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UNIT -1
SCHRODINGER’S EQUATION AND GENERAL FORMULATION

Posulates of Quantum Mechanics

1. The state of a system is completely described by a wave function ¥ (r,t). ¥="Y(x,
y, Z, t) [Here system means any free particle].
2. Each dynamical variable is represented by a linear operator (called Hermitian

operator).  The operator gives the only possible result of observable.

[Here dynamical variable means measurable quantities].

Quantity Classical definition Operators
/dynamical variable
Position r r
—ihA
Momentum p h
—i o A
—ihrxA
Angular momentum rxXp _ % ¥ A

Kinetic energy

¥, mv? = p*2m

(p=mv)

T=-(2)a2 OR
2m

hZ
8m2m

—( ) A2

Potential energy

V=V(x,y, 2)

Total energy

p?/2m + V(1)

A =—(2-)a%+ V()
(e

8m?m
(time independent)

" d
FT:
(time dependent)




3. Ifalarge number of measurements of a dynamical variable A is made on a particle
for which the wave function is ¥, we get different values of A during different

trials. The probable value of A (known as expectation value) is given by
(M:fWKTW

A — operator
¥* — complex conjugate of ¥

Examples-

1. Expectation value of momentum 1is

; h
<E=JW65¢NMV

L e h
(p) = _f\P(_lEA) Y dxdydz

2. Expectation value of energy is

w 9
<m=Jvm§wu@w

4. The only possible values observed for the measurement of the observables are the
eigen values which satisfies the equation
AY = aV¥
a represents the eigen values and ¥ represents the eigen function.

5. The equation of motion of the system is given by

_ 0
H‘P=iha‘1’ OR HY =EY¥Y

H is the Hamiltonian of the system.

The time evolution of the wavefunction is given by the time dependent schrodinger wave
equation.



Derivation of Schrodinger’s Wave Equation

It is the mathematical equation to describe the dual nature of matter waves.

Schrodinger’s Time Independent wave equation:

Schrodinger described the wave nature of a particle in a mathematical form by
connecting de-Broglie wavelength with classical wave equation of a moving particle.
The classical wave equation is

0¥ 0¥ 0°¥ 19%*Y¥

a2 Tyt Yoz T v o

¥ is wave displacement or wave function

0> 9% 0°
+—+

0x?  0dy? 0z?

Laplacian operator ~ V?=

(62 0* 62> 10%¥

From eqn. (1) 922 + 3y + 372 =138

10%%
ViYy=—— — ———— — —— —— — 2
v? ot? )
Solution for the above equationis %= ¥e ' — — — (3)

¥, is the amplitude of the wave at the point (x,y,z). It is a function of position. That is
H(x,y,2,t) = %%y 2)e”"™

Differentiate eqn. (3) twice w.r.t. ‘t’

‘;_f’z _ia)%e—ia)t : ?;TZIZ iZa)Z %e‘i“’t
9% ¥ ,
gez YT T T TT )
Put (4) in (2)
, 102% 1
V= nee Tt
VWP=——— — —— — — — (5)



2TV

Angular frequency = 2mv = 7~ —(6)
Put (6) in (5)
2
VZ Y= —7 b4
2
VPY +—¥=0————— (7)

de-Broglie wavelength 4 = L
mv

4°m?v?
7 P=0-————(8)

Let E be the total energy of the particle and V is the potential energy and kinetic energy =

Eqn. (7)becomes V2 ¥ +

1
~muv?
2

1
E=V+Emv2; 2(E —=V) = mv?

multiply through out by m

2m(E —V) = m?v? — — — —(9)
Put (9) in (8)
4m22m(E-V) 2
VZT—i—h—zS”:O h:%;hzz%
8nim(E -V
V2Y + ( ) =0 ;
h2
) 2m(E-V)
V Y/+TYI=0————(1O)

Eqn.(10) is known as Schrodinger Time Independent equation.
For 1-D the above eqn becomes,
d*¥ 2m(E-V)
+ Y=

0x?2 h? 0

. - d?y  2mE
For a free particle V=0, ——+—

¥=0



Schrodinger’s Time Dependent wave equation:

The classical wave equation is

0°¥ 9*¥ 0*¥ 10*Y¥

a2 "oyt Vo2 T v o

10%¥
VY= 1
v2 0t? @
Solution for the above equationis ¥'= ¥e ! — — —(2)

Differentiate eqn. (2) w.r.t. ‘t’

¥ w
o = “lote

—iwt

ikd
ot

Angular frequency o = 2rmv

0¥
— = —i2nv¥
dat
E =hv ;
_E
v=
h=2
2T



Now time independent wave eqnis V2 ¥ + zm(hEz_V) Y=0
Substitute for E¥
V2T+2m<'h o VY’) =0
nz \"" ot -
Zm( a‘{')_ V2T+2mV5”
2 \"" ar) = h2
n 2|y n Vi ¥ 4
"t 2m )
E¥=HY——————— (5)
Where E = ih 2
at
2
H=V—-—V?
2m

The eqn (4) & (5) is known as Schrodinger’s Time Dependent wave equation.



