

 

(14) 

The so-called Bose temperature, TB , is defined as the temperature above which all the 

bosons are in excited states. Setting Nex = N and T = TB in the previous expression, we obtain 

 

(15) 

Moreover, 

 

(16) 

 

Thus, the fractional number of bosons in the ground-state is 

 

(17) 



combining Equations (9) (with  ) and (15) yields 

 

(18) 

where  and  . Expanding in powers of  , we obtain 

 

(19) 

where y = nx , which reduces to 

 

(20) 

The previous equation can be solved numerically to give  as a function of T/TB . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT V 

APPLICATIONS OF Q.M.S 

 

 

 

 

 

 

 



APPLICATION OF BOSE - EINSTEIN STATISTICS  

Planck radiation law (or Photon gas) 

 The Planck's radiation formula for photons can be derived using Bose-Einstein 

distribution. Consider a hollow enclosure containing radiations at a constant temperature T. 

These radiations carry energy in discrete units or bundles or quanta. According to quantum 

theory, radiation frequency υ has a quantum of energy hυ where h is Planck's constant and 

momentum hυ/c where c is the velocity of light.  

These quanta are known as photons and can be treated as particles. The radiation inside 

the hollow enclosure consists of a very large number of photons of different energies as these 

have different wavelengths (or frequencies) and be supposed to form a photon gas. There is an 

important difference between the photons and the other particles, namely, the photon number 

is not constant. That means, α = 0  

Hence, Bose - Einstein distribution law is  

ni = gi /e – (Ei/kT) – 1     …..(1) 

The number of photons in the frequency range υ and υ + dυ is given by  

n(υ)dυ = g(υ)dυ/ e – (hυ/kT) – 1     since Ei = hυ    …… (2) 

The number of cells in the phase space for photons with left handed and right handed 

polarisation is given by  

g(p)dp =  2 x (volume in the phase space / h3) 

The factor 2 comes for the two types of photons.,  

g(p)dp = 2x( ʃdv dy dz dpx dpy dpz)h3 

= 2 x h3  

Jdx dy dz f dpxdpydpz  

= 2 (V/h3 ) x volume of the sphere in the momentum space of radius p and thickness dp.   

= 2 (V/h3 )4лp2dp  

g(p)dp =  8л(V/h3 ) p2 dp   ….. (3) 

p = h/λ   and λ = c/υ  

therefore p = hυ/c  and dp = hdυ/c,  

Substituting the values of p2 and dp in equation (3).  



g(υ)dυ = (8лV/c3 )υ2 dυ  …… (4) 

Substituting equation (4) in equation (2),  

n (υ)dυ =(8лV/c3 ) (υ2 dυ /  e – (hυ/kT) – 1  )  ……   (5)    

The energy density E(υ)dυ is defined as the amount of energy per unit volume due to 

radiations lying between the frequencies u and u + do is given by  

E(υ)dυ = hυn(υ)dυ/ V 

Substituting the value of n (u )d u from equation (5)  

=  hυ8лVυ2dυ / Vc3 (e – (hυ/kT) – 1 )    

E(υ)dυ = 8лh / c3 ((υ2 dυ /  e – (hυ/kT) – 1  )   

This is Planck's formula in terms of frequency.  

Since c/λ = υ and dυ = (c/ λ2 )dλ   

E(λ)dλ= (8лh/ λ5) (dλ/ e – (hc/λkT) – 1  )  

This is known as Planck's formula for black body radiations.  

APPLICATION OF FERMI - DIRAC STATISTICS – ELECTRON GAS 

The behaviour of free electrons inside a metallic conductor can be studied on the basis 

of Fermi - Dirac statistics. The free electrons continuously collide with the fixed ions and 

they thus behave like an electron gas.  

The distribution function for electrons is given by f(E) 

 =  ni /gi =  1/e (E – Ef / kT) + 1      

From equation ni = gi /e(α – Ei/kT) + 1, Ei is replaced by E and α by – Ef / kT. The energy Ef is 

called Fermi energy.  

At 0 K, the distribution function has the form  

f (E) = 1 when E< E f and f (E) = 0 when E> Ef 

That means, all energy levels below Ei f are completely filled and all levels above Ei are 

completely empty as shown.  



