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UNIT 1
MONATOMIC LATTICE VIBRATIONS

For monatomic gases we can model heat energy as the kinetic energy of the atoms.
This model leads to the ideal gas law, and the model can be expanded to include other gas
molecules. For solids, we can model heat energy as the energy in lattice vibrations. This model
should then lead to predictions about heat capacity, thermal conductivity, and thermal
expansion of solids.

We first look at longitudinal oscillations (oscillations in the direction of the wave).
Homework problems will look at transverse oscillations (oscillations perpendicular to the
direction of the wave).

For simplicity we consider first a one dimensional crystal lattice and assume that the
forces between the atoms in this lattice are proportional to relative displacements from the
equilibrium positions.
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Lattice Vibration

The wave-like solution is

u(x)=A-expli(gx—wt)] (3)

w is the angular frequency P= h/ZTC XJg
g is the wavevector > E= h/ZTC X

The vibrational motion in the crystal is regarded as a kind of wave
propagation. Because of the finite extent of the crystal, the wave motion is
often regarded as a standing wave system. the phonon is defined to be
the quantised energy of elastic waves in a crystal. The phonons are similar
to the photons in electromagnetic waves in many respects. Both of these
two excitations exhibit the duality property, namely possessing both wave-
like and particle-like behaviour.



We assume tbat the elastic response of the crystal is a linear function of
the forces. That is equivalent to the assumption that the elastic energy is a
quadratic function of the relative displacement of any two points n the crystal.
Terms in the energy that are linear in the displacements will vanish in
equilibrium—see the minimun in Fig. 3.6. Cubic and higher-order terms may
he neglected for sufficiently small elastic deformations.

We assume that the force on the plane s caused by the displacement of the
plane s + p is proportional to the difference u,y, - u, of their displacements.
For brevity we consider only nearest-neighbor interactions, withp = £1. The
total force on s from planes s % 1:

Fs - C(usH - “s) + C(uc-l - us) . (l)

This expression is linear in the displacements and i of the form of Hooke's law.

The constant C is the force constant between nearest-neighbor planes
and will differ for longitudinal and transverse waves. It is convenient hereafter
to regard C as defined for one atom of the plane, 50 that F, is the force on one

atom in the plane s.
The equation of motion of an atom in the plane s s

M{-l:%f = Clugs tUs-1 ™ M)

at*

2)

where M is the mass of an atom. We look for solutions wiih all displacements
hen dufdt = ~0 and (2) becomes

having the time dependence exp(~iof). T

~Mau, = Clugp Tt ™ ) - (3)



This is a difference equation in the displacements u and has traveling

wave solutions of the form:
u,., = u explisKa) exp(* iKa) , (4)

where a is the spacing between planes and K is the wavevector. The valye t,
use for a will depend on the direction of K.

With (4), we have from (3):
—w*Mu explisKa) = Culexplils + 1)Ka] + expli(s — 1)Ka]
We cancel u exp(isKa) from both sides, to leave
™M = —C[expliKa) + exp(—iKa) = 2] .
With the identity 2 cos Ka = exp(iKa) + exp( -iKa), we have the dispersion
relation w(K).

= 2explisKa)} . (5)

(6)

w* = (2C/M)(1 — cos Ka) . (M

The boundary of the first Brillouin zone lies at K = *m/a. We show from
(7) that the slope of w versus K is zero at the zone boundary:
dw¥dK = (2Ca/M) sin Ka = 0
at K = +/a, for here sin Ka = sin (*m) = 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.
By a trigonometric identity, (7) may be written as

W= (4C/M)sin® 1Ka ; @ =(4C/M)"|sin 3 Ka] .

(8)

(9)

A plot of @ versus K is given in Fig. 4.
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Figure 4 Plot of @ versus K. The region of K < 1/a or A ® a corresponds to the contin-
uum approximation; here w is directly proportional to K.
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First Brillouin Zone

What range of K is physically significant for elastic waves? Only those in

the first Bﬁ“"‘fi“ zone. From (4) the ratio of the displacements of two succes-
sive planes is given by

u,., _ u expli(s + 1)Ka]

u, u exp(isKa) = expliKa) . (10)

The range — to + = for the phase Ka covers all independent values of the
exponential.

The range of independent values of K is specified by

-m<Ka=w

w ow
N or E<KS?'

This range is the first Brillouin zone of the linear lattice, as defined in

Chapter 2. The extreme values are K, = *w/a. Values of K outside of the

first Brillouin zone (Fig. 5) merely reproduce lattice motions described by
values within the limits *#/a.

