SUB. CODE: 18KPSPELP4

SUB. TITLE: MICROPROCESSOR

AND
MICROCONTROLLER

UNIT -1

Microprocessor architecture
and

Instruction set

MICROPROCESSOR ARCHITECTURE

INTRODUCTION

The microprocessor(s) is the central processing unit (CPU) of a computer. It is the
heart of the computer. This chapter describes Intel 8085 as it is one of the most
popular 8-bit microprocessors. The Intel Corporation has also developed a large
number of general purpose and special purpose peripheral devices. These devices are
very useful for the development of microprocessor-based system. The availability of
a variety of support devices is also one of the causes of popularity of Intel
ITIiCTOpI'OCESSO[5.

3.1 INTEL 8085

Intel 8085 is an 8-bit, NMOS microprocessor. It is a 40 pin L.C. package fabricated on a
single LSI chip. The Intel 8085 uses a single + 5V . supply for its operation. Its clock
speed is about 3 MHz. The clock cycle is of 320 ns. The time for the clock cycle of the
Intel 8085AH-2, version is 200 ns. It has 80 basic instructions and 246 opcodes. Fig. 3.1
shows the block diagram of Intel 8085. It consists of three main sections: an arithmetic
and logic unit, a timing and control unit and a set of registers. These important sections
are described in the subsequent sections.

3.1.1 ALY
The arithmetic and logic unit, ALU, performs the following arithmetic and logical
operations:
(i) Addition
(ii) Subtraction
(iii) Logical AND
(iv) Logical OR
(v) Logical EXCLUSIVE OR
(vi) Complement (legical NOT)
(vii) Increment (add 1)
(viii) Decrement (subtract 1)
(ix) Left shift, Rotate left, Rotate right
(x) Clear etc.

3.1.2 Timing and Control Unit

The timing and control unit is a section of the CPU. It generates timing and control
signals which are necessary for the execution of instructions. It controls data flow
between CPU and peripherals (including memory). It provides status, control and
timing signals which are required for the operation of memory and I/O devices. It
controls the entire operations of the microprocessor and peripherals connected fo it.
Thus, it is seen that the control unit of the CPU acts as the brain of the computer system.

3.1.3 Registers
Figure 3.1 shows the various registers of Intel 8085. Registers are used by the micro-
processor for temporary storage and manipulation of data and instructions. Data

3.2 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

remain in the registers till they are sent to the memory or I/O devices. In a large
computer the number of registers is more and hence the program requires less transfer

of data to/from the memory. In a small computer the number of registers is small due =
to limited size of the chip. Intel 8085 microprocessor has the following registers:
INTERRUPT s s0D) '# "
SIGNALS i d
INTERRUPT SERIAL T“1
CONTROL /o CONTROL 1
@ @ . 8 - BIT INTERNAL DATA BUS
= =
{ U 8 1 _JU f
accumu- | [TEMPORARY STATUS INTRUCTION 8 =
LATOR REGISTEA FLAGS REGISTER
(IR) b E
‘ 1L H L
p INSTRUCTION STAGK POINTER
| ARTHMETIC Etbalic iy \
- | & n
N LO?A%J,N” M/C CYCLE PROGRAM COUNTER {
) ENCODING {PC) |
U INCREMNTER /]
DECREMENTER f
Xy —=1 TIMING & CONTROL ADDRESS LATGH .
X UMNIT i
i R e
CONTROL SINGNLS DATA/ ADDRESS
T ADDRESS BUFFER i ity
Ag - Ags Al - ALy
ADDRESS BUS ADDRESS/DATA
BUS

Fig. 3.1 Block diagram of Intel 3085

1

(i) One 8-bit accumulator (ACC) i.e. register A
(if) Six 8-bit general purpose registers. These are B, C, D, E, Hand L =
(iii) One 16-bit stack pointer, SP |
(iv) One 16-bit program counter, PC
(v) Instruction register
(vi) Temporary register
In addition to the above mentioned registers the 8085 microprocessor contains a set
of five flip-flops which serve as flags (or status flags). A flag (or status flag) is a flip-flop
which indicates some condition which arises after the execution of an arithmetic or
logical instruction.

Accumulator (ACC). The accumulator is an 8-bit register associated with the !
ALU. The register ‘A" in the 8085 is an accumulator. It is used to hold one of the |
operands of an arithmetic or logical operation. It serves as one input to the ALU. The
other operand for an arithmetic or logical operation may be stored either in the '
memory or in one of the general-purpose registers. The final result of an arithmetic or |
logical operation is placed in the accumulator. .

The above descriptions are true for general cases, not for some typical or]
exceptional cases. For example, there are some logical instructions which need only
one operand. Itis held in the accumulator. The result is placed in the accumulator. Such

MICROPROCESSOR ARCHITECTURE 3.3

instructionsdo not require any other register or memory location because there is no
other operand. There is one typical instruction DAD rp, for 16-bit addition for which
one of the 16-bit operands is kept in H-L pair and the other in the B-C or D-E pair. The
result is placed in the H-L pair. See details for such cases in Chapter 4.

