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Electrostatics 

Electrostatics, as the name implies, is the study of stationary electric charges. A rod of 

plastic rubbed with fur or a rod of glass rubbed with silk will attract small pieces of paper and 

is said to be electrically charged. The charge on plastic rubbed with fur is defined 

as negative, and the charge on glass rubbed with silk is defined as positive. 

Electrically charged objects have several important characteristics: 

 Like charges repel one another; that is, positive repels positive and negative 

repels negative. 

 Unlike charges attract each another; that is, positive attracts negative. 

 Charge is conserved. A neutral object has no net charge. If the plastic rod and 

fur are initially neutral, when the rod becomes charged by the fur, a negative 

charge is transferred from the fur to the rod. The net negative charge on the rod 

is equal to the net positive charge on the fur. 

 

Coulomb's law 

Coulomb's law gives the magnitude of the electrostatic force ( F) between two 

charges: 

 

where q 1 and q 2 are the charges, r is the distance between them, and k is the 

proportionality constant. The SI unit for charge is the coulomb.  

If the charge is in coulombs and the separation in meters, the following 

approximate value for k will give the force in newtons: k = 9.0 × 10 9 N · m 2/C 2. The 

direction of the electrostatic force depends upon the signs of the charges. Like charges 

repel, and unlike charges attract. 

Coulomb's law can also be expressed in terms of another constant (ε 0), known as 

the permittivity of free space: 



 

When the permittivity constant is used, Coulomb's law is  

 

 

The most fundamental electric charge is the charge of one proton or one electron. This 

value (e) is e = 1.602 × 10 −19 coulombs. It takes about 6.24 × 10 18 excess electrons 

to equal the charge of one coulomb; thus, it is a very large static charge. 

Electric fields and lines of force 

When a small positive test charge is brought near a large positive charge, it 

experiences a force directed away from the large charge. If the test charge is far from 

the large charge, the electrostatic force given by Coulomb's law is smaller than when 

it is near. This data of direction and magnitude of an electrostatic force, due to a fixed 

charge or set of fixed charges, constitutes an electrostatic field. The electric field is 

defined as the force per unit charge exerted on a small positive test charge (q 0) placed 

at that point. Mathematically,  

 

Both the force and electric field are vector quantities. The test charge is required 

to be small so that the field of the test charge does not affect the field of the set charges 

being examined. The SI unit for electric field is newtons per coulomb (N/C). 

The following figure is a pictorial representation of the electric fields surrounding 

a positive charge (a) and a negative charge (b). These lines are called field 

lines or lines of force. 



 

                The electric fields for opposite charges, similar charges, and oppositely 

charged plates is shown below. 

 

The rules for drawing electric field lines for any static configuration of charges are 

 The lines begin on positive charges and terminate on negative charges. 

 The number of lines drawn emerging from or terminating on a charge is proportional 

to the magnitude of the charge. 

 No two field lines ever cross in a charge‐free region. (Because the tangent to the field 

line represents the direction of the resultant force, only one line can be at every point.) 

 The line approaches the conducting surface perpendicularly. 

Electric flux 

Electric flux is defined as the number of field lines that pass through a given 

surface. In Figure, lines of electric flux emerging from a point charge pass through an 

imaginary spherical surface with the charge at its centre. 

 



This definition can be expressed as follows:  

Φ = ∑E · A, where Φ (the Greek letter phi) is the electric flux, E is the electric 

field, and A is area perpendicular to the field lines.  

Electric flux is measured in N · m 2 / C 2 and is a scalar quantity. If the surface 

under consideration is not perpendicular to the field lines, then the expression is  

Φ = ∑ EA cos θ. 

In general terms, flux is the closed integral of the dot product of the electric field 

vector and the vector ΔA. The direction of ΔA is the outward drawn normal to the 

imaginary surface.  

Mathematically, Φ = ΦE · dA. The accepted convention is that flux lines are 

positive if leaving a surface and negative if entering a surface. 