We may treat a value of K outside these limits by subtracting the integral
multiple of 27/a that will give a wavevector inside these limits. Suppose K lies out-
side the first zone, but a related wavevector K’ defined K’ = K — 27m/a lies within

the first zone, where n is an integer. Then the displacement ratio (10) becomes
u, . /u, = expliKa) = exp(i2mn) expli(Ka — 27m)] = expliK'a) , (11)

because exp(i2zn) = 1. Thus the displacement can always be described by a
wavevector within the first zone. We note that 2zrn/a is a reciprocal lattice vec-
tor because 27/a is a reciprocal lattice vector. Thus by subtraction of an appro-
priate reciprocal lattice vector from K, we always obtain an equivalent
wavevector in the first zone.

At the boundaries K, = =@/a of the Brillouin zone the solution u, =

u explisKa) does not represert a traveling wave, but a standing wave. At the
zone boundaries sK,..a = *s#, whence

u,=uexp(:tis1r)=u(—l)‘ : (12)

Figure 5 The wave represented by the solid curve conveys no information not given by the
dashed curve. Only wavelengths longer than 2a are needed to represent the motion.



s oscillate in opposite phases, beca
r an odd integer. The wave p,

This is a standing wave: alternate atom
u, = * 1 according to whether s is an even ©

neither to the right nor to the left. .
This situation is equivalent to Bragg reflection of x-rays: when the g,

condition is satisfied a traveling wave cannot propagate if? a lattice, b
through successive reflections back and forth, a standing wave is set up.

The critical value K., = *7/a found here satisfies the Bragg conditiop
9d sin 6 = nA: we have 8 =3m.d=a,K=2wA,n= 1, so that A = 2. w;y
x-rays it is possible to have n equal to other integers besi.des unity because th
amplitude of the electromagnetic wave has a meaning in the space betweey,
atoms, but the dispiacement amplitude of an elastic wave usually has a megy,.

ing only at the atoms themselves.

Group Velocity
The transmission velocity of a wave packet is the group velocity, given a
v, = dw/dK .
or
v, = gradg o(K) (13)

the gradient of the frequency with respect to K. This is the velocity of energy
propagation in the medium.
With the particular dispersion relation (9), the group velocity (Fig. 6) is

0, = (Ca¥/M)"* cos } Ka . (14)

This is zero at che edge of the zone where K = #/a. Here the wave is a standing
wave, as in (12), and we expect zero net transmission velocity for a standing wave.

Long Wavelength Limit
When Ka < 1 d _ Yiming . _
I we expand cos Ka = 1 — 3(Ka)*, so that the dispersion rela-
SIS, (15)

The result that the frequency is directly proportional to the wavevector i th
!ong wavelength limit is equivalent to the statement that the velocit ; - ;
is independent of frequency in this limit. Thus p = w/K, exactl 4 °h5°"“
tinuum theory of elastic waves—in the continuum limit Ka < ly =SS

Derivation of Force Constants from Experiment

: 11.1 metal.s the effective forces may be of quite long range and are carried
rom ion to ion through the conduction electron sea. Interactions have been

found between planes of atoms se
parated by as many as 20 p|
a statement about the range of the forces from )t,he obfe::‘:(si. ::;:::::::



Lattices with two atoms per primittive cell

Lattice with 2 atoms per primitive cell

1. Let's look at a plane that contains only one kind of atom (say the 100 plane in the SC lattice
of CsCl, or the 111 plane in the FCC lattice of NaCl both of which contain only one kind of
atom). Let's call the displacement from its equilibrium position of this plane, us . Let's call the
displacement from its equilibrium position of the next plane which contains only the other kind
of atom, vs

P

H
i
i
H
i
£
H

u(mlx) v(na)

2. Let's consider only nearest neighbor interactions, and call the spring constant between these
C12 =C. Let's also call the mass of the one atom, M1 , and the mass of the other atom, M2 ,
where M1 > M2 ..

(Cl has a mass of 35.4 amu; Na has a mass of 23.0 amu; Cs has a mass of 132.9 amu.)
Note: If we put one kind of atom at a lattice point and the other in the hole, we have the same
kind of lattice if we consider the other atom as at the lattice point and the first atom in the hole.
In other words, it doesn’t matter if we put the Cl atom at the lattice point and Na in the hole, or
put CS at the lattice point and Cl in the hole.