General-Purpose Registers. The 8085 microprocessor contains six 8-bit general-
purpose registers. They are: B, C, D, E, H and L register. To hold 16-bit data a
combination of two 8-bit registers can be employed. The combination of two 8-bit
registers is known as a register-pair. The valid register pairs in the 8085 are: B-C, D-E
and H-L. The programmer can not form a register-pair by selecting any two registers of
his choice. The H-L pair is used to act as memory pointer and for this purpose it holds
the 16-bit address of a memory location. The general-purpose registers and the
accumulator are accessible to programmer. He can store data in these registers during
writing his program.

Program Counter (PC). Itis a 16-bit special-purpose register. It is used to hold the
memory address of the next instruction to be executed. It keeps the track of memory
addresses of the instructions in a program while they are being executed. The
microprocessor increments the content of the program counter during the execution of
an instruction so that it points to the address of the next instruction in the program at
the end of the execution of an instruction.

Stack Pointer (SP). It is a 16-bit special function register. The stack is a sequence of
memory locations set aside by a programmer to store/retrieve the contents of
accumulator, flags, program counter and general-purpose registers during the
execution of a program. Any portion of the memory can be used as stack. Since, the
stack works on LIFO (last-in-first-out) principle, its operation is faster compared
normal store/retrieve of memory locations. During the execution of a program

sometimes it becomes necessary to save the contents of some registers which are
needed for some other operations in the subsequent steps of the program. The contents
of such registers are saved in the stack. Then the registers are used for some other
operations. After completing the needed operations the contents which were saved in
the stack are brought back to the registers. The contents of only those registers are
saved, which are needed in the later part of the program. The stack pointer (SP) controls
addressing of the stack. The SP holds the address of the top element of data stored in
the stack.

The stack is defined and the stack pointer is initialized by the programmer'at the
beginning of a program which needs stack operation. Stack is also used by the
microprocessor. For example, it stores the contents of program counter when it jumps
to a subroutine using CALL instruction. Stack has been described in details in
Chapter 5.

Instruction Register. The instruction register holds the opcode (operation code or
Instruction code) of the instruction which is being decoded and executed.

Temporary Register. It is an 8-bit register associated with the ALU. It holds data
during an arithmetic/logical operation. It is used by the microprocessor. It is not
accessible to programmer.

Flags. The Intel 8085 microprocessor contains five flip-flops to serve as status flags.
The flip-flops are set or reset according to the conditions which arise during an arithmetic
or logical operation.

The five status flags of Intel 8085 are:

(i) Carry Flag (CS)

3.4 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

(ii) Parity Flag (P)
(i) Auxiliary Carry Flag (AC)
(iv) Zero Flag (Z)
(v) Sign Flag (5)
If a flip-flop for a particular flag is set, it indicates 1. When it is reset, it indicates 0.
Carry Flag (CS). After the execution of an arithmetic instruction if a carry is
preduced, the carry flag CS is set to 1, otherwise it is 0. The carry flag is set or reset in
case of addition as well as subtraction. After the addition of two 8-bit numbers, if the
sum is larger than 8 bits, a carry is produced; and the carry flag is set to 1. In case of
subtraction, if borrow occurs, the carry flag is set to 1. The carry flag holds carry out of
the most significant bit resulting from the execution of an arithmetic operation.

Parity Flag (P). The parity status flag P is set to 1, if the result of an arithmetic or
logical operation contains even number of 1s. It is reset i.e. it is 0, if the result contains
odd number of 1s.

Auxiliary Carry Flag (AC). The auxiliary carry flag AC holds carry out of the bit
number 3 to the bit number 4 resulting from the execution of an arithmetic operation.
The counting of bits starts from 0, and hence, the Bit No. 3 is actually the fourth bit from
the least significant bit [See Fig. 3.2(b)].

Zero Flag (Z). The zero status flag Z is set to 1, if the result of an arithmetic or
logical operation is 0. If the result is not zero, the flag is set to 0.

Sign Flag (8). The sign flag S is set to 1, if the result of an arithmetic or logical
operation is negative. If the result is positive, the sign flag is set to 0.

The sign flag has its significance only when signed arithmetic operation is
performed. To represent a signed number the most significant bit is reserved by the
programmer to represent the sign of a number. In other words the MSB is used as a sign
bit. It represents the sign of the number. If a number is negative, the sign bitis 1. For a
- positive number, the sign bit is 0. In case of 8-bit signed operation, the remaining 7 bits
are used to represent the magnitude of a number. After execution of signed arithmetic
operation, the MSB of the result represents its sign. The sign flag acquires the value of
the MSB of the result following the execution of signed arithmetic operation. Hence, it
represents the sign of the result.

For unsigned arithmetic operation, all the 8 bits are used to represent the
magnitude of the number. After the execution of an arithmetfic operation, all the 8 bits
of the result represent its magnitude. Therefore, the sign flag has no significance in
unsigned arithmetic operation. Also, for logical operation sign bit has no significance.
Since, the sign flag is set or reset according to the MSB of the resul, it is set or reset on
the value of MSB of the result of logical operation also.

The above discussion also holds good for signed arithmetic operation of 16-bit,
32-bit or more. In case of 16-bit operation 15 bits are used to represent the magnitude of
a number and 1 bit to represent its sign. In case of 32-bit operation 31 bits are used to
represent the magnitude and 1 bit to represent its sign.