Gauss's law 

Gauss's law provides a method to calculate any electric field; however, its only 

practical use is for fields of highly symmetric distributions of fixed charges. The law 

states that the net electric flux through any real or imaginary closed surface is equal 

to the net electric charge enclosed within that surface divided by ε. As a result, if no 

charge exists with a given closed surface, then there are as many flux lines entering 

the surface as there are leaving it. The imaginary surface necessary to apply Gauss's 

law is called the gaussian surface. Algebraically, 

 

or in integral form,  

 

where θ is the angle between the direction of E and the outward direction of normal to 

the surface and ε is the permittivity constant. 



In the calculation of the electric field due to a point charge, as the electric field is 

perpendicular to the gaussian surface and directed outward, θ is 90 degrees, and cos 

θ = 1. Gauss's law is 

 

Substitute in the area of a sphere, and the left side reduces to 

 

or 

 

which is the same expression obtained from Coulomb's law and the definition of 

electric field in terms of force. 

Types of Electric Charge Distributions 

In the above the charge distribution is explained by considering the point charges. In 

addition, there is possibility to distribute the charge continuously along line, in a volume 

or on surface. Therefore, there are four types of charge distributions namely 

1. Point charge 

2. Line charge 

3. Surface charge 

4. Volume charge 

Point Charge 

Compared with region surrounded by a surface carrying a charge, the dimensions of 

that surface are very small, then that charge is treated as point charge. The point 

charge can be negative or positive. And it has a position but do not have dimensions. 



 

Line Charge 

A charge possibly spread all along the line whether infinitely or finitely. A charge that 

uniformly distributed all along the line is called as line charge as shown in figure. The 

charge density of a line charge is defined as the charge per unit length and denoted 

as pL. 

It is measured in coulomb per meter and is constant all along the length of the line 

charge.  

 

The total charge for the entire length L is obtained by applying line integral to the 

charge dQ (is equal to the pL) on dl as 

 

Surface Charge 

A surface charge is also called as sheet of charge in which the charge is uniformly 

distributed over a two dimensional surface. The area of the two dimensional surface 

is in square meters. The surface charge density is defined as the charge per unit 

surface area and is denoted as pS. 

https://www.electronicshub.org/wp-content/uploads/2015/09/point-charges.jpg
https://www.electronicshub.org/wp-content/uploads/2015/09/Line-charges.jpg
https://www.electronicshub.org/wp-content/uploads/2015/09/Total-line-charge-equation.jpg


It is measured in coulomb per meter square and it is constant over the surface carrying 

the charge. The example of the surface charge distribution is the plate of a charged 

parallel plate capacitor. 

 

In surface charge distribution, the total charge distribution is determined by 

considering the charge dQ on elementary surface area ds over that surface. Thus, it 

considers the surface integral rather than normal integral. Mathematically 

 

The distribution of the charge is considered as an infinite sheet of charge if the 

dimensions of the surface is charge is very large compared to the distance at which 

the effects of charge to be considered. 

Volume Charge 

A volume charge is the charge which is distributed uniformly in a given volume. The 

volume charge density is defined as the charge per unit volume and is denoted as pV. 

It is measured in coulomb per meter cube. The example of this volume charge is the 

charged cloud. 

https://www.electronicshub.org/wp-content/uploads/2015/09/Surface-charge-distribution.jpg
https://www.electronicshub.org/wp-content/uploads/2015/09/Surface-integral-of-charge.jpg


 

The total charge within a given volume is obtained by integrating dQ by a differential 

volume dv. This integral is called as volume integral and is given as 

 

Electrostatic Field 

Once the charge distribution of a particle is known, we can determine the electric field 

of that particle. As we know that substances constitute the point charges (electrons 

and protons) which results field from each of these point charges. 

Suppose if a particle bearing a unit positive charge is placed at a specified point, then 

it experience a force which is called electric force F. the region in which this force exist 

is called as the region of electric field. 

This is defined as the force per unit charge exerted on a tiny positive charge placed at 

that point and it is a vector quantity with a unit of Newton/coulomb. 

The electrostatic field E is given as 

E = F/q or F = E q where F is the electrostatic force and q is the net electric test charge. 