3. Since we have two different atoms, we will have two different equations from Newton's
Second Law:

M1 d2us/dtz2=C(vs -us ) + C(vs-1-us), and



M2 d2vs/dt2 = C(us+1 - vs ) + C(us - vs)

[ 20 ( 1,1 ) ]"2 Optical phonon branch
M, M,

(2CIM V2

M, > M,
(2C/M 1=

Acoustical
phonoen branch

|y ———————

Latent Heat

Latent heat, energy absorbed or released by a substance during a change in its physical state
(phase) that occurs without changing its temperature. The latent heat associated with melting
a solid or freezing a liquid is called the heat of fusion; that associated with vaporizing a liquid
or a solid or condensing a vapour is called the heat of vaporization. The latent heat is normally
expressed as the amount of heat (in units of joules or calories) per mole or unit mass of the

substance undergoing a change of state.

Specific Latent Heat _— HeatEnergy
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https://www.britannica.com/science/energy
https://www.britannica.com/science/temperature
https://www.britannica.com/science/solid-state-of-matter
https://www.britannica.com/topic/freezing-food-preservation
https://www.britannica.com/science/liquid-state-of-matter
https://www.britannica.com/science/heat-of-fusion
https://www.britannica.com/science/heat-of-vaporization
https://www.britannica.com/science/heat
https://www.britannica.com/science/joule
https://www.britannica.com/science/calorie

Density of States

In solid state physics and condensed matter physics, the density of states (DOS) of a
system describes the proportion of states that are to be occupied by the system at each energy.
The density of states is defined as , where is the number of states in the system of volume whose
energies lie in the range . It is mathematically represented as a distribution by a probability
density function, and it is generally an average over the space and time domains of the various
states occupied by the system. The density of states is directly related to the dispersion
relations of the properties of the system. High DOS at a specific energy level means that many
states are available for occupation.

Generally, the density of states of matter is continuous. In isolated systems however, such as
atoms or molecules in the gas phase, the density distribution is discrete, like a spectral density.
Local variations, most often due to distortions of the original system, are often referred to
as local densities of states (LDOSS).

Density of states

The wavevector q

7w 27 37 4r (M -1)rx

q

S R , , , , ...... ’
L L L L L
K-space
0 =n/L 2n/L g —

There are M-1 allowed independent value of g, thus

N:ﬁ D(w):d_Nzéﬂ
T do ndow


https://en.wikipedia.org/wiki/Solid_state_physics
https://en.wikipedia.org/wiki/Condensed_matter_physics
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Dispersion_relation
https://en.wikipedia.org/wiki/Dispersion_relation
https://en.wikipedia.org/wiki/Isolated_system
https://en.wikipedia.org/wiki/Discrete_distribution
https://en.wikipedia.org/wiki/Spectral_density

We shall now determine the possible mades of vibration (1.8, 'Ll.\e '2""'"’"'!“3,‘ Sﬂlu.f.long
[ the wave equation which satisfy a given set of houndary conditions) mn ,(),n.L imensinng)
tomic lattice of finite length L. Let there be (N 1 1) atoms in Jength L al “""":;‘“““ @ and
umbered n =0 to 2 =N as shown in fig. 15 Suppose the atoms at the two ends are ficed.

" o e~ ® ® ® @Fixed
2 3 & 5 & 7 8B

Xy -

Fig. 15. Elastic line of (N + 1) atoms with N = 8 for fixed boundary conditions.
Vhen a wave is moving in the lattice, it is reflected from the fixed end and & standing wavg.
s generated. This standing wave is represented as -

xp = Xq 8in kna sin 0 { .14)
If this equation satisfies the boundary condition, which at Lthe two ends are .
x,=%9=0. .15

This requires that
sinkna-sin kNa=0
n 2n 3n
% k= e Ne’
>r . 2n 31 4r

<
A

|

4n
» Na'™"

2,
a

a
Nn §
'L L L L ...{16)
where N a = L. Here £ =0 is excluded as it corresponds to all the atoms at rest. Further for
L Nz we have
L
X,=Xp sinnmsinwe=0.
The value also corresponds to all the atoms at rest hence this value is also excluded.
We thus conclude that

1%_21:’1,3?»1““9___'\’-1’1)“ L
Thus there are (N - 1) allowed independent values of k. This number represents the
number of atoms allowed to move. Hence there are (¥ - 1) normal modes. So there is one
n=0,8 normal mode of vibration cérresponding to every atom which is

RE. LT mobile.
: We have shown above that under fixed boundary conditions
: - fatoms al the boundary are fixed), the number of possible
: 1 vibrational modes of a lattice is equal to the number of atoms
~  which are mobile. Now we shall derive the same result when the

'.. o' two ends of the lattice are free and suffer exactly the sam
B n gt displacement, when a vibrational motion is excited. Actually thi
g M happens [or a lattice of length L inside in an infinitely long lattice
e [n this case, we assume that the lattice has heen bent into circul?