Figure 3.2 (b) shows the status flags of ADD operation. Take an example of the
instruction ADD B. The execution of the instruction ADD B will add the content of the
register B to the content of the accumulator. Suppose, the contents of the accumulator
and register B are CB and E9 respectively. Now, CB and E9 are added and the result is
01, B4. As the accumulator is an 8-bit register B4 remains in the accumulator and there
is a carry. The various status flags are shown in Fig. 3.2 (b).

MICROPROCESSOR ARCHITEGTURE

7 B 5 4 3 2 1 0 =+—BITHo
‘5 % z | X |'*Gl X | P | X \Csl-n—smruwwas
] X 1

UMDEFINED BITS

L——— CARRY STATUS

PARITY STATUS
AUXILIARY CARRY STATUS

ZERO STATUS
SIGN STATUS

Fig. 3.2 {a) Status Flags of intel 8085

ADD CB AND E9
CE=11001011
E9 =11101001

10110100 BESULTIS NON-ZERO,

e ZISSETTO0.
THERE IS CARRY
; THERE ARE 4 NUMBERS OF
e3isSET 101 15, PIS SETTO.
MSB OF THE SUM IS 1,

SISSETTO!. - THERE IS A GARRY FROM
3rd BIT TO 4th BIT.
ACIS SETTO 1.

Fig. 3.2 (b) Status Flags for ADD operation

PSW. In Fig. 3.2 (a), five bits indicate the five status flags and three bits are
undefined. The combination of these 8 bits is called Program Status Word (PSW). PSW
and the accumulator are treated as a 16-bit unit for stack operation.

3.1.4 Data and Address Bus

The Intel 8085 is an 8-bit microprocessor. Its data bus is 8-bit wide and hence, 8 bits of
data can be transmitted in parallel from or to the microprocessor. The Intel 8085
requires a 16-bit wide address bus as the memory addresses are of 16 bits. The 8 most
significant bits of the address are transmitted by the address bus, A-bus (pins Ag to
Ays). The 8 least significant bits of the address are fransmitted by address/data bus,
AD-bus (pins AD, -AD;). The address/data bus transmits data and address at
different moments. At a particular moment it transmits either data or address. Thus,
the AD-bus operates in time shared mode. This technique is known as multiplexing,
First of all 16-bit memory address is transmitted by the microprocessor; the 8 MSBs of
the address on the A-bus and the 8 LSBg of the address on AD-bus. Thus, the effective
width of the address bus becomes 16-bit wide. Then the 8 LSBs of the address is latched
either into the memory or external latch so that the complete 16-bit address remains
available for further operation. The 8-bit AD-bus now becomes free, and it is available
for data transmission. 2'° (=65536=64 K, where 1K = 1024) memory locations canbe
addressed directly by Intel 8085. Each memory location contains 1 byte of data.

3.1.5 Pin Configuration
Figure 3.3 shows the schematic diagram of Intel 8085. The description of various pins
are as follows:

Ag - A5 (output). These are address bus and are used for the most significant bits
of the memory address or 8 bits of I/O address.

ADj - ADy, (input/output). These are time multiplexed address/databusie. they
serve dual purpose. They are used for the least significant 8 bits of the memory address
or 1/0 address during the first clock cycle of a machine cycle. Again they are used for
data during second and third clock cycles.

FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

ALE (outpuf). It is an address latch Vgg —* (> AD, - AD,

enable signal. It goes high during first clock Vee ™
hi S > Ag-As

cycle of a machine cycle and enables the lower X, —
8 bits of the address to be latched either into RESETIN —= i Sl
the memory or external latch. “ESETIUO;J% :_“ < HOLD

10/M (output). It is a status signal which Bt g b
distinguishes whether the address is for Sk TR AR
memory or [/O. When it goes high, the D -] =— AST 75
address on the address bus is for an 1/O WR ~a— : <— RST6S5
device. When it goes low, the address on the . ALE —=—] <— AST 55
address bus is for a memory location. B <— INTR

S0, S1 (output). These are status signals HEizﬁ] —= INTA

sent by the microproessor to distinguish the

various types of operation given in Table 3.1. Fig. 3.3 Schematic Diagram

of Intel 8085

Table 3.1 Status Codes for Intel 8085

54 So Operations |
0 0 HALT l
0 1 WRITE
1 0 READ
1 1 FETCH

RD (output). When microprocessor reads data or codes from a memory location or
an input device, it is called READ operation. RDis a signal sent by the microprocessor
to the memory/input device to control READ operation. When it goes low, the selected
memory or input device is read. :

WR (output). When microprocessor sends data to a memory location or an output
device, it is called WRITE operation. WRis a signal sent by the microprocessor to the
memory/output device to control WRITE operation. When it goes low, the data which
is on the data bus, is written into the selected memory or sent to the output device.

READY (input). It is a signal sent by an input or output device to the
microprocessor. This signal indicates that the input or output device is ready to send or
receive data. The microprocessor examines READY signal before it performs data
transfer operation. A slow input or output device is connected to the microprocessor
through READY line. When READY is high, it indicates that the input or output device
is ready to send or receive data. When READY is low, the microprocessor waits till
READY becomes high. The microprocessor examines the status of READY signal in the
second clock cycle of the machine cycle.