Physical meaning and conditions on the wave function (#)

— Wave function is a variable quantity that is associated with a moving particle at
any position (x,y,z) and at any time (t)

— Wavefunction is the probability of finding the particle at any position and at any
time.

— It relates the particle and wave statistically

That is, Y= e tet
— It gives information about particle behaviour.
— Itis a complex quantity and cannot be measured.

— |¥]|?* = Y*¥ isreal and positive

— | ¥|? represents the probability density. i.e., probability of finding the particle per

unit volume.

— For a given volume dz, the probability of finding the particle is,
P=ff |¥|%dr; dr = dxdydz

If P=0, there is no chance of finding the particle within the given limits.
If P=1, there i1s 100% chance of finding the particle

If P=0.5, there is 50% chance of finding the particle.



Expectation Values

The absolute square of the wavefunction is a measure of the probability of finding
a particle at a particular point in space. When a large number of measurements are
made on some dynamical quantity, we get different values during each
observation. The average value or expected value of any dynamical variale A is

given as,

(4) = ftzf*/i Y dv

A is operator and ¥*is complex conjugate of ¥.
The above formula holds only if the wavefunction is normalised. If the
wavefunction is not normalised, then the following formula is used.
YA, ¥dv
ay= 1 Ao
[w* wdv

Thus the expectation value is the mathematical expectation for the result of a
single measurement or it is the average of the large number of measurements on
independent systems.

The expectation value of position is

(r)= f‘I/*(r, t) r ¥(r,t)dV

This is equivalent to th following three expressions.

(x) = J‘I’*x ¥ dv
= [wywar

(z) = f‘{’*z Ydav

(x), (y), (z) are the expectation values of the coordinates x,y and z of the particle

respectively.



The expectation value of potential energy V is

(V) = J Y*(r,t) V (r,t) Y(r,t)dt

dr is the volume instead of dV to avoid confusion with P.E.

The expectation value of energy is

(E) = qu (m%)\y dr

(E)—'hj‘l’*a‘{’ d
=i Pl

The expectation value of momentum is
(p) = j\P*(—mV) ¥ dr = —ih f‘P*V‘P dr

The three components of momentum is

(py) = —ih J‘P*x‘P dt
(py) = —ih f‘P*y‘{’ dt

(p,) = —ih f‘P*z‘P dt

(px) {py), (p,) are the expectation values of the components of the momentum

along x,y and z axes.



Ehrenfest’s Theorem

The theorem states that “the quntum mechanical expectation value of
dynamical quantities gives the same result as classial mechanics”.
The theorem can be proved for one dimensional motion of a particle by showing
that,

dx) ()
dt m

Proof
Let x be the position coordinate of a particle of mass m, at time t.

The expectation value of x is given by

Differentiation with respect to ‘t’

d{x) J .

—00

dx) fw S AN ,
a ) ot ot x

—00

Schrodinger’s time dependent (1-D) wave equation,

oty 0¥
ot 2m 0x?
oY 1 h? 02
T a(”"ﬂ ax;r>______3

Complex conjugate is,
v 1 . h? *¥
ot ik

Substitute equation 3 and 4 in equation 2.



d(x)_j‘o o Lpp B (R
a ] ih 2m ox? —ih 2m 0x?

Integration by parts,

[uwite=u [wate— [2([var) ax

d ih 0¥ aav a‘P*
EW“%F@W‘ N ff( aﬁd

0w
At x —oo, ¥ and oL Tzero. Therefore first term becomes 0.

d<>_ ih j‘ T*GT lPa‘P* p .
dt X = 2m 0x 0x x

X



h
Momentum Operator p = —ihV= 7 \Y
0

A_h
Px =7 9x

( ha
The expectation value of p, is {p,) = f P (7 a) Pdx

Therefore,

Complex conjugate is,

“Taxy*d_i<> ,
0x x= pr

— 00

Substitute equations 6 and 7 in equation 5. Then we get,

% (x) = — % % (Px) — (— % (px))]

d ih i i
at (x) = — >m E(px)-l'ﬁ(px)]

L 1(21';2%))

i< )__iz(px)_ {px)
dt X = m  m

Thus,

(D)

d
EOC) =

Ehrenfest’s theorem is proved.



Operator Formalism

“An operator is a rule that transforms a given function into another
function”. For example the operator a/ 9 Tepresents differentiation with respect

to x. when it operates,

An operator A when operates on a function f(x) then,
A f(x) = a f(x) — — — — - Eigen Value equation
A - operator
f(x) — Eigen function
a — Eigenvalue
In quantum mechanics all physical observables (position, momentum, energy, etc.)
are represented by Operator’s. The outcomes of any measurement of the
observable associated with the operator A are the Eigen values ‘a’ that satisfy the

Eigen value equation. The symbol * (hat) is used to distinguish the operator from

physical quantities. Example, momentum operator for x-component is

 hoa
Px =7 3%

The Eigen value of momentum operator,

h, V=AY (or) ho¥_ A¥Y
P 2= T ax
The total energy operator is denoted by H called as Hamiltonian operator.