Fig. 16. Lattice bent with  form with zeroth atom joined to N atom to form a close lattice ¢
a ring by joining zeroth 0 iy fig 16
atom with eighth atom.



Xp=xgexpli(wt-kna) ...(18)

This equation will be ¢ali ¢ .
be the same; i.e.. valid when the displacement x,, at the two ends of the Jattice must
..(19)

ll\h' l. . tﬂ-"xﬂ N
Is COn . o £ 3 o
set of NV ;t:u;(-lt[l on corresponds to the repeition of same amplitude conditions after every
= 'tit‘u ;) of -~ ';, another words, we can say that the conditions correspond to the periodic
IRpEAY amplitude, of course, periodicity being of the lattice L=Na. In general,
n =yt u ..(20)

'I.he _ahove conditions were proposed by Born and Von Kurman and are called as cyelic
or periodic boundary conditions.

Applying the boundary conditions to eq. (18], we get

expl[-ikNal=1 (21
: Lok AL 6N Nn
o R iNa"tl\ia‘ t.(\ia""'ti\.'a
o 427 4% 61 Nz
or k=0, 1 L' L' L' L ...(22)

So. the total numbe> of independent k values is equal to N. This is also equal to the
ove. So, under this condition too, the number of possible

number of atoms which are free to m
ber of atoms which are mobile.

vibrational modes of a lattice is equal to the num

DENSITY OF k-STATES
The number of modes per unil range of
denoted by D(k). For one-dimensional lattice,

cach interval and hence

k is defined as the density of k-states. This is
with lattice constant q, there is onc mode for

Ak = g- (for fixed boundary conditions)
- gL- {for periodic boundary conditions)
So we have
Dik) = L tfor fixed boundary conditions)

{for periodic boundary conditions)

For fixed boundary conditions, & ranges from 0 to 5 while for periodic boundary

T o T This accounts for the diflerence of a factor 2 1n the two
[’s a

conditions, & ranges from -
course,

the total number of vibrational modes being the same for the

expressions of D(k): of
two representations.



INELASTIC SCATTERING OF NEUTRONS BY PHONONS
Consider that a neutron impinges on a solid crystal and is scattered inelastically. In

this process, the neutron will lose or gain the energy and momentum. Let loss or gam
corresponds to creation or annihilation of one phonon. The conservation of wave vector is
given by the relation .
k=k'+GtK AL
Here k is the wave vector of incident neutron and k’ that of the scattered neutron, G
is the wave vector of reciprocal lattice and K is the wave vector of the phonon. Positive and
negative signs are used for the cases when a phonon is created (+) or when a phonon is
absorbed (- 1) respectively.
Let M, be the mass of the neutron, then

2
kinetic energy of the incident neutron = ‘_P .
2M,

momentum of the incident neutron =4 k
219
kinetic energy of incident neutron = - ala
2M,

Inelastic scattering by phonons

* One way to determine the dispersion relation
of phonons in a solid is to use the technique

of inelastic neutron scattering.




Let k' be the wave vector of scattored neutron, then
2 b
Kineti . ) A =i
¢ energy of the scattered neutron = M
- "

Applying the law of conservation of energy, we have
Ut S i
2Mn b 2Mn i'h £2 -‘-<2'|

” E-E'+k Q.

The plus sign is used when phonon is created and negative sign
is used when phonon is absorbed. i Q is the energy of phonon created.

In order to determine the dispersion relation using equations (1)
and (2), it 1s necessary to find the gain or loss of energy of scattered
neusrons which will give i Q and hence Q. Secondly, we have to
determine the corresponding scattering direction which will give
k- k'. Knowing the value of G from k-k’~- G for the elastically . . .
seattered aeutruns, nne can obtain K This veetor is shown in fig. 26. Fig. 26. Ewald
We distinguish elastically scattered neutrons from inelastically  construction for

inelastic scattering

scattered neutrons by the fact that they are more numerous and of etREBHS.
produce a peak in the intensity curve at Bragg angle.