 

When the temperature increases, f(E) changes from 1 to 0 more and more gradually.  

When E = Ef, f (E) = ½ at all temperatures.  

The probability of finding an electron with energy equal to the Fermi - energy in 1 a metal is 

thus ½  at any temperature.  

The number of electrons in terms of momentum is given by  

g(p)dp = 2 x V/h3 x volume of the cell in momentum space   

The factor 2 is for the two types of electron with spin + ½  and – ½   

g(p)dp =  2V4лp2dp/h3  ...(2) 

But E = 1/2 mv2  and p = mv  

Substituting p and p.dp in equation (2), the number of quantum states available to electrons 

with energies between E and E + dE is given by  

g (E)dE =  (8лV/h3) (2mE)1/2  mdE     …….(3)  

where 'm' is the mass of the electron and V is the volume of the electron gas.  

The energy value up to which all the energy states are full at 0 l< and above which all 

the energy states are empty is known as Fermi energy denoted by Ef At 0 K, the number of 

electrons (N) is equal to the number of energy states occupied by the electron from 0 to Ef, 

since each state has only one electron. E 

N = ʃg(E)dE  

Substituting the value for g (E) dE  

N = 16√2лVm3/2 Ef 3/2/ h3 

Ef 3/2 = 3Nh3/(16√2лVm3/2) 



Therefore Ef = (h2/2m)(3N/8лV)2/3 

The quantity N/V is the density of free electron. It is the number of free electrons per unit 

volume of the metal. 

Fermi Energy and Fermi Temperature 

The maximum kinetic energy of free electron in the metal at 0 Kelvin is called Fermi energy. 

The Fermi temperature is given by ϴf = Ef/k 

DEGENERACY 

The position of a particle in Quantum statistics cannot be measured accurately 

according to Heisenberg Uncertainty Principle. That means we cannot say that in the ith  energy 

state all ni particles have energy exactly equal to Ei. However, it can be safely expressed that 

energy of each of particles is very close to Ei. It means that that can be a number of energy 

levels around Ei in which particles are distributed. let the number of such energy levels be gi 

which is called the degeneracy of the energy state. 

 

Figure shows the degeneracy of all energy states. For the energy state Ei, there are ni 

particles having energies around Ei. There are sub energy levels in which ni bosons are 

distributed. Each of gi levels can have any number of particles present in it. Each energy level 

Ei consists of gi states.  

It is therefore concluded that a system with Quantum particles obeying either Bose -  

Einstein or Fermi - Dirac statistics maybe called degenerate gas. 

PAULI PARAMAGNETISM 

In a non-magnetic system, there are equal number of spin up and spin down electrons 

(n↑ = n↓ = n). In presence of magnetic field, the Zeeman energy term shifts the bands which 

means that there is an imbalance of up and down spins creating a magnetization.  



Let us consider a simple model with on-site repulsion (i.e. an energy cost U when two 

electrons occupy the same site). As per the Pauli exclusion principle, it is required that if two 

electrons were to occupy the same site, they need to have opposite spins.  

The Zeeman term in the Hamiltonian is  

Hz = −gµ · B ………(1)  

where µ is the spin magnetic moment of the electron.  

Considering the magnetic field applied in the z-direction  

Hz = −gµ · B = −gµzB ……(2)  

where µz = ±µB/2 is the spin magnetic moment for up/down spins (Bohr magneton µB). 

 

The electrons can lower their energies by aligning parallel to the magnetic field. There 

is an imbalance in the number of up and down spins n↑/↓ = n ± δn. The change in number of 

spin can be related to the change in energy by means of the density of states.  

The density of states is defined as the number of states in the energy interval [E, E + 

dE] is  D(E) = dn dE ……(3)  

Since the occupation change happens close to the Fermi level, we can relate the 

variation in number density δn and the change in energy dE through the density of states at the 

Fermi level.  

δn = DF dE = DF g µB B ……(4)  

Thus the change in magnetization is      δm = (g µB/ 2) 2δn = DF (g µB)2 B ……..(5)  

Therefore the Pauli paramagnetic susceptibility is  

χPauli = δm /B = DF (gµB)2 ……..(6) 
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