The above equation states that regardless of a second charge on the space 

surrounded by the net charge, it produces an electric field around that space. Consider 

that if the two point charges are exist in the region as shown in the above figure. Then 

the electric field intensity by considering Q2 as one coulomb is given as 

E = (Q1/ (4 π єor2
12)) × r1 

https://www.electronicshub.org/wp-content/uploads/2015/09/Volume-charge-distribution.jpg
https://www.electronicshub.org/wp-content/uploads/2015/09/volume-integral-of-charge1.jpg


Where r12 is the distance between Q1 and Q2 and r1 is the unit vector in the direction 

of line joining Q1 with Q2. And also F12 = Q2 E 

 

Consider that the above figure in which the region consists of n two point charges, 

then the electric field intensity at point A is given as 

EA = Σk =1n (Qk / (4 π єor2k)) × rk1 

Electrostatic potential  

Imagine moving a small test charge q′ from point A to point B in the uniform 

field between parallel plates. The work done in transferring the charge equals the 

product of the force on the test charge and the parallel component of displacement, 

using the same definition of work given in the section on mechanics. This work can 

also be expressed in terms of E from the definition of electric field as the ratio of force 

to charge: W · d, E = F/ q and W = q′.  

Electric field due to an infinitely long straight uniformly charged wire 

 

   

https://www.electronicshub.org/wp-content/uploads/2015/09/Two-point-charge-iluustration.jpg


Consider an uniformly charged wire of infinite length having a constant linear 

charge density λ (Charge per unit length). Let P be a point at a distance r from the wire 

and E be the electric field at the point P. A cylinder of length l, radius r, closed at each 

end by plane caps normal to the axis is chosen as Gaussian surface. Consider a very 

small area ds on the Gaussian surface. By symmetry, the magnitude of the electric 

field will be the same at all points on the curved surface of the cylinder and directed 

radially outward. E and ds are along the same direction.  

The electric flux (ϕ) through curved surface =∮E.ds cosθ 

ϕ=∮E.ds  [∵θ=0;cosθ=1] 

         =E(2rπl) [The surface area of the curved part]  

since E and ds are right angles 2πrl to each other, the electric flux through the 

plane caps =0. ∴ Total flux through the Gaussian surface, ϕ= E(2πrl).  

The net charge enclosed by Gaussian surface is, q=λl 

= E (2πrl) ε0 λ l  

or E=(1/2πε0 r) λ 

The direction of electric field E is radially outward, if line charge is positive and 

inward, if the line charge is negative. 

The Multipole Expansion 

A multipole expansion is a mathematical series representing a function that 

depends on angles (usually the two angles on a sphere). These series are useful 

because they can often be truncated, meaning that only the first few terms need to be 

retained for a good approximation to the original function. Multipole expansions are 

very frequently used in the study of electromagnetic and gravitational fields, where the 

fields at distant points are given in terms of sources in a small region. The multipole 

expansion with angles is often combined with an expansion in radius. Such a 

combination gives an expansion describing a function throughout three-dimensional 

space. 



The multipole expansion is expressed as a sum of terms with progressively 

finer angular features. For example, the initial term called the zeroth, or monopole, 

moment is a constant, independent of angle. The following term the first, or dipole, 

moment varies once from positive to negative around the sphere. Higher-order terms 

(like the quadrupole and octupole) vary more quickly with angles. A multipole moment 

usually involves powers (or inverse powers) of the distance to the origin, as well as 

some angular dependence. 

Consider an arbitrary charge distribution ρ(r′). The electrostatic potential due to 

this charge distribution at a given point r is to be determined. It is assumed that this 

point is at a large distance from the charge distribution, that is if r′ varies over the 

charge distribution, then r≫r′. 

 

Now, the Coulomb potential for an arbitrary charge distribution is given by 

V(r)=1/4πϵ0∫ρ(r′)|r−r′|dV′             (1) 

Here, 

|r−r′|=√|r2−2r⋅r′+r′2|                      (2) 

=r|1−2r^⋅r′/r+(r′/r)2|                       (3) 

where 

r^=r/r                                           (4) 

Thus, using the fact that r is much larger than r′, we can write 



1/|r−r′|=(1/r)1/√∣1−(2r^⋅r′/r)+(r′/r)2∣   (5) 

and using the binomial expansion, 

′|=(1/r)1/√∣1−(2r^⋅r′/r)+(r′/r)2∣ =1−r^⋅r′/r + 1/2r2(r′2−3(r^⋅r′)2)+O(r′/r)3    (6) 

(we neglect the third and higher order terms). 