A time of flight method is used for inelastic neutron scattering. The experimental set
up is shown in fig. 27. A pulse of mono-energetic neutrons of proper energy E and wave

f

Sourceof | . colimator  —» Mono-chromator
neultrons

Fig. 27. The fime of flight method of neutron scattering.

vector k is allowed to fall on the crystal. The detector D measures the time of flight from
the initiation of the pulse. The time of flight gives the value of E’ and the position of deteetor
gives the direction of k’. Now h @ can be calculated. The neutron scattering occurs ai many
possible angles corresponding to different possible k vector of the lattice vibrations and hence
the detector is moved to another positions around the erystal. In this way different sets of
E" and k' are obtained. i o . :

The accurate determination of phonon spectra for sodium 18 shown in fig. 28. The figure
shows the dispersion eurves for sodium when phonons are propagated in (1001, [110] and
[111} directions at 90 K. ) o .

The neutron seattering is an ideal method for the determination of phonon spectra. This
tiéthod i« onlyrappiioahle when the absorption of neutrons hy nuclei of the crystal is not
high. Tn some cases. considering the angular width of scattered neutron bheam, seme

important data ahoul. the phonon life-time can be obtained.



‘heory may not work, especia

DEBYE’S MODEL OF LATTICE SPECIFIC HEAT

The Debye approximation : The crystals are made up of atoms, i, discreletz “nllass
points”. The reason is as follows : consider an elast.lc wave propagatgd in a crystal. As ongi
as the wavelength of the wave is large compared w1t?1 the interatomic dlstance§, the crysta
can be regarded as a continuum from the point of view of wave. Hence according to Deby(;
the continuum model may be employed for all possible vibrational modes of crystal. Thq tOtt}?
number of vibrations in a crystal spectrum can be obtained by integrating Z(v) dv \thh;ill oef
proper limits. The lower limit of integration may be taken as v =Q because the Ifxncas); oF
states in the frequency spectrum increases very rapidly with increasing frequenC)’-each e
a crystal having N atoms the number of vibrations cannot exFeed 3N beca:ilsf?ned e Sion
vibrates with the three degrees of freedom, hence the upper limit vp must be deil
a way as to satisfy the relation,

fovD Z(v) dv _ 3 N’ .o .(11)

: o i 4).
where v,, is called the Debye cut off frequency. The situation 182 showln ifigiee 9
Vp VD - _ 2 d = 3 N
: =] TdnVigtgV WV
¢ fo Z(v)av fo T (Cts Cl:;]

2 . 1Y [P g
ol 4nv[a§+a—13]fo vidv=3N.
5 g2 A Y9 o
.: " Ct3 Cla 3 ’
° i ON(2 1Y
Fig. 4. Showing the vpd= TSy — w12
cgut-off frequency. T 4nm V(Ct3 CISJ )

Taking ( —1‘},)= 10?8 per m3 and velocity of sound as 1000 m/s, we have

3 9x10% 1 2 1 77!
? 7 4x314 7 (10000 * (1000)3

g 9x10° T 3
vy = X
4x314 | (1000

The corresponding minimum wavelength is given by

-1
J or v,=1013 Hz,

V=V Ay O Ay = vi =(1000) x 10713 x 0.1 nm
D

This shows that wavelengths are greater than inter-atomic distances. So the continuum

lly in high frequency region.
an be calculated by the formula

VD_
E'=f0 EZ(v)dv

The internal energy E ¢

\Y

B=|  ZWides hv .(13)
0 exp hv -1 4
K, T




¢ G NEATN
P\ &, T
v\ v)?]
Vp P 9 2 exptKB TJ %;2
= 47!V[“+'i-lv2dv g
0 C3 ~3 2
O ox (hyv \_1
P\ K, T

. h hv
Putting ( KBVT) =x and (KB—%] =X, and using equation (12), we get

1 [*mxtetdx
C,=9NK, — —
v B xms 0 (ex _ 1)2 ..(14)
Let us define @, as the Debye temperature given by the relation
hv
Op= 7;"— : ...(15)
In terms of ©,, the expression for C, becomes
3 ~0,/T x.4
T D't e* x* dx
C,=9NK, [60} J, - .(16)
©p g
=3RFD—77 s NKB=R .7
4 ~0,/T x 4
TY (Pr" ex’dx
where FD =3 {@DJ _I;) (et o 1)2

and is known as Debye function. Eq. (16) is known as Debye formula for heat capacities of

solids.
Debye’s result for silver at ©, = 225 K is shown in fig. (5). It is observed from the graph

that heat capacity approaches classical value at high temperatures and zero value at low
temperatures.
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d low temperatures.