HOLD (input). When another device of the computer system, requires address
and data buses for data transfer, it sends HOLD signal to the microprocessor. After
receiving the HOLD request, the microprocessor sends out a HLDA (HOLD
Acknowledge) signal to the device. Then the microprocessor leaves the control over the
buses as soon as the current machine cycle is completed. Internal processing may
continue. The microprocessor regains the control over the buses after the HOLD signal
is removed. i

HLDA (output). Itisa HOLD acknowledge signal sent out by the microprocessor
after receiving the HOLD signal. It is sent to the device which has issued the HOLD
signal. After the removal of the HOLD signal, the HLDA goes low, and thereafter the .
microprocessor takes over the buses.

WICEOPROCESSORAR CHITECTURE 3.7

INTR (inpuf). It is an interrupt signal sent by an external device to the
. ce informs microprocessor that itis

_The 8085 microprocessor has 5

mterrupt lines. The INTR is one of them. When it goes high, the microprocessor
suspends the execution of its normal sequence of instructions. After completing the
—rrent instruction at hand, it attends the interrupting device. The microprocessor
105 an interrupt acknowledge signal INTA. Then it transfers data or takes any other
action as required.
INTA (output). Itisaninterrupt acknowledge signal issued by the microprocessor
~fter receiving an interrupt request from an external device. Itis a low active signal.
RST 5.5, 6.5, 7.5 and TRAP (inputs). These are interrupts. When an interrupt is
recognised the next instruction is executed from a fixed location in the memory as
given below: -

Line [ocation from which néxt instruction is

. = ! picked up
TRAP 0024
RST5.5 002C
RST 6.5 0034
RST7.5 . 003C

RST 7.5, RST 6.5 and RST 5.5 are the restart interrupts. Each of them has a pro-
~mmable mask. The TRAP has the highest priority among interrupts. It is 2

~onmaskable interrupt. It is unaffected by any mask or interrupt enable. The order of

priority of interrupts is as follows:
- TRAP (highest priority)

RST 7.5

RST 6.5

RST 5.5

INTR (lowest priority).

RESET IN (input). It resets the program counter to zero. It also resets interrupt

enable and HLDA flip-flops. It does not affect any other flag or register except the
nstruction register. The CPU is held in reset condition as long as RESET is applied.

RESET OUT (output). It indicates that the CPU is being reset.
X4, Xz (input). Theseare terminals to be connected to an external crystal oscillator
which drives an internal circuitry of the microprocessor to produce a suitable clock for

the operation of microprocessor.
CLK (output). Ttisaclock output for user, which can be used for other digital ICs. *

Its frequency is same at which processor operates.
SID (input). It is data line for serial input. The data on this line is loaded into the
~th bit of the accumulator when RIM instruction is executed.
SOD (output). It is a data line for serial output. The 7th bit of the accumulator is
output on SOD line when SIM instruction is executed.

Ve + 5Volts supply
Vgg ground reference

3.1.6 Intel 8085 Instructions
A computer receives data from the user, processes data and sends the result back to the
k on specified data in TeSpONSe to

user. The computer simply performs a given tas
certain instructions. An instruction is a command given to the computer to perform a

specified operation on given data.

PERIPHERAL DEVICES
AND INTERFACING

7.1 INTRODUCTION ;

A microprocessor combined with memory and input/output devices, forms a
microcomputer. The microprocessor is the heart of a microcomputer. Memories and
input/output devices are interfaced to microprocessor to form a microcomputer. In
case of large and minicomputers the memories and input/ output devices are
interfaced to CPU by the manufacturer. In a microprocessor-based system the designer
has to select suitable memories and input/output devices for his task and interface
them to the microprocessor. The selected memories and input/ output devices should
be compatible with microprocessor. If a particular device is not compatible, an
additional electronic circuit has to be designed through which the device may be
interfaced to the CPU.

7.2 ADDRESS SPACE PARTITIONING
The Intel 8085 uses a 16-bit wide address bus for addressing memories and 1/0
devices. Using 16-bit wide address bus it can access 210 =64 K bytes of memory and
1/0O devices. The 64 K addresses are to be assigned to memories and I/O devices for
their addressing. There are two schemes for the allocation of addresses to memories
and input/output devices:

1. Memory mapped I/O scheme

2. 1/0 Mapped I/0 scheme

7.2.1 Memory Mapped I/O Scheme
In memory mapped I/O scheme there is only one address space. Address space is
defined as the set of all possible addresses that a microprocessor can generate. Some
addresses are assigned to memories and some addresses to 1/0 devices. An1/O device
is also treated as a memory location and one address is assigned to it. Suppose that
memory locations are assigned the addresses 2000 to 24FF. One address is assigned to
each memory location. Any one of these addresses cannot be assigned to an /0 device.
The addresses for I/O devices are different from the addresses which have been

assigned to memories. The addresses which have not been assigned to memories
can be assigned to I/O devices. For example, 2500, 2501, 2502 etc. may be assigned to
1/0 devices. One address is assigned to each I/O device.