2

. h
H= — 5 V2 +V (Time Independent form)

B=in’
— Mot

The Eigen value equation of Hamiltonian operatoris H ¥ = E ¥



Hermitian Operators

An operator is said to be Hermitian if it satisfies A¥ = A, A is an operator.
(Simply saying self- adjoint).
In quantum mechanics all observables are represented by Hermitian operators.
Condition for Hermitian for an Eigen value equation A ¥ = 1 ¥ is
[TA¥Pdi=[¥A Y dr
For two different Eigen functions, ¥; and ¥,, the condition is.
[PiAY, dt=[A" P, ¥, dr

Properties of Hermitian Operators

1. Hermitian operators have only real eigen values.

2. Hermitian operators eigen functions are orthogonal if they have different eigen
values.

3. The sum of two Hermitian operators is Hermitian.

4. The product of Hermitian operators is Hermitian if and only if they commute.

If @ and b are commuting operators then, @ . h = b .a

Show that Eigen values of Hermitian Operators are real.

~

AVY=1Y%
¥ — Eigen function,A — Eigen value and A — operator.
Taking complex conjugate, A*¥* = 1*"¢*
Condition for Hermitian,

[TA¥Pdi=[¥A Y dr

Now, [P AP dr=[ ¥ 2*¥ dr
AP " ¥Pdr=2[¥ ¥ dr
Al=2"1
A=A

This is possible if Ais real. Thus Eigen value of Hermitian operator is real.



Show that Eigen functions of Hermitian Operators are orthogonal if they have

different Eigen values.

A YVi=Mh" : i
n Eigen value equations
Av,=11%
Complex conjugate is, L=
A% * * * * 1= M
A Py =2 P =0, ¥ A, =24

Condition for Hermitian,

[PiAY, dt=[A" P, ¥, dr
Now,

Wi A, ¥, dt= [, ¥ ¥, dr

Azf‘{’i \Pz dT:A:l f SU;\PZ dT
(A — A [ P71 ¥, dr=0
as A, # A;, we have [¥] ¥, dr=0, indicating ¥; and ¥, are orthogonal

functions.
Heisenberg’s uncertainty relation

® In 1927 Werner Heisenberg stated that it is impossible to know precisely where an
electron is and what path it follows — a statement called the Heisenberg
uncertainty principle.
e That is if momentum of a particle is precisely known the location of the same
particle is completely unknown.
e Heisenberg uncertainty principle states that, “It is impossible to measure both
the position and momentum at the same time with accuracy”.
Ax.Ap = h
Ax is uncertainty in position, Ap is uncertainty in momentum and A = h/211
(OR)
Ax.Ap ~ h
» Uncertainty principle also applies to simultaneous measurements of energy and
time
AE. At~ h



UNIT-1I EXACTLY SOLVABLE SYSTEMS

LINEAR HARMONIC OSCILLATOR- SOLVING THE ONE DIMENSIONAL
SCHRODINGER EQUATION.

In the case of a liner harmonic oscillator the force F = - K x can be represented by the
potential energy function J(x)=1/2Kx"

From the Schroedinger equation,

nrl+1—T (!: —lh’f] p=0
e KL 2 2.1)
Introducing a vanable £ = a x, where @ 1s constant, we can write,
dy_dvdz_dy
de dE de df
y o (0], Lfin )| iy
and dx del\dE ) dE ode\ dE dE
Therefore eq. (2.1) becomes
d? . -
o !f:'+ Em,‘f—m% g,‘ w=10. (22)
it | h? onlal
dfg.«_{zmg mk':f]] 0
5T | RIol  odg2 -
or dé” \he™ a'h (23)
mk_ A= Egﬂg
Let us choose a such that e’ and h~a



Therefore equation (2.3) assumes the dimensionless form

ﬂrjl,tl’ % 2
3 l:‘l_'f :“P‘ =0.
dé? (2.4)

Let the solution i1s of the form

wiE) = H(E)e™ "
(2.5)

where H(Z) 1s a polynomial of finite order in E. If we consider the positive sign in the

exponent, then g will diverge as £ — 0. From eqn. (2.5)

g2 g2
dv_ H'{é‘}ﬂqﬂ[ s }—Hié’)éfem[ N ]

d& 2
dy .. il -£
=H (£ —H
ond dE? (L_-}ﬂqﬂ{ 5 } (g?}g’mq{ 5 }
—Hlﬁlm{_j }—éH'{flw[_f }e‘sz[-f}m[%}
— w _él _ ¥ _él 2 i
=~ H'(Qowp| = | -2 H (O exp| 5= |+ (£ D H(E)exp| =
Substituting the value of y(£) and d_w in equation (2.4) we get
dE?
exp [}i}{ff”{ﬂ—zﬂf'(éﬂf H(&)—~H(&)+(A—EDH(£) (=0
H'(&)-2EH () +(A-1NH (£)=0
or (2.6)
Energy Levels.
Using power series, we can solve equation (2.6)
Let
H(&)=E (a, +a, E+a, E+...),
ag=0, 5210
_ lf.ﬁ zﬂr lfr — Zﬂr lf.w.'
=i =l
- .. dH .
On differentiation, = = riv-1
n differentiation 4z ZA (s+v)E
and %=Z‘a,. (s+v)(s+v=1 &7