Now we shall consider the value of C, for high an o et S

(i) At high temperatures : For high temperatures T>>€p
with unity. Hence from equation (13),

3 .
% hvdy __on[BeT) g [ a2 .18
B=f 2 'QN["V:] el |
KT
where x=% and x, = I’;:;'
At high temperature e* -1~ x
x

E=9N-L5 KT [ 2 di=3NKsT .19)

xm
- c,= % =3NK, .(20)

The result is in accordance with classical results.
(ii) At low temperatures : At low temperatures, i.e., for T << @, the upper limit of
ntegration will be infinity, hence from equation (16), we have

C,=9NE, [..@f [ et

9

i
=9NKB'TI 4 4

== %
i\eb) 15
5 b

This is well known “Debye 7% law” and fs i . !
ood i enta
ta for many substances. The curve is shown in ﬁ: s agreement with the expern

¢ m a3
C’u = -1—2- 4IVI(B lg’] : .|‘2]|



h VDJ' do o1
- E o T4 W 22)

This result is analogous to Stefan’s |ay for the density of black body radiation. Thus
we can say that 4phonons and photons obey the same statistics with the difference that
ponons obey T° law only at low temperatures, while photons only T7* law at all
remperatures. The table shows the Dehye temperatures for a number of solids.

E< 9NK,,T[{{AE“I3 ( n 2 d

DEBYE TEMPERATURE IN DEGREES ABSOLUTE FOR A NUMBER OF SOLIDS
Solid Oy Solid 8, Solid Gp
Na 150 Fe 420 NaCl 281
K 100 Co a85 KCl 230
Ag 215 Al 390 AgCl 183
Au 170 Sn 260 AgBr 144
Zn 250 Pt 225 CaFy 474

Although the Debye approximation met a great success but accurate measurements
show deviations from theoretical predictions in low temperature region. According to Debye,
the T3 law should hold in the temperature region T<0-1 ©p but Blackman's paper showed
that this is not always true but T3 law holds for temperature region T'<0,/50, ie., at
considerably lower temperatures than predicted by Debye.



UNIT 4

Dielectric Constant

When use the dielectric constant we often are referring to a solvent. A refractive index refers
to speed of light. For a bulk material we describe the polarization density in a material.
Instead of looking at a single molecule, we can look at the polarizability of the entire bulk
material induced by an elecric field.

In bulk materials, the linear polarization is given by:
Pi(w) = D xij(1) Ej(w)
i (4)

where

Xt'(""‘") is the polarization density in direction i.
W is the frequency

Xij (-.’.d} is the linear susceptibility tensor of an ensemble of molecules.

Note that the vectorial and tensor aspects of E and X have been ignored to
simplify notation.

The total electric field (the "displaced" field, D) within the material becomes:

D=FE+4xP =(1+4dnx)E 5)

P =xE (Equation (4)),

4TTXE is the internal electric field created by the induced displacement (polarization)
of charges.

Polarizability: A Microscopic View

F=qE _ )

CHARGE
OESTFSTION

|

- 't‘ ‘r‘
NDUCED
POLARZATION

Electric Field

Molecular polarization = p =« E (2)



MACROSCOPIC ELECTRIC FIELD

One contribution to the electric field inside a body is that of the applied
cloctric field, defined as

(E(, = field produced by fixed charges external to the body . (3)

The other contribution to the electric field is the sum of the fields of all
charges that constitute the body. If the body is neutral, the contribution to the

average field may be expressed in terms of the sum of the fields of atomic
dip()les.

We define the average electric field E(ry) as the average field over the
volume of the crystal cell that contains the lattice point ry;

E(ry) = - f dv elr) | (4)

c

where e(r) is the microscopic electric field at the point r. The field E js a

much smoother quantity than the microscopic field e. We could well haye
written the dipole field (2) as e(r) because it is a microscopic unsmoothed
field.

We call E the macrosco
in the electrodynamics of ¢
tween E, the polarization
wavelengths of interest ar

To find the contriby

pic electric field. It is adequate for all problems
rystals provided that we know the connection be-
P, and the current density j» and provided that the
e long in comparison with the lattice spacing.l

tion of the polarization to the macroscopic field, we



El(l‘) El(l“)

(b)
) A uniformly polurize(_l dielectric slab, with the polarization vector P normal to the
A pair of uniformly charged parallel plates which give rise to the identical
electric field E, as in (a). The upper plate has the surface charge density o = +P, and the lower

(a)

Figure 3 (
plane of the slab. (b)

plate has o = —P.

density o = i - P on the surface of the body. Here n is the unit normal to the
surface, drawn outward from the polarized matter.