In this scheme all the data transfer instructions of the microprocessor can be used
for both memory as well as I/O devices. For example, MOV A, M will be valid for data
transfer from the memory location or I/O device whose address is in H-L pair. If the
H-L pair contains the address of 2 memory location, data will be transferred from the
memory location to the accumulator. If the H-L pair contains the address of an I/O
device, data will be moved from the 1/O device to the accumulator. The memory
mapped I/O scheme is suitable for a small system.

7.2 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

7.2.2 /O Mapped /O Scheme

In this scheme the addresses assigned to memory locations can also be assigned to I/0
devices. Since, the same address may be assigned o a memory location or an I/O
device, the microprocessor must issue a signal to distinguish whether the address on
the address bus is for a memory location or an 1/0 device. The Intel 8085 issues an
10/ M signal for this purpose. When this signal is high the address on the address bus s
for an 1/0O device. When this signal is low, the address on the address bus is for a
memory location. Two extra instructions IN and OUT are used to address I/O devices.
The IN instruction is used to read to data of an input device. The OUT instruction is
used to send data to an output device. This scheme is suitable for a large system.

7.3 MEMORY AND /O INTERFACING
Several memory chips and I/O devices are connected to a microprocessor. Figure 7.1
shows a schematic diagram to interface memory chips or 1/O devices to a micro-

/0 DEVICE

/\T\

N\

e

Fig.7.1 Schematic Diagram for Memory and /O Interfacing

:
;

processor. An address decoding circuitis employed to select the required I/0 device or
a memory chip. Figure 7.2 shows a schematic diagram of a decoding circuit. f IO/Mis
high the decoder 2 is activated and the required 1/0 device is selected. Tf 10/M is low,
the decoder 1 is activated and the required memory chip is selected. A few MSBs of the
address lines are applied to the decoder to select a memory chip or an 1/0 device.

7.3.1 Memory Interfacing

The address of a memory location or an I/0 device is sent out by the microprocessor.
The corresponding memory chip or I/O device is selected by a decoding circuit. The
decoding task can be performed by a decoder, a comparator, a bipolar PROM or PLA
(Programmed logic array). In this section the application of 7415138, a 1 to 8 lines
decoder will be illustrated. Figure 7.3 shows the interface of memory chips through
741.5138. G1, G2A and G2B are enable signals. To enable 7415138, G1 should be high,
and G2A and G2B should be low. A, B and C are select lines. By applying proper logic
to select lines any one of the outputs can be selected. Yy, Yj --..... Y7 are 8outputlines. An
output lines goes low when it is selected. Other output lines remain high. Table 7.1
shows the truth table for 741.5138. When G1 is low or G2A is high or G2B is high, all

>

S
o

INSTRUCTION SET OF INTEL 8085

-

Vor @ EXCLUSIVE-OR
“ Move data in the direction of arrow.
<> Exchange contents.

4.6 INTEL 8085 INSTRUCTIONS %/

ome of Intel 8085 instructions are frequently, some occasionally and some seldom
used by the programmer. It is not necessary that one should learn all the instructions to
understand simple programs. The beginner can learn about 15 to 20 important
instructions such as MOV, MVI, LXT, LDA, LHLD, STA, SHLD, ADD, ADC, SUB, JMP
JC,JNC, JZ, INZ, INX, DCR, CMP etc., and start to understand simple programs given
in Chapter 6. While learning programs he can understand new instructions which he
has not learnt earlier.
The operation codes (opcodes) are given in Appendix II. The explanations of the
most instructions are given in the subsequent subsections.
A6.1 Data Transfer Group MOV ry, rp
(Move data; Move the content of the one register to another)
[r;] «—[r;] States: 4. Flags: none. Addressing: register.Machine cycle: 1.
The content of register r, is moved to register r1- For example, the instruction MOV
A, B moves the content of register B to register A. The instruction MOV B, A moves the
content of register A to register B. The time for the execution of this instruction is 4
clock period. One clock period is called State. No flag is affected.
MOV 1, M. (Move the content of memory to register).
[r] < [[H-L]] States: 7. Flag none. Addressing: register indirect. Machine cycles: 2.

The content of the memory location, whose address is in H-I, pair, is moved to
register r.

Example

LXTH,2000H Load H-L pair by 2000H.

MOV B,M Move the content of the memory location 2000H to register B.
HLT Halt.

In this example the instruction LXI H, 2000 H loads H-L pair with 2000 H which is
the address of a memory location. Then the instruction MOV B, M will move the
content of the memory location 2000H to register B.

MOV M, r. (Move the content of register to memory).

[[H-L]l«[r]l States: 7. Flags: none. Addressing: reg. indirect. Machine cycles: 2.
The content of register 7 is moved to the memory location addressed by H-L pair.
For example, MOV M, C moves the content of register C to the memory location whose
address is in H-L pair.
MVI 1, data. (Move immediate data to register).
[r] «-data. States: 7. Flags: none. Addressing: immediate. Machine cvcle: 2,

The 1st byte of the instruction is its opcode. The 2nd byte of the instruction is the
data which is moved to register r. For example, the instruction MVI A, 05 moves 05 to
register A. In the code form it is written as 3E, 05. The opcode for MVI A is 3E and 05 is
the data which is to be moved to regiser A.

MVI M, data. (Mm(e immediate data to memory).

4.6 : FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

[[H - L]] < data. States: 10. Flags: none. Addressing: immediate/reg. indirect. Machine
cycle: 3.