Substituting these values in equation (2.6), we get,

Ya,(s+V(s+v=1) &7 —263a, (s+METT +H(A-DYa, & =0



ZC'I* I:S—]’)(S+‘r’—l) é:u N —EZEJI.(S+1’:];"M _(/{_l)zar é:u =0

@7)

For H(Z) to be a solution for all values of &. the coefficient of the individual powers of &

or

must vanish separately. 1.e.. equating to zero the coefficients of various powers of 2 we get
s(s-1)ag=10
(s+1)(s)ai=0
(s+2) (st ar—(2s+ 1- 1) ap=0
(5+3)(st2)a3—(2s+3-1)a,=0

(s+v+2)(s+v+ D ays2—(25+2v+l - 1) ay=0 (2.8)

From these expressions we can write,

25+ 2v+1-4 (2.9)

dys2 = a
(s+v+])(s+v+2)



where v 1s an integer. Since g, cannot be equal to zero, from the first of equations (2.8), s =0
or . If ay 1s equal to zero, only odd powers appear. With a; equals to zero, the series
contains even powers only. If we examine the convergence of the power series solution
defined by equation (2.9), we find that as v —» a0, (a,.2)/a,—» 2/v, so that the series converges

for all finite values of £.

-

s q s 4 p +£°
Considering the series expansion of € = | we have

& o ¥ = 2
A2 1+.§2+§—+'§—+...+ = _4_°© +."
= 23 v/2)! (v/2+1)!

4

2

=byp+ b &+ by & + b E b8+
1

Ez-wzz(ve"2+l}1= 2 or Lim b, =E
b, 1 2+v v—ao b v
(w/2)
This shows that H(E) diverges approximately as e and the product H(&e ™ will behave
5212
like e in this region which tends to ®, asg—>® .So this 1s not an acceptable

solution. This situation can be avoided by coosing A in such a way that the power series for
H(Z) cuts off at some term, making H (Z) a polynomial.
From eqn (2.9), by making
A=2s+2v+ 1.
we can make the series cut off. The index s can still be either 0 or 1, and corresponding to

these values, A 1s equal to 2v + | or 2v+3 where 2v 1s an even mteger. Or,

A= (2n+]). n=0,1.2...
2E, ™ _an+
Then H K



AE

|
E, =[n +—)F¢ @,

or 2

9/2 hw,
n =012. (2.9A)
K

where @, = J%is the classical 72 hw,

angular  frequency of  the 5/2 h w,

oscillator.
3/2 hw,
Y hw,

Zero point energy. The energy levels given by equations (2.9A) are discrete and have equal
spacings. When »n=0, the finite value of lowest energy or ground state energy 1s (1/2) ha,.

Hence zero point energy 1s given by,

0

E :lﬁfuc
2

and all higher energy levels are separated by an amount equal to ho.. Zero point energy 1s

charactenstic of quantum mechanics and 1s related to the uncertainty principle.



(stv+2)(s+tv+1llay+21—(s+2v+l- L)ay,=0 2.8)
From these expressions we can write,
_ 25+2v+1-4
C (s+v+D)(s+v+2) &

ay

(2.9)

where v i1s an integer. Since ag cannot be equal to zero. from the first of equations (2.8). s =0
or 1. If ap is equal to zero. only odd powers appear. With a; equals to zero. the series
contains even powers only. If we examine the convergence of the power series solution
defined by equation (2.9). we find that as v — =, (a,+1)/a,— 2/v. so that the series converges

tor all finite values of =.

Ls2
onsidering the series expansion o © . we have
C dering th P fe€ |
P =6 e ¥ = w2
VI RS PP S S R S +.
e _1+4 .
= RE (v/2)! (v/2+1)!

2 2 = I‘I_.':I
=bo+bs Z+bsF + b, P by

1
b, (v/2+1) 2 or Lim £ _2
b, 1 2+v V—ra0 b, v
(v/2)!

: o . et
This shows that H(Z) diverges approximately as e and the product H(Se will behave

w202

. . : . . as S —» o0
like e i this region which tends to -

~" So this is not an acceptable
solution. This situation can be avoided by coosing A in such a way that the power series for
H(Z) cuts off at some term. making H (Z) a polynomaial.
From eqn (2.9), by making
A=2s+2v + 1.
we can make the series cut off. The index s can still be either 0 or 1. and corresponding to
these values. 2 1s equal to 2v + 1 or 2v+3 where 2v is an even mteger. Or.
A={(2n+1). n=0.1.2...