We apply the result to a thin dielectric slab (Fig. 3a) with a uniform vol-
ume polarization P. The electric field E,(r) produced by the polarization is
equal to the field produced by the fictitious surface charge density o = n - P

on the surface of the slab. On the upper boundary the unit vector i is directed
upward and on the lower boundary n is directed downward. The upper bound-

ary bears the fictitious charge o = n - P = P per unit area, and the lower

boundary bears —P per unit area.
The electric field E, due to these charges has a simple form at any point

between the plates, but comfortably removed from their edges. By Gauss’s law

(CGS) E, = —4mlo|= —4nP ; (E :

We add E, to the applied field E, to obtain the total macroscopic field
inside the slab, with Z the unit vector normal to the plane of the slab:

(4a)

(CGS) E=E,+E, =E,— 47Pz ; (5)

(SI)

We define



E, = field of the surface charge denisty i - P on the boundary . (6)

This field is smoothly varying in space inside and outside the body and satisfies
the Maxwell equations as written for the macroscopic field E. Th‘e reason E, is
a smooth function when viewed on an atomic scale is that we have
replaced the discrete lattice of dipoles p; with the smoothed polarization P.

Local electric field at an atom

In dielectric solids, the atoms or molecules experience not only the external applied
electric field but also the electric field produced by the dipoles. The resultant electric field
acting on the atoms or molecules of dielectric substance is called the local field or an

internal field.

To find an expression for local electric field on a dielectric molecule or an atom, we
consider a dielectric material in the electric field of intensity E, between the capacitor
plates so that the material is uniformly polarized, as a result opposite type of charges are
induced on the surface of the dielectric near the capacitor plates. The local field is

calculated by using the method suggested by Lorentz.

Y * . : :

- + + - - I

Z * oS + - + . I

+ - : +

- +

: 1 | :

BRIV PV Lt - |Laontd|
«— + — o+ —




Internal fields or local fields

Local field or internal ficld in a diclectric is the space and time average
of the electric field intensity acting on a particular molecule in the dielectric
material.

In other words. the field actinge at the location of an atom is known as

local or internal field ™.

The internal field E must be equal to the sum of applied field plus the

field produced at the location of the atom by the dipoles of all other atoms.

E = E + the field due to all other dipoles

Spherical

Cavity




|

“ield E:
1)y This is due to polarized charees on the surface of
the spherical caswviiy.

dA =277 preag.g iR

A 27t rs1in . rd 6

A 2777 sin GO

urface area between O & O-+dD . .

I
0

Wwhere & is

Cield E:

. is the field intensity at M doe o the charpge

density induced on the two sides of the dielectric,

Field E;:

E., is the feld intensity at A doae to the atoms
contained in the cavity, we are assurmingz a cubic
structure, so E, = 0,

dg = pcosOx<dA
dg = 2707 pcosO.sin O8.46



2) The held due to this charge at A, denoted by dE,| 15 given by

dE, — L “4
D rEEr, T
TE — 1 dg cos &
The field in 6 = O direction Y ame, 7
1 > :
dbE, = — (2ar  pcosB.sin@.d60 )cos &
a4me ¥
P N
dE, = ——cos” 8.5sin 8.d60
2
4) Thus the ol ficld B, £ :LI-”'L‘”
[N
due to the charges on the Y )
surface ol the cntire _ > -
SHriaes UL e sne . cos” sin Qd
cavity 13 " 2{[',
P > 3
= J-c;os‘ 2 sin Qd
2'{;} Lk
let. x =cos @—=dxy =—s1n G/6
P oo
= J-_r‘ edx
2&7 5
— P xt —FP _ —1—1
= (—)}" ( )
25, 3 2£, 3
P
E, =



The internal field or Lorentz field can be written as

E=FE+FE, +E, +F,

E =&+ L o4 2
Er:‘ Ef:‘ 35[?
E=E+ 7L
38!'?

P=Nak,
I”

P=No (E+—)

-

€,
b
"=Na E+Noa, —
3¢,
f 3
P-Noa —=Na E
3¢,

;'\"f OﬁL,

P1-"24y=Na E

3€,

p=_N&E (1)
Na,
(I-—)

3€,




We known that the polarization vector
P=¢ (e =1)....(2)
fromeq s(1)&(2)

Na L

{I_Nﬁ} ¢ L1E 1)
¥
o Nee  Nal

|2t — Where “N” is the number
of dipoles per unit volume

1= ” =)
Vo |
¥ 1
£ -l
Ne, &-|

= o =3 Classius Mosott relation
¥, £+.