The data is moved to memory location whose address is in H-L pair.

Example

LXI H, 2400H Load H-L pair with 2400H.
MVI M, 08 Move 08 to the memory location. 2400H.
HLT Halt.

In the above example the instruction LXI H, 2400 H loads H-L pair with 2400 H
which is the address of a memory location. Then the instruction MVL M, 08 will move
08 to memory location 2400H. In the code form it is written as 36, 08. The opcode for
MVI M is 36 and 08 is the data which is to be moved to the memory location 2400H.

LXI rp, data 16. (Load register pair immediate).

[rp] < data 16 bits, [rh] <— MSBs, [1] < 8 LSBs of data.

States: 10. Flags: none. Addressing: immediate. Machine cycles: 3.

This instruction loads 16-bit immediate data into register pair rp. This instruction 1s°
for register pair; only high order register is mentioned after the instruction. For
example, H in the instruction LXTH stands for H-L pair. Similarly, LXI B is for B-C pair.
1.X1 H, 2500H loads 2500H into H-L pair. H with 2500H denotes that the data 2500 is in
hexadecimal. In the code form it is written as 21, 00, 25. The 1st byte of the instruction
21 is the opcode for LXTH. The 2nd byte 00is 8 LSBs of the data and it is loaded into
register L. The 3rd byte 25 is 8 MSBs of the data and it is loaded into register H.

LDA addr. (Load Accumulator direct).

[A] < laddr]. States: 13. Flags: none. Addressing: direct. Machine cycles: 4.

The content of the memory location, whose address is specified by the 2nd and 3rd
bytes of the instruction; is loaded into the accumulator. The instruction LDA 2400 H
will load the content of the memory location 2400 H into the accumulator. In the code
form it is written as 3A, 00, 24. The 1st byte 3A is the opcode of the instruction. The 2nd
byte 00 is of 8 LSBs of the memory address. The 3rd byte 24 is 8 MSBs of the memory
address.

STA Addr. (Store accumulator direct).

[addr] «-[A] States: 13. Flags: none. Addressing: direct. Machine cycles: 4.

The content of the accumulator is stored in the memory location whose address is
specified by the 2nd and 3rd byte of the instruction. STA 2000H will store the content of
the accumulator in the memory location 2000H.

LHLD addr. (Load H-L pair direct).

[L] < [addr], [H] < [addr + 1]. States: 16. Flags: none. Addressing: direct. Machine
cycles: 5.

The content of the memory location, whose address is specified by the 2nd and 3rd
bytes of the instruction, is loaded into register L. The content of the next memory
location is loaded into register H. For example, LHLD 2500H will load the content of
the memory location 2500 H into register L. The content of the memory location 2501H
is loaded into register H.

SHLD addr. (Store H-L pair direct)

[addr] «[L], [addr + 1] < [H] States : 16. Flags: none. Addressing: direct. Machine
cycles: 5.

b

—~

INSTRUCTION SET OF INTEL 8085

The content of register
specified by the 2nd and 3rd bytes of the instruction. The content of register H is stored
in the next memory location. For example, SHL.D 2500F will store the content of
register [, in the memory location 2500H. The content of register H is stored in the
memory location 2501F.

LDAX rp. (LOAD accumulator indirect)

[Al < [[rpl] States; 7. Flags; none. Addressing: register indirect. Machine cycles: 2.

The content of the memory location, whose address is in the register pair p, is
loaded into the accumulator. or example, LDAX B will load the content of the

memory location, whose address is in the B-C pair, into the accumulator. This
Instruction is used only for B-C and D-E register pairs.

STAX rp. (Store accumulator indirect)
[lrp]] <~ [A] States: 7. Flags: none. Addressing; register indirect. Machine cycles: 2.
ator is stored in the memory location whose

XCHG. (Exchange the contents of H-L with D-E pair)
[H-Ll<»> [D-E]. States: 4. Flags: none. Addressing: register. Machine cycles: 1.
The contents of H-I, pair are exchanged with contents of D-E pair.

4.6.2 Arithmetic Group
ADD . (Add register to accumulator)

[A] «[A] + [7]. 04,

The content of registerr i
placed in the accumulator.

ADD M. (Add memory to accumulator)

[A] «-[A] + [I[H-L]]. States: 7. Flags: all. Addressing: reg. indirect, Machine
cycles: 2. _

The content of the memory location addressed by H-L pair is added to the content
of the accumulator. The sum is placed in the accumulator.

ADCr. (Add register with carry to accumulator.)

[A] « [A] + [r] +[CS]. States: 4. Flags: all. Addressing: register. Machine
cycles: 1,

The content of register r and carry status are added to the content of the
accumulator. The sum ig placed in the accumulator,

ADCM. (Add memory with carry to accumulator)

[A] «-[A]+ [[H-L]] + [CS)]. States: 7. Flags: all. Addressing: reg. indirect. Machine
cycles: 2.

The content of the memory location addressed by H-L pair and carry status are
added to the content of the accumulator. The sum is placed in the accumulator.

ADI data. (Add immediate data to accumulator)

4.8 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

instruction ADI 08 will add 08 to the content of the accumulator and place the result in
the accumulator. In code form the instruction is written as C6, 08.