Binomial Theorem 

The binomial theory can be used to expand specific functions into an infinite 

series: 

(1+x)s = ∑s!/(n!(s−n)!)xn =1+(s/1!)x + (s(s−1)/2!)x2 + (s(s−1)(s−2)/3!)x3+…   (8) 

Equation 5 can be rewritten as 

1/|r−r′|=(1/r)1/√1+ϵ              (9) 

where 

ϵ=−2r^⋅r′/r+(r′/r)2              (10)  

Applying the Binomial Theorem to Equation 9 (with s=−1/2) results in 

1/|r−r′|=1/r(1−(1/2)ϵ+(3/8)ϵ2−(5/16)ϵ3+…)          (11) 

Equation 6 originates from substituting Equation 10 into Equation 11. 

The Expansion 

Inserting Equation 6 into Equation 1 shows that the potential can be written as 

V(r)=(1/4πϵ0r)∫ρ(r′)(1−r^⋅r′/r+1/2r2(3(r^⋅r′)2−r′2)+O(r′/r)3) dV′     (12) 

This can be written as 

V(r)=Vmon(r)+Vdip(r)+Vquad(r)+…                                                (13) 

https://math.libretexts.org/Bookshelves/Algebra/Book%3A_Advanced_Algebra_(Redden)/09%3A_Sequences%2C_Series%2C_and_the_Binomial_Theorem/9.04%3A_Binomial_Theorem


The first (the zeroth-order) term in the expansion is called the monopole 

moment, the second (the first-order) term is called the dipole moment, the third (the 

second-order) is called the quadrupole moment, the fourth (third-order) term is called 

the octupole moment, and the fifth (fourth-order) term is called the hexadecapole 

moment. Given the limitation of Greek numeral prefixes, terms of higher order are 

conventionally named by adding "-pole" to the number of poles—e.g., 32-pole (i.e., 

dotriacontapole) and 64-pole (hexacontatetrapole). 

These moments can be expanded thusly 

Vmon(r) = 1/4πϵ0r∫ρ(r′)dV′                           (14) 

Vdip(r) = −1/4πϵ0r2∫ρ(r′)(r^⋅r′)dV′                  (15) 

Vquad(r ) = 1/8πϵ0r3∫ρ(r′)(3(r^⋅r′)2−r′2)dV′     (16) 

and so on. 

In principle, a multipole expansion provides an exact description of the potential 

and generally converges under two conditions: 

1. if the sources (e.g. charges) are localized close to the origin and the point at 

which the potential is observed is far from the origin; or 

2. the reverse, i.e., if the sources are located far from the origin and the potential 

is observed close to the origin. 

In the first (more common) case, the coefficients of the series expansion are 

called exterior multipole moments or simply multipole moments whereas, in the 

second case, they are called interior multipole moments. 

The Monopole Scalar 

Observe that 

Vmon(r) = 1/4πϵ0r∫ρ(r′)dV′  = q/4πϵ0r  (17) 



is a scalar, (actually the total charge in the distribution) and is called the electric 

monopole. This term indicates point charge electrical potential with charge qq. 

The Dipole Vector 

If a charge distribution has a net total charge, it will tend to look like a monopole 

(point charge) from large distances. We can write 

Vdip(r)=−r^/4πϵ0r2⋅∫ρ(r′)r′dV′             (18) 

The vector 

p=∫ρ(r′)r′dV′                                      (19) 

is called the electric dipole. And its magnitude is called the dipole moment of 

the charge distribution. This terms indicates the linear charge distribution geometry of 

a dipole electrical potential. 

The Quadrupole Tensor 

Let r^and r′ be expressed in Cartesian coordinates as (r1,r2,r3) and (x1,x2,x3). 

Then, (r^⋅r′)2=(rixi)2=rirjxixj 

We define a dyad to be the tensor r^r^ given by 

(r^r^)ij=rirj                                                       (20) 

Quadrupole tensor  

T=∫ρ(r′)(3(r′r′)−Ir′2)dV′                                  (21) 

Then, we can write Vqua as the tensor contraction 

Vqua(r)=−r^r^/4πϵ0r3::T                                  (22) 

this term indicates the three dimensional distribution of a quadruple electrical 

potential. 



