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UNIT 1 

MONATOMIC LATTICE VIBRATIONS 

 For monatomic gases we can model heat energy as the kinetic energy of the atoms. 

This model leads to the ideal gas law, and the model can be expanded to include other gas 

molecules. For solids, we can model heat energy as the energy in lattice vibrations. This model 

should then lead to predictions about heat capacity, thermal conductivity, and thermal 

expansion of solids.  

We first look at longitudinal oscillations (oscillations in the direction of the wave). 

Homework problems will look at transverse oscillations (oscillations perpendicular to the 

direction of the wave). 

For simplicity we consider first a one dimensional crystal lattice and assume that the 

forces between the atoms in this lattice are proportional to relative displacements from the 

equilibrium positions. 

 

 

 



 



 



First Brillouin Zone 

 



 



 

Lattices with two atoms per primittive cell 

 

Lattice with 2 atoms per primitive cell 

 1. Let's look at a plane that contains only one kind of atom (say the 100 plane in the SC lattice 

of CsCl, or the 111 plane in the FCC lattice of NaCl both of which contain only one kind of 

atom). Let's call the displacement from its equilibrium position of this plane, us . Let's call the 

displacement from its equilibrium position of the next plane which contains only the other kind 

of atom, vs 

 

 

 

2. Let's consider only nearest neighbor interactions, and call the spring constant between these 

C12 =C. Let's also call the mass of the one atom, M1 , and the mass of the other atom, M2 , 

where M1 > M2 .  

(Cl has a mass of 35.4 amu; Na has a mass of 23.0 amu; Cs has a mass of 132.9 amu.) 

Note: If we put one kind of atom at a lattice point and the other in the hole, we have the same 

kind of lattice if we consider the other atom as at the lattice point and the first atom in the hole. 

In other words, it doesn’t matter if we put the Cl atom at the lattice point and Na in the hole, or 

put CS at the lattice point and Cl in the hole. 

 

3. Since we have two different atoms, we will have two different equations from Newton's 

Second Law:  

M1 d²us/dt² = C(vs - us ) + C(vs-1 - us ) , and  



M2 d²vs/dt² = C(us+1 - vs ) + C(us - vs ) 

 

 

 

Latent Heat 

 

Latent heat, energy absorbed or released by a substance during a change in its physical state 

(phase) that occurs without changing its temperature. The latent heat associated with melting 

a solid or freezing a liquid is called the heat of fusion; that associated with vaporizing a liquid 

or a solid or condensing a vapour is called the heat of vaporization. The latent heat is normally 

expressed as the amount of heat (in units of joules or calories) per mole or unit mass of the 

substance undergoing a change of state. 

 

 

 

https://www.britannica.com/science/energy
https://www.britannica.com/science/temperature
https://www.britannica.com/science/solid-state-of-matter
https://www.britannica.com/topic/freezing-food-preservation
https://www.britannica.com/science/liquid-state-of-matter
https://www.britannica.com/science/heat-of-fusion
https://www.britannica.com/science/heat-of-vaporization
https://www.britannica.com/science/heat
https://www.britannica.com/science/joule
https://www.britannica.com/science/calorie


 

Density of States 

 

In solid state physics and condensed matter physics, the density of states (DOS) of a 

system describes the proportion of states that are to be occupied by the system at each energy. 

The density of states is defined as , where is the number of states in the system of volume whose 

energies lie in the range . It is mathematically represented as a distribution by a probability 

density function, and it is generally an average over the space and time domains of the various 

states occupied by the system. The density of states is directly related to the dispersion 

relations of the properties of the system. High DOS at a specific energy level means that many 

states are available for occupation. 

Generally, the density of states of matter is continuous. In isolated systems however, such as 

atoms or molecules in the gas phase, the density distribution is discrete, like a spectral density. 

Local variations, most often due to distortions of the original system, are often referred to 

as local densities of states (LDOSs). 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Solid_state_physics
https://en.wikipedia.org/wiki/Condensed_matter_physics
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Dispersion_relation
https://en.wikipedia.org/wiki/Dispersion_relation
https://en.wikipedia.org/wiki/Isolated_system
https://en.wikipedia.org/wiki/Discrete_distribution
https://en.wikipedia.org/wiki/Spectral_density


 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 



DEBYE’S MODEL OF LATTICE SPECIFIC HEAT 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT 4 

Dielectric Constant 

When use the dielectric constant we often are referring to a solvent. A refractive index refers 

to speed of light. For a bulk material we describe the polarization density in a material. 