.
2E, ™ _onan

Then h K




A FE
i 1 A
E":| n+— ‘ﬁm{_.
.

or , ~-7

9/2 fi w,
n = 0.1.2.. ~(2.9A)
f

where o, = M'; 15 the classical 72 ki w,

angular  frequency of  the 5/2 Fi w.

oscillator.
3/2 hw,
Y2 hiw,

Zero point energy. The energy levels given by equations (2.9A) are discrete and have equal

spacings. When n=0, the finite value of lowest energy or ground state energy 1 (1/2) o,

Henee zero point energy 15 given by,

l
E{]:;T!fﬂc

-

and all higher energy levels are separated by an amount equal to he. Zero pomt energy 1

charactertstic of quantum mechanics and 1s related to the uncertamty principle.

Infinitely deep potential well or particle in one-dimensional box

Consider a square potential well with infinitely high sides, as indicated in figure (2.1). The
particle 15 bounded by impenetrable rigid walls of width 2a as shown.The potential of the
well is represented by,

Fix) =0 for-a<=x<a and

Fix) =+ m, for |Jr|2a

The boundary condition on the wavefunction 1s, it vamishes at the wall. That 1s



The boundary condition on the wavefunction 1s, 1t vamshes at the wall. That 1s

A . 4
Via =Wy =0 ;
The wave equation for | X | <d1s i
=0 vl
‘F—"f+a3w={], where @ = 2sz
-a ID +a
The general solution of this eqn can be written as, Fig.2.1
w=Acosax +Bsinax (2.10)
Applying the boundary conditions,
y=0atx=a and y=0atx=-a
Weget, Adcosaa + Bsmaa =0 (2.11)
and Acosaa -Bsinoa =i (2.12)
Adding and subtracting equations (2.11) and (2.12), we get,
2Acosaa =1 and 2Bsmaa =0
There are two possible solutions namely,
(1) A=0 or cos aa = 0.
(m) B=0 or sinoa = (.
For smaa =0, oa = 27, 31 ... n /2 where n 1s even
And for cos aa =0, aa =n2, 3In2,...=nn/2, where n 1s an odd integer.
We have, 2 J2mE R 2.13)
h- 2m
or In general, E,, = "‘E-hf since, ¢ =n 1 ./2a. (2.14)




There are an infinite sequence of discrete energy levels that correspond to all positive

integral values of n.

Wave function. The general form of wave functions may be written as

nrTx

W, = Acos o when n 15 odd
a
W, = Bsmn ”zﬂ when n 1s even
a

To normalise the wave function y_ :

From eqn (2.15),

2 E 2 * RTX
— .4 —fix=l
| :I; cos” ——
Es

il 2
Ji[l+cnﬁ Znﬂ'x] dy=1
2 2a E;

=i

On simplifying the above integral we get,
42 =L o a-J0Ta). E;
i

Similarly we can show, B=./(1/a).
Es

Hence the normalized wavefunctions are,

(2.15)

(2.16)

W,

12

Wy

Fig. 2.2

+a



1 nrTx

- =1,3,5,.). 2.17
i.li'rﬁ .“{Ems za (H } ( }
1 . nmx
= — _
V.= TS (n=2,4,6,.). (2.18)

The energy levels and wavefunctions are shown in fig. (2.2) The successive energy states
differ by half wavelength. The lowest energy level has only half wavelength. The points
between a = x = - g, where the wave function vanishes are called a node. For a
particular energy state, characterised by the quantum number n, the number of intermediate
nodes 15 (n-1). Wavefunctions w,(x) for odd n are even functions of x. Such functions are said
to have an even party (symmetric). Similary w,(x) for even n are odd functions

(antisymmetric) and have an odd parity.

Rectangular potential barrier

Let us consider the one-dimensional problem where the potential 1s defined as in fig.2.5.

U{R:|=Un
Fix)=0 jfor x<10 Y
=, forl<x<g E
=0for x=a » ! >
N :
1 UI:II
| [
1 E 1
(2.31) (- v Il
1 1
] 1
Here we have a potential barmer V(x)=0 v W Vix)=0
X=0 =a
between x=0 and x=a. If a
Fig. 2.5

particle having energy less than



V,.i.e., E <V,,approaches this barrier from the left, i.e., from 1™ region, classically the

particle will always be reflected and hence will not penetrate the barrier. However, wave
mechanics predicts that the particle has some probability of penetrating to region 3'd, the

probability of penetration being greater if g —p; classical mechanics predicts that the

particle will always be transmitted ; while according to wave-mechanics, the particle has a
finite probability of transmission and hence 1t 1s not certain that the particle will penetrate the

barrier.

The Schroedinger equation for region-I 1s

d zwl 2m :
—+—FEy,=0 (since 1'=0). (2.32)
ax -  h

The Schroedinger equation for Il region 1s

Sy, 2m
2 4 E—V y, =0. (2.33)
ax® Rt ( o)

The Schroedinger equation for III region is

%+2—T Ey,=0. (2.34)
ox A

Here y/,,y/,and y,are the wave-functions for I, IT and III regions respectively.