 

Model Questions 

Part – A 

1. Define linear charge density. 

2. Define surface charge density. 

3. Define volume charge density. 

4. What is electric charge density? 

5. State Coulomb’s law. 

6. Define electric intensity. 

7. What is electric potential? 

8. State Gauss’s law. 

9. Give the integral form of Gauss’s law. 

10.  Give the differential form of Gauss’s law. 

11.  Write the Poisson’s equation and explain 

12. Write the Laplace’s equation and explain 

13. What do you mean by multipole expansion? 

14. What do you mean by electrostatic energy? 

 

Part – B 

1. Explain the various types of charge density. 

2. State and explain Coulomb’s law. 

3. Get an expression for electric field intensity for continuous charge distribution. 

4. Get an expression for electric potential for continuous charge distribution. 

5. Establish Gauss’s theorem for electrostatic field. 

6. Write a short note on electrostatic energy. 

 

Part – C 

1. Establish Gauss’s theorem for electrostatic field and deduce Poisson’s equation and 

Laplace’s equation from it. 

2. Using Gauss law find the electric potential at a point due to a straight uniformly 

charged wire. 

3. Show that the potential at any external point due to a charge distribution can be 

expressed as the contribution of the moments of monopole, dipole and quadrupole 

etc. 

4. Show that the energy density in electrostatic field is U = 1/2 (D.E) 
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Boundary conditions on Electric field intensity (E) 

In homogeneous media, electromagnetic quantities vary smoothly and 

continuously. At an interface between dissimilar media, however, it is possible for 

electromagnetic quantities to be discontinuous. These discontinuities can be 

described mathematically as boundary conditions and used to constrain solutions for 

the associated electromagnetic quantities. In this section, we derive boundary 

conditions on the electric field intensity E. 

Consider a region consisting of only two media that meet at an interface defined 

by the mathematical surface S. 

At the surface of a perfectly-conducting region, E may be perpendicular to the 

surface (two leftmost possibilities), but may not exhibit a component that is tangent to 

the surface (two rightmost possibilities).  

If either one of the materials is a perfect electrical conductor (PEC), then S is 

an equipotential surface; i.e., the electric potential V is constant everywhere on S. 

Since E is proportional to the spatial rate of change of potential (E=−∇V). The 

component of E that is tangent to a perfectly-conducting surface is zero. 

This is sometimes expressed informally as follows: 

Etan=0  on PEC surface     (1) 

where “Etan” is understood to be the component of E that is tangent to S. Since the 

tangential component of E on the surface of a perfect conductor is zero, the electric 

field at the surface must be oriented entirely in the direction perpendicular to the 

surface. 

E×n^=0  (on PEC surface)             (2) 

where n^ is either normal (i.e., unit vector perpendicular to the surface) to each point 

on S. This expression works because the cross product of any two vectors is 

perpendicular to either vector, and any vector which is perpendicular to n^ is tangent 

to S. 



The desired boundary condition can be obtained directly from Kirchoff’s Voltage 

Law. 

∮CE⋅dl=0                   (3) 

Let the closed path of integration take the form of a rectangle centred on S. 

 

 

Let the sides A, B, C, and D be perpendicular or parallel to the surface, respectively. 

Let the length of the perpendicular sides be w, and let the length of the parallel sides 

be l. From KVL we have 

∮CE⋅dl=∫AE⋅dl+∫BE⋅dl+∫CE⋅dl+∫DE⋅dl=0 

Now, let us reduce w and l together while (1) maintaining a constant ratio w/l≪1  (2) 

keeping C centred on S. In this process, the contributions from the B and D segments 

become equal in magnitude but opposite in sign; i.e., 

∫BE⋅dl+∫DE⋅dl→0                       (4) 

This leaves 

∮CE⋅dl→∫AE⋅dl+∫CE⋅dl→0                  (5) 

Let us define the unit vector t^(“tangent”) as shown in Fig. When the lengths of 

sides A and C become sufficiently small,  

E1⋅t^Δl−E2⋅t^Δl→0                        (6) 

where E1 and E2 are the fields evaluated on the two sides of the boundary and Δl→0 is the 

length of sides A and C while this is happening.  