Instead of looking at a single molecule, we can look at the polarizability of the entire bulk 

material induced by an elecric field. 

In bulk materials, the linear polarization is given by: 

 (4) 

where 

 is the polarization density in direction i. 

 is the frequency 

 is the linear susceptibility tensor of an ensemble of molecules. 

Note that the vectorial and tensor aspects of E and  have been ignored to 
simplify notation. 

The total electric field (the "displaced" field, D) within the material becomes: 

 

 (5) 

 

 (Equation (4)), 

 is the internal electric field created by the induced displacement (polarization) 
of charges. 

 

 

 



 

 



 

 

 



 

 

Local electric field at an atom 

In dielectric solids, the atoms or molecules experience not only the external applied 

electric field but also the electric field produced by the dipoles. The resultant electric field 

acting on the atoms or molecules of dielectric substance is called the local field or an 

internal field. 

To find an expression for local electric field on a dielectric molecule or an atom, we 

consider a dielectric material in the electric field of intensity E, between the capacitor 

plates so that the material is uniformly polarized, as a result opposite type of charges are 

induced on the surface of the dielectric near the capacitor plates. The local field is 

calculated by using the method suggested by Lorentz. 

 

 



 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 



 

This is the Clausius - Mosotti equation, it relates the microscopic quantity α on the left hand 

side to the macroscopic quantity εr (or, if you like that better, χ = εr – 1) on the right hand side 

of the equation 

 

 

 

 

 



 

 

 

Temperature and frequency dependency 

 

 

 

 
 

 

 

 

 

 
 

 



 

 

 

 

 

 

 
 

 



 

 

 

 

 

POLARIZATION  CATASTROPHE 

 

 

In terms of a polarization catastrophe in which for some critical condition the polarization 

becomes very large ; or we may speak in terms of a transverse optical phonon of very low 

frequency. In a polarization catastrophe the local electric field caused by the polarization 

increases faster than the elastic restoring force on an ion in the crystal , thereby leading to an 

asymmetrical shift in ionic positions . The shift is limited to a finite displacement by higher 

order re-storing forces . The occurrence of ferro electricity in an appreciable number of crystals 

with the perovskite  structure suggests that this structure is favourably disposed to a 

polarizability catastrophe. Calculations of local fields have made clear the physical reason for 

the favoured position of the perovskite structure. 

                    

                                         We  gave first the simple form of the catastrophe theory , supposing 

that the local field at all atoms is equal to E + 4πP/3 in CGS or E+P/3ϵŊ in SI. The theory 



given now leads to a second-order transition ; the physical ideas can be carried over to a first 

order transition . In a second-order transition there is no latent heat ; the order parameter ( in 

this instance , the polarization ) is not discontinuous at the transition temperature . In a first 

order transition there is a latent heat ; the order parameter changes discontinuously at the 

transition temperature .  

                                 We rewrite (24) for the dielectric constant in the form  

                                    1+8π/3ΣNi𝛂i 

CGS                 ϵ =  ----------------------- 

                                    1 - 4π/3ΣNi𝛂i 

  Where 𝛂i is the electronic plus ionic polarizability of an ion of type i and  Ni  is the number 

of ions i per unit volume . The dielectric constant becomes infinite and permits a finite 

polarization in zero applied field when comes infinite and  permits a finite polarization in 

zero applied field when  

 (CGS)                     Σ Ni𝛂i = 3/4π. 

This is the condition for a polarization catastrophe. The value of ϵ in (30) is sensitive to small 

departure of Σ Ni𝛂i  from the critical value 3/4π . If we write  

(CGS)                    (4π/3) Σ Ni𝛂i = 1- 3s, 

Where s ≪1 , the dielectric constant in (30) becomes  

                                       ϵ ≃ 1/s .  

suppose near the critical temperature s varies linearly with temperature :  

                                     s  ≃ ( T – Tc ) /ξ , 

where ξ is a constant . such a variation of s or Σ Ni𝛂i might come from normal thermal 

expansion of the lattice . The dielectric constant has the form  

                                       ϵ ≃ ξ/ T−Tc ,  

close to the observed temperature variation in the paraelectric state. 

 


	Dielectric Constant