The general solutions of equations (2.32) (2.33) and (2.34) may be written as
A N 5 i (2.35)
w,=A,e"*'" + B,e™">*'" (2.36)

W= A" 4 B ot (2.37)



where p and p,.are the momenta of particle in the corresponding regions, which are given

by

(2.38)

A.B,4,.B,and R, are constants to be determined by boundary conditions.

In equation (2.35) the first term represents the wave travelling along +ve y-axis m the I
region, 1.e., the incident wave and second term represents the wave travelling along negative

X -axis r.e., wave reflected at x=0.

In equation (2.36), the first term represents the wave travelling along (+) ve X -axis mn the II

region, l.e., the wave transmitted at x = 0 and second term represents the wave travelling

along (-) ve X -axis in the Il region, 1.e., the wave reflected at x=a.

In equation (2.37) the first term represents the wave travelling along (+)ve X -axis in the III

region, Le., the wave transmitted x¥=aand the second term represents the wave travelling

along (-)ve X -axis in the III region; but no wave travels back from infinity in III region.

Consequently /3, = (,so that the solution of equation (2.34), 1.e., equation (2.37) can be

written as

py = A" (2.39)
For the evaluation the constants 4. B,..4,. 8, and 4, we shall apply the conditions at the

two boundaries x=0 and x=a.

One conditions 1s that ¥ must be continuous at the boundanes, 1.e.,

{W|=|‘fb_ at x=0 ... { A )}

Vo= at X=@ ... ( B (2.40)



The other condition 1s 2y / &x must be continuous at the boundaries 1.e.,

v, oy, atx=(0

L= atx=0 ... (A)
%: %au:a ......... (B) (2.41)

Applying boundary condition (2.40A) to equations (2.35) and (2.36), we have
A +B =4,+8, (2.42)

Applying boundary condition (2.40B) to equations (2.36) and (2.39), we get

Ae ipralh +B,e ~ipalh =A 38 imalh

2 2 (2.43)
Differentiating equations (2.35), (2.36) and (2.39), we get
_a(;/: = i%‘-—[Ale‘”"' " 4 Be /] (2.44)
8‘/’2 - ll)_2 [A_’elpgx."h 2 B,e-ip;.\- -‘h] (2.45)
ox G =
OV _ Py 4 goein (2.46)
ox h
Applying boundary conditions (2.41) to these equations, we get
P [Aa = B|]=P2[A2 e Bz]
and pl [Ale iP:a:h —Bze -ipalh ]: pl [Ase[pla,'h]
or 4-B=L2(4,-B) (2.47)
Py
[4,e72% — B,g e |< Lu g gmare (2.48)

P>



Solving (2.42) and (2.47) for 4, and B,, we get
2 f3 2 3

B=t(1_P| Bf| P
o2 a2 2 2

Solving (2.43) and (2.48) for 4, and B,, we get

\ v
4, =ﬁ[1+& M Prp2)alh
20 p.)

™
B:ﬁ 1P|, ipr+py)alh
2 2 sz

(2.49)

(2.50)

(2.51)

(2.52)

Substituting values of 4, and B, from these equations in (2.49) and (2.50), we get

4= g [n&][nﬂ}e - n+[|_&][|_ﬂ]e s (2:53)
4 AN L i P l
B =t e [1_&][1+ﬂ]e "+[l+ﬂ][|—ﬂ]e s (2:53B)
4 L p P, P, P, |
Equation (2.53A) may be written as
A 4e "
5
- —ipa
4 [H&][H&]e 2 Z[]-&][]-&]efﬁzm
4 P 4 P
_ 4p p,e "
(Pr+py) e P = (py—py)Pe "
_ 4pp.e "
- 2 2 —ipaai ) —ipryal h ipyalk
(p +p e ™ —e™ )+2pp,(e +e



zp.pze—Jma.-'k

—ipyal i _e—lpza.".’r I:e—rpza.-'ﬁ +e—rpga.-'ﬁ)

2 2. €
(P} + PN E— )+ 2pp, .

Dividing equation {2.53B) by (2.53A), we get,

(l—p_z][l-Fp] ]e_*}"z"-"f +(1+p_2}(1_p1 ]er'_ﬂ'jar:.!r
B, P p: P p:

A4 2 a s

| [1+p_ ][1+pl]e_fpzu;k_‘_[l_p—_][l_p]]ew_"-h
P P P J2E!

2 2 —ipaalh . )
(r,-r)e —e mell)

- : e 2 5 .
(pI+P2} [é'.' _(P]—Pl) e ipaalh

"'P:'-'-"a)

(i -pe ™" ¢

O 3 R i E T X

—ip ik ipqa i]

Case (i) £ >V, ;in this case p, =+[2mE, p,=.[2m(E —V,), both are real so

A ‘d':"if‘l:’5"'2.‘5'_'-'%‘1”-ii
4 (p? + p%}{—z.-'sh%}+2plpl [—ZCOS% ]

gl k

2p,p;