 

 

The tangential component of E must be continuous across an interface between 

dissimilar media. 

This is a generalization of the result we obtained earlier for the case in which one of 

the media was a PEC – in that case, the tangent component of EE on the other side 

of the interface must be zero because it is zero in the PEC medium. 

As before,                      E1×n^=E2×n^   on S                 (7) 

or, as it is more commonly written: 

n^×(E1−E2)=0   on S             (8) 

Equation 8 is the boundary condition that applies to E for both the electrostatic and the 

general (time-varying) case. 

 

Separation of variables : Cartesian coordinates  

Consider the Laplace equation in Cartesian coordinates  

∇2ф(x,y,z) = (∂2/∂x2 + (∂2/∂y2+ (∂2/∂z2) ф(x,y,z) = 0 

Under certain circumstances it is possible to write the solution in the product form  

ф(x,y,z) = фx(x)фy(y)фz(z) 

In this case the Laplace equation becomes  

(1/фx(x))d2фx(x)/dx2 +(1/фy(y))d2фy(y)/dy2 + (1/фz(z))d2фz(z)/dz2 = 0 

This implies that, 

d2фx(x)/dx2 = α фx(x) 

 d2фy(y)/dy2 = β фy(y) 

d2фz(z)/dz2 = γ фz(z)     

with α + β + γ = 0 



 

That is, the three dimensional partial differential equation separates into three 

one dimensional ordinary differential equation with a constraint. The constraint on α, 

β and γ implies that at least one of them is negative or one of them is positive or two 

of the functions are sinusoidal and the third is hyperbolic or two are hyperbolic and 

one sinusoidal.  

The values of α, β and γ are to be determined by boundary conditions. It should 

be apparent that this method is useful if the boundary conditions of the problem are 

imposed on rectangular box.  

This is the method of separation of variables. The method of separation of 

variables is useful when the problem has a symmetry and there is a corresponding 

orthogonal coordinate system in which the Laplacian operator ( ) is separable. 

 

Application: 

Potential at a point between the plates of a parallel plate capacitor  

                                                                      

                                           V1          V2                                                               

                                                    P                    X axis                                         

                                                 x 

                                          A             B    

 

Let V1 and V2 to be the potential source of plates A and B respectively. Let the 

plates be perpendicular to x axis and O be the origin. The potential at any point 

between the plates will depend upon x only and so the corresponding form of Laplace 

Equation is  

∂2V/∂x2 = 0 



∂V/∂x = C1 

V = C1 x+C2 

Where C1 and C2 are arbitrary constants to be evaluated by boundary 

conditions. 

Now as at x = 0, V = V1 and x = d, V = V2 

Therefore V1 = C1.0 + C2;    C2 = V1 

and  V2 = C1d +C2;       C1 = (V2-V1)/d 

therefore V = (V2-V1/d) x + V1 = V1 – (( V1-V2)/d) x 

This is the required result and represents the potential at any point between the 

plates. 

 

Potential at a point due to a cylindrical shell 

                                           P      

                                             r                                               

                                a       

 

 

In this case due to symmetry V does not depend on and z so Laplace equation reduces 

to   

(1/r) ∂/∂r(r∂V/∂r) = 0 

∂/∂r(r∂V/∂r) = 0 

r∂V/∂r = A      or          ∂V/∂r = A/r         (1) 

so V = A log r + B                                 (2) 

To determine the arbitrary constants A and B  



E = - (∂V/∂r) = λ*/2л ϵ0a 

And V = V0 for r = R 

In the light of the above boundary conditions (1) and (2) give respectively 

A/a = - λ/2л ϵ0a and V0 = A log R + B        

A =  - λ/2л ϵ0 and B = V0 +  λ/2л ϵ0 log R0 

Therefore V = V0 +  (λ/2л ϵ0 ) log R0/r   

 

The method of images  

1. The method of images is a nice way to solve problems. The difficulty is that it really 

only works well in a very few cases with special symmetry.  

2. The method is usually applied to situations where there is a known charge near a 

perfectly conducting surface.  

3. Three examples are as follows: (1) a point charge above a conducting sheet, (2) a 

line charge parallel to a conducting cylinder, and (3) a point charge outside a 

conducting sphere.  