ACI data. (Add with carry immediate data to accumulator)

[A] < [A] + data + [CS]. States: 7. Flags: all. Addressing: immediate. Machine
cycles: 2

The 2nd byte of the instruction (which is data) and the carry status are added to the
content of the accumulator. The sum is placed in the accumulator.

DAD rp. (Add register paid to H-L pair)

[H-L] « [H-L] + [rp]. States: 10. Flags: CS. Addressing: register. Machine cycles: 3.

The contents of register pair 7p are added to the contents of H-L pair and the result
is placed in H-L pair. Only carry flag is affected.)

SUB r. (Subtract register from accumulator)

[A] « [A] - [r]. States: 4 Flags: all. Addressing: register. Machine cycles: 1.

The content of register r is subtracted from the content of the accumulator, and the
result is placed in the accumulator.

SUB M. (Subtract memory from accumulator).

[A] « [A] —[[H-L]]. States: 7. Flags: all. Addressing: reg. indirect. Machine
cycles: 2

The content of the memory location addressed by H-L pair is subtracted from the
content of the accumulator. The result is placed in the accumulator.

SBB 1. (Subtract register from accumulator with borrow).

[A] < [A] - [r] - [CS]. States: 4. Flags: all. Addressing;: register. Machine cycles: 1.

The content of register r and carry status are subtracted from the content of the
accumulator. The result is placed in the accumulator.

SBB M. (Subtract memory from accumulator with borrow).

[A] «[A] ~[[H-L]] — [CS]. States: 7. Flags: all. Addressing: reg. indirect. Machine
cycles: 2.

The content of the memory location addressed by H-L pair and carry status are
subtracted from the content of the accumulator. The result is placed in the accumulator.

SUI data. (Subtract immediate data from accumulator)

[A] <-[A] - data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2.

The 2nd byte of the instruction is data. It is subtracted from the content of the
accumulator. The result is placed in the accumulator. For example, the instruction SUT
05 will subtract 05 from the content of the accumulator and place the result in the
accumulator. In the code form the above instruction is written as D6, 05.

SBI data. (Subtract immediate data from accumulator with borrow).
[A] < [A] - data —[CS]. States: 7. Flags: all. Addressing: immediate. Machine
cycles: 2

The data and carry status are subtracted from the content of the accumulator. The
result is placed in the accumulator

INR r. (Increment register content)
] < [l =1, States: 4. Flags: all except carry flag, Addressing : register. Machine
cycle: 1.
The content of register is incremented by one. All flags except CS are affected.
INR M. (Increment memory content)

8

instrin
hexad
result
decim
liesin
the cos
to 1. ¢
numbs

4.6.3 |
The iz
compal
AN
[A]
The
result &
ie. itis
AN

[A
cycles:
Th
accum
issett

INSTRUCTION SET OF INTEL 8085

4.9
[{H—L]] < [[H-L]] + 1. States: 10. Flags: all except carry f]
indirect,
Machine cycles: 3.
The content of the memo:

1y location addressed by H-
All flags except CS are affected

DCR r. (Decrement register content) [l «[- 1. States: 4. Flags: all except carry
flag, Addressing: register. Machine cycles: 1.
The content of register r is d
DCR M. (Decrement memo
[TH-L]] « [[H-L]] - 1. States: 10. Flags: all except carry flag. Addressing: reg.
indirect. Machine cycles: 3.
The content of the memo

ag. Addressing: reg.

L pair is incremented by one,

ecremented by one. AJ] f]

ags except CS are affected.
Iy content)

Ty location addres

sed by H-L pair is decremented by one.
All flags except CS are affected.

The content of the register
DCXtp (Decrement regis

ter pair)
Pl «[rpl - 1. States: 6, Fl

4.6.2 Logical Group
The instructions of this

[A] «[A] A [[H-L]]. States: 7. Flags: a]l. Addressing: reg. indirect. Machine
cycles: 2,

The content of the memory location addressed by H-
accumulator. The result is ;

L pair is ANDed with the
Placed in the accumulator, Al f]
issetto 0 and AC to 1.

ags are affected. The CS flag

FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

4.10

ANI data. (AND immediate data with accumulator)
[A] ¢ [A] ~ data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2. o
The 2nd byte of the instruction is data, and it is ANDed with the content of the
accumulator. The result is placed in the accumulator. The CSflagissetto0and ACto 1.
ORA r. (OR register with accumulator)
[A] «[A]v [r] States: 4. Flags: all. Addressing; register. Machine cycles: 1.
The content of register r is ORed with the content of the accumulator. The result is
placed in the accumulator. All status flags are affected. Carry and auxilary carry are
cleared i.e. the CS and AC flags are set to 0.
ORA M. (OR memory with accumulator)
[A] «[A] v [[H-L]]. States: 7. Flags: all. Addressing: reg. indirect. Machine

cycles: 2.
The content of the memory location addressed by H-L pair is ORed with the content !
of the accumulator. The result is placed in the accumulator. The CS and AC flags are

’f -

set to 0. .
ORI data. (OR immediate data with accumulator)
[A] ¢-[A]v data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2.
The 2nd byte of the instruction is data, and it is ORed with the content of the
accumulator. The result is placed in the accumulator. All status flags are affected. The

CS and AC flags are set 0.
XRA r. (EXCLUSIVE - OR register with accumulator)
[A] < [A] V' [r] States: 4. Flags: all. Addressing: register. Machine cycles: 1.
E - ORed with the content of the accumulator.