2 2 . pa a
:(pl + pE]sm%+2plp2 ms%

iy

A * 2pp, e

2 2
4 —f(p1+p2)sm%+2plﬂzm5

Pa
h

Transmitted flux
Incident flux

.~. Transmission coefficient 1=

Incident flux 4,4, L2 AA
m

P,
p_Reflected flux _ 5i5™% - BB *



Rigid Rotator

The system, consisting of two sphenical particles attached together, separated by finite fixed
distance and capable of rotating about an axis passing through the centre of mass and normal
to the plane contaming the two particles, constitutes, a ngid rotator. If these two particles are
constrained, to remain in one plane, then the direction of the axis of rotation 1s fixed and so
the system 1s called the ngid rotator with fixed axis. If the plane of these two particles can
move, then the axis of rotation 1s free to take any position in space and so the system 1s called
the ngid rotator with free axis. In a diatomic molecule the atoms vibrate with respect to each
other and so the distance between atoms will not be always constant ; while the distance apart

of the equilibrium position 1s constant. Thus the system of diatomic molecules 1s not really

Axis of rotation

| rj_ I"z |
S e R L M- ——— >
| |
|
| | |
| : |
| |
I my : | ms
I | [
| | |
|
I | |
I I |
I | [
—————————————— 4——— »



Energy for the rotator
The kinetic energy of a particle of mass M can be expressed as

T=%m(irz+j:1+jz} (2.57)
where x,y,Z are the components of the velocity of a particle along X yand » axes

respectively. The transformation between Cartesian co-ordinates (x, y, =) and spherical co-

ordinates (r.0, ) are given by
x=rsmcos g
y=rsmésmg (2.58)
z=rcost

so that the kinetic energy in spherical co-ordinates 1s expressed as

T:%m{:‘2+ r2 g.’l +r? sinZ@ @52 ) (2.59)

If the distance yof the particle from the origin 1s fixed, its derivative r will be zero ; then

from equation (2.59) the kinetic energy would be
T=%mr2 (&7 +sin’ @ ¢*) (2.60)

Taking ¢, the centre of mass of the rotator, as onigin, the K.E. of the particle of mass m,1s

given by
E=%m,rf{§1+sin’p9g5’]

Similarly the KLE of the particle of mass m, 15

T, =%m2r%(§: +sin” H‘tﬁ:]



Hence the total kinetic energy of the rotator will be

T=T +7T, = %mlr%{éz +sin’ O # )+%mzr§{éz +sin’04%)

=( Jmr )(éusm:ef] @61)

As there 15 no potential energy of the rotator, total energy 1s given by

F=T+1=T (since 17 =)

,
=( —mr +—myr

S+ j)(é%sin?e;i&:] (2.62)

But m, r': +l m,r =1 , the moment of interia of the system about the axis passing through the
2 2

centre of mass and perpendicular to the line joining the two masses.
E=T=% I(6* +sin”> 0¢%) (2.63)

The moment of inertia of the rotator may be expressed in a more convenient form as follows :

. .. miy + myh
According to definition of centre of mass, 7, = ——— , we have
m1 ‘|'ﬂ‘fi2
—mn +mr,
=——— je my, = m,r, (2.64)
ml +m2
But =n+n or =15 -h

Substituting this in eqn. (2.64) we get



my = m, (-1 )

m,
n=——-—--—n (2.65)
!‘?’i]-‘i-.i'ﬂ2
m
Similarl r,=—1—r 2.66
o Y om4m, " (2.66)
1 2

Then the moment of intertia of the rotator may be expressed as

2 2
I 2+[ 2 m, N m,
=my t—myy =m, | ———r, m, | ——r
N T 1 m, +m, 0 Timo+m, 0
_ MM 2 gince, .fz,urﬁ (2.67)
m,+m3
where - ™", (2.68)

iy + iy

1s called the reduced mass of the system.

From equations (2.60) and (2.63) 1t 1s evident that the rigid rotator behaves like a single

particle of mass & given by eqn. (2.68) placed at a fixed distance, equal to unity (since

7 =1) from the origin, which in this case is the centre of mass of the system.

Wave equation for the rotator : The Schroedinger wave equation in three dimensions in
spherical co-ordinates is given by

1 8.8 1 8. .8 1 &y 2
B o e s e T (2:69)
ror or r sm# 2o o) rism™ 8 ogm kT

For a ngid rotator we have seen that potential energy 1s zero. r=| and the mass M may be
replaced by the moment of mertia /. Therefore the Schroedinger wave equation for a ngid

rotator becomes

1 2 (gnplr |, L ow 2y, (2.70)
smi & af smi gk

This equation consists of two variables # and ¢ which represent the precessional motion of

the rotator’s free axis and the rotation of the system respectively.



Eigen values or energy levels of the rigid rotator.

21E
3 =I(l+1)
2
or E=E:=% [=0,1,2.3....

This equation gives allowed values for the energy (1Le. eigen values) of a ngid rotator with

free axis.