4. The method of images involves some luck. The shape of the surface must have the 

right symmetry so that it can be replaced by a simple, finite collection of charges known 

as the image charges.  

5. Luck is required because the potential due to the given charge plus the image 

charges must be such that the potential on the original conducting surface just turns 

out to be a constant.  

6. One can often replace a general shaped conductor with an infinite set of charges 

but this is not so useful. Only when a small, finite number of charges is required is the 

replacement useful and corresponds to the method of images.  



1 
 

 

 

Method of Images for a spherical conductor 

The method of images can be applied to the case of a charge in front of a grounded spherical conductor.  
The method is not as straightforward as the case of plane conductors but works equally well.  
Consider a charge q kept at a distance a from the centre of the grounded sphere.  We wish to obtain 
an expression for the potential at a point P which is at the position , the potential obviously will 
not depend on the azimuthal angle and hence that coordinate has been suppressed.  Let the point P 
be at a distance  from the location of the charge q.  

The image charge is located at a distance b from the centre along the line joining the centre to the charge 
q.   The line joining the charges and the centre is taken as the reference line with respect to which 
the angle  is measured. Let P be at a distance b from the image charge. Let q’ be the image charge.  

 

The potential at P is given by . Using the property of triangle, we can express the 

potential at P as, 

 

Since the potential vanishes at  for all values of θ, the signs of   and   must be opposite, and we 
must  have,  

SPECIAL TECHNIQUES-II 

Lecture 18: Electromagnetic Theory 

Professor D. K. Ghosh, Physics Department,  I.I.T., Bombay 
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In order that this relation may be true for all values of θ,  the coefficient of  from both sides of this 
equation must cancel, 

 

Since   and   have opposite sign, this gives, 

 

Substituting this in the θ independent terms above, we get, 

 

which gives . Thus . 

It follows that if the object charge is outside the sphere, the image charge is inside the sphere.  Using 
these, the potential at P is given by 

 

 

 

 

The electric field can be obtained by computing gradient of the potential. It can be easily verified that the 
tangential component of the electric field . The normal component is given by, 

 

 

The charge density on the surface of the sphere is and  is given by 
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The charge density is opposite to the sign of q since  .  

It is interesting to note that unlike in the case of a conducting plane, the magnitude of the image charge 
is not equal to that of the object charge but has a reduced value, 

 

 

 

 

 

 

Thus the potential can be written as 

 

The following figure shows the variation of charge density on the surface as a function of the angle θ. As 

expected, when the charge comes closer to the sphere, the charge density peaks around θ=0.  

Since the distance between the charge and its image is  the force exerted on the charge by the 
sphere is  

 

For  the force is proportional to the inverse cube of the distance of the charge from the centre. 

For  let α be the distance of q from the surface of the sphere,  
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Model questions 

Unit – II 

 

Part – A 
 

1. What do you mean by boundary conditions? 

2. Write the boundary conditions on the surface between two dielectric media of 

different permittivity. 

3. Express Laplace equation in Cartesian coordinates. 

4. Express Laplace equation in Cylindrical coordinates. 

5. Define method of images. 

 

Part – B 

1. Derive the boundary conditions on the surface between two dielectric media 

of different permittivity. 

2. Explain the method of images for the solution of electrostatic problems. 

3. Obtain the solution of Laplace equation in Cartesian coordinates. 

4. Deduce the solution of Laplace equation for a problem in Cylindrical 

coordinates. 

Part – C 

1. A point charge q is placed at a distance d from an infinite conductor held at 

zero potential. Using method of images, find the surface charge density of 

induced charge and force between the charge and the plane. 

2. Calculate the potential at an external point due to a point charge which is kept 

near an infinite conductor held at zero potential. 

3. Write down the Laplace equation in Cartesian coordinate and find its solution. 

What will the solution for potential at a point between the plates of a parallel 

plate capacitor? 

4. Write down the Laplace equation in Cylindrical coordinate and find its 

solution. What will the solution for potential at a point due to a Cylindrical 

shell? 
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1. Electromagnetic theory   by    K. K. CHOPRA and G. C. AGARWAL 
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2. Electromagnetic theory   and Electrodynamics    by  SATYAPRAKASH     

           Kedarnath & Ramanan  Co.,  Meerut 
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