The content of register is EXCLUSIV I
All status flags are affected. The CS and AC

The result is placed in the accumulator.
flags are set to 0.

XRA M. (EXCLUSIVE - OR memory with accumulator)

[A] « [A] ¥ [[H-L]]. States: 7. Flags: all. Addressing: reg. indirect. Machine

cycles: 2.
ation addressed by H-L pair is EXCLUSIVE-ORed

The content of the memory loc
with the content of the accumulator. The result is placed in the accumulator. All status
4

| flags are affected. The CS and AC flags are set to 0.
' XRI data. (EXCLUSIVE - OR immediate data with accumulator)
[A] < [A] V data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2.

truction is data, and it is EXCLUSIVE-ORed with the content

The 2nd byte of the ins
of the accumulator. The result is placed in the accumulator. All flags are affected. The

CS and AC flags are set to 0.
CMA. (Complement the accumulator)
[A] « [A]. States: 4. Flags: none. Machine cycles: 1. Addressing: implicit.
| 1’s complement of the content of the accumulator is obtained, and the result is
; Jaced in the accumulator. To obtain the 1’s complement of a binary number 0 is
replaced by 1, and 1 by 0. For example, one’s complement of 1100 is 0011. 5
CMC. (Complement the carry status)
[CS] < [CS). States: 4. Flags: CS, Machine cycle: 1.
The CS flag is complemented. Other flags are not affected.

NSTRUCTION SET OF INTEL 8085

STC. (Set catry status)

[CS] < 1. States: 4. Flags: CS. Machine cycles: 1.

The status flag CS is set to 1. Other flags are not affected.

CMP r. (Compare register with accumulator)

[A] — [r]. States 4. Flags: all. Addressing: register. Machine cycles: 1.

The content of register 7 is subtracted from the content of the accumulator and
status flags are set according to the result of the subtraction. But the resultis discarded.
The content of the accumulator remains unchanged. ’

CMP M. (Compare memory with accumulator)

[A] = [[H-L]]. States: 7. Flags: all. Addressing: reg. indirect. Machine cycles: 2.

The content of the memory location addressed by H-L pair is subtracted from the
content of the accumulator, and status flags are set according to the result of the
subtraction. But the result is discarded. The content of the accumulator remains
uncharged.

CPI data. (Compare immediate data with accumulator)

[A] - data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2.

The 2nd byte of the instruction is data, and it is subtracted from the content of the
accumulator. The status flags are set according to the result of subtraction. But the
result is discarded. The content of the accumulator remains unchanged.

RLC. (Rotate accumulator left)

[, 1] <[4l [Ag] «[A7], [CS] - [A7].

States: 4. Flags: CS. Machine cycles : 1. Addressing: implicit.

The content of the accumulator is rotated left by one bit. The seventh bit of the

accumulator is moved to carry bit as well as to the zero bit of the accumulator. Only C5
flag is affected. See Fig. 4.1

CS == A? .—J

CARRY STATUS ACCUMULATOR

Fig.4.1 Schematic Diagram for RLC
RRC. (Rotate accumulator right)
[A7] < [AgL [CS] «[ApL [Ap] = [A, 4 1]
States: 4. Flags: CS. Machine cycles : 1. Addressing: implicit.

The content of the accumulator is rotated right by one bit. The zero bit of the
accumulator is moved to the seventh bit as well as to carry bit. Only CS flag is affected.

See Fig. 4.2.
cs = Ay —J

CARRY STATUS ACCUMULATOR
Fig. 4.2 Schematic Diagram for RRC

- RAL. (Rotate accumulator left through carry)
[Aps 1] ¢ [A,] [CS] < [A], [A] - [CS].

4.12 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

States: 4. Flags: CS. Machine cycles: 1. Addressing: impilicit.
The content of the accumulator is rotated left one bit through carry. The seventh bit

of the accumulator is moved to carry, and the carry bit is moved to the zero bit of the
accumulator. Only carry flag is affected. See Fig. 4.3.

e "

CARRY STATUS

ACCUMULATOR
Fig. 4.3 Schematic Diagram for RAL

RAR. (Rotate accumulator right through carry)
States: 4 Flags : CS. Machine cycle: 1. Addressing implicit.
The content of the accumulator is rotated right one bit through carry. The zero bit of

the accumulator is moved to carry, and the carry bit to the seventh bit of the
accumulator. Only CS flag is affected. See Fig. 44

cs = A; Ay

CARRY STATUS ACCUMULATOR

Fig.4.4 Schematic Diagram for RAR
4.6.4 Branch Group

The instructions of this group change the normal sequence of the program. There are
two types of branch instructions: conditional and unconditional. The conditional
branch instructions transfer the program to the specified label when certain condition
is satisfied. The unconditional branch instructions fransfer the program to the specified
label unconditionaily.

JMP addr (label). (Unconditional jump: jump to the insiruction specified by the
address).

[PC] < Label. States: 10. Flags: none. Addressing: immediate. Machine cycles: 3.

Byte 2