The Hyvdrogen atom

The Schroedinger wave equation 1s ; P
written as i
/]
v2y+ 24 [E—1]y =0, 8 'z
h2 :
In spherical polar coordinates (fig 2.8) d}‘n ; .
x=rsin 0 cos ¢ L x
y=rsin0sind ST o
Yy

z=rcos B

The expression for V® in sphenical



polar coordinates 1s expressed as,

2 15(25) 1 a(. a) 1 &
Vises—|r — [+————|sinf— [+ ————
r-or or ) r-snfado 60 ) risin“ 0 o¢°

Hence the Schroedinger wave equation in a spherically symmetric potential may be written in

the spherical coordinates as

2
Lg(,zﬁi]+ - i[sin %),L 5 —— L ey =0,
2o\ ar ) 24n900 e0) r* sin“@ a¢2 h=

The solution of the above equation can be separated in different variables of », @ and ¢ by
writing.

w (r.9,0) = R(r) © (6) ® (¢)
and differentiating, dividing throughout by v = R ® ® and multiplying by r’ sin *0 we get,
sin® @ i( 2dR) 1 d*® sinf d [Sm0d®+)+2yr'szm'6{5

R dr\' dar) ody © a6\ " a8 7

-V(r)}=0.

(2.107A)
The second term of this equation depends only on ¢ and the rest is independent of ¢. Hence

the second term should be equal to a constant . Let the constant is equal to -m’

Thats ld'o
at 1s, D dngiz
d’d 2
e =+m D=, (2.108)

With this value for the second term, equation (2.107a) now can be written as,

1 d( ,dR 1 1d(. .d® P 2urt
- —[r’- —]+_— ——[sm9—+]—_m—2+ﬂ—:{E—V(r)}=ll
R dr\ dr ) sm@ ©df de sin h (2.109)
The I and IV terms of this equation depend only on r and the II and III terms only on ©;
therefore each part must be equal to a constant, (say) A.

2 2
L (2 2y (590,
R dr i ﬁz 551123 Gsind di de




50 that we have

2
! i[singﬁ}[,a—_’"—l]@ﬂ.
sin & d@ dé sin” & (2.110)
4P v R0
and rodr dr h (2.111)

Equation (2.108), (2.110) and (2.111) are known as ¢, 0 and r equations respectively.

(b) Solution of ¢ equation :

The ¢ equation 1s d°d =4+m*d =0
d¢’
This 1s a second order differential equation whose solution is given by
O=Ae*'"* (2.112)

where A is an arbitrary constant. The constant may be evaluated by normalizing @, i.e.,
[ or0ds=i

[" #dp =1 i
A=—— (@113
or Jz_” ( )

therefore the solution becomes

I timg

d=——e
vz (2.114)



The single valuedness of the function @ indicates that it should have the same value at ¢ = 0
and ¢ = 2m; hence
d=A=4€"""
R cos 2amEisin2 am =1
or (2.115)
This 1s true only when m 1s zero or an integer (positive or negative). Thus we write

1
o=—=g"",
Vax m=0,+1,+2, ... (2.116)

The quantity m is called the magnetic quantum number .

Energy of atomic levels and degeneracy.

- 7 152
We have assumed that A= Ze H
h | 2| E|
, 2% u
A Tm—,— —
o n 2(E|
Replacing 4. by n
ZEE-1
E =-|E, |=- —;;1 — (2.137)

Equation (2.137) 1s the expression for energy of an atomic state of a hydrogen - like atom
defined by the principal quantum number n.
Now consider the equation

n=n+1+1
can be satisfied for a given n for several combinations of n,. and /. This implies that there are
several possible wave functions for a given energy value (n fixed). When this happens the

state 1s said to be degenerate. This holds good for every value of n > 1.



To determine the degeneracy
From equation (2.137) it 1s clear that energy eigen —values depend upon n and so are
degenerate with respect to both / and m. Thus for each value of n, [ can vary from 0 to n —

and for each of these [ values, m can vary from — [ to +/. So, the total degeneracy 1s

2{21 1]_2{"](" D n (2.138)

so that for n=2, we have /=0, m=0, and /=1, m=0,+1,-1 giving four wave functions or
quantum states etc. Fig. (2.10) shows the different eigen - states in case of hydrogen - like

atom.

The solution for radial wave function is found as

) !
2| (n-1-1) zr | 2zr |y 2er
R(r)= Uil L Y S el 0 et
" [ ]Eﬂﬂnh‘l'l }ﬂqﬂ[ ﬂuIma] '[ﬂﬂu]

The complete solution for the problem of hydrogen atom 1s obtained by multiplying the
solutions R(r), @) and D(g)




Non Coulomb ﬁE||".Z| MNon central

|
|
|
[ | m=+1
: cenfral ield | =+
| = | m=0
| =2 | m=-1
| | m=-2
| |
I :/ m=+1
Toolomb fietd =]
I N m=0
n:3 I I
: : m=-1
| |
| |
| =0 i
| |
| |
| |
: :/ m=+1
| 1
| =l | m=0
| |
= | : n=-1
| |
I =0 | m=()
| |
| |
| |
m=t . =t I =1t
Fiz. 2.9
In particular
m=0,+1,+2, ... +/

In particular

1=0,12 ... (n-1)

m=0,x1,+£2, ... /!

1=0,12 .. (n-1)
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