This is the Clausius - Mosotti equation, it relates the microscopic quantity o on the left hand
side to the macroscopic quantity & (or, if you like that better, y = &- — 1) on the right hand side
of the equation
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Temperature and frequency dependency
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higher frequency the dielectric constant falls because ~Electrom®
orientation polarization cannot follow such rapidly varying

E-0 E—
fields. ,
However, there is still distortion polarisation. This ma
be of two kinds. One in the displacement of electrong o . —p
relative to the nucleus fig (20) i.e. from the deformation of J +
the electronic shell about a nucleus. The other is the

displacement of the nuclei relative to each other within the Fig. 20
molecule. The first is

called the electronic lonic

polarization. Since

electrons have relatively @ @ @ @ @ @ ® @ @ @
small mass, it is very rapid g, 21

mechanism  when its

natural frequency is in the
visible or ultra violet region. An alternative name may, therefore, be given as optical polarization.

The second is a less rapid process which ceases to be operative about frequency in the ‘infrared", it
is called atomic or infrared polarization. A special case of

infrared polarization occurs in ionic crystals. Here the positive l
and the negative ions are pulled apart by a field and the whole
lattice is polarized fig. (21). / 7 l
The ionic contribution comes from the displacement ~ . — /
and deformation of a charged ion with respect to other ions. / X
The orientational or dipolar polarizability fig. (22) arises when  / l/ S \
the Dipolar substance is built up of molecules possessing a Fig. 22.

permanent electrical dipole moment which may be more or less

free to change orientation in the applied electric field. The
ionic and dipolar contributions are seldom both large in the same substance. In ordinary ionic

crystals there is no dipolar contribution. One way to separate them is shown in the schematic
diagram.

In the optical frequency range the dielectric constant arises entirely from electronic
polarizability. The dipolar and the ionic contributions are small or almost negligible because of the
inertia of molecules and ions. Electric polarizability on an ion may depend slightly on the
environment in which it is placed. Notice that the negative ions have high value of polarizability.
D-E shows another fall at the infrared frequency at which the moment of the nuclei ceases to be
operative. Optical polarization is the sole remaining effective mechanism. At F the ultra violet

dielectric constant and refractive index both approach unity.
0, there will be absorption peaks corresponding to the maxima of ¢’

g=¢ +1€ .12

r

At frequencies oy, O,



POLARIZATION CATASTROPHE
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In terms of a polarization catastrophe in which for some critical condition the polarization
becomes very large ; or we may speak in terms of a transverse optical phonon of very low
frequency. In a polarization catastrophe the local electric field caused by the polarization
increases faster than the elastic restoring force on an ion in the crystal , thereby leading to an
asymmetrical shift in ionic positions . The shift is limited to a finite displacement by higher
order re-storing forces . The occurrence of ferro electricity in an appreciable number of crystals
with the perovskite structure suggests that this structure is favourably disposed to a
polarizability catastrophe. Calculations of local fields have made clear the physical reason for
the favoured position of the perovskite structure.

We gave first the simple form of the catastrophe theory , supposing
that the local field at all atoms is equal to E + 4ntP/3 in CGS or E+P/3¢p in Sl. The theory



given now leads to a second-order transition ; the physical ideas can be carried over to a first
order transition . In a second-order transition there is no latent heat ; the order parameter ( in
this instance , the polarization ) is not discontinuous at the transition temperature . In a first
order transition there is a latent heat ; the order parameter changes discontinuously at the
transition temperature .

We rewrite (24) for the dielectric constant in the form
1+87/3ZNiai
CGS P ——
1- 4m/3=Nia;

Where «; is the electronic plus ionic polarizability of an ion of type i and N is the number
of ions i per unit volume . The dielectric constant becomes infinite and permits a finite
polarization in zero applied field when comes infinite and permits a finite polarization in
zero applied field when

(CGS) ¥ Nioi = 3/4x.

This is the condition for a polarization catastrophe. The value of € in (30) is sensitive to small
departure of ¥ Nja; from the critical value 3/4x . If we write

(CGS) (4n/3) Z Niaj = 1- 3s,
Where s «1 , the dielectric constant in (30) becomes
ex=1/s.
suppose near the critical temperature s varies linearly with temperature :
s =(T-Te)/E,

where & is a constant . such a variation of s or £ Nia; might come from normal thermal
expansion of the lattice . The dielectric constant has the form

Ezé/T_Tc,

close to the observed temperature variation in the paraelectric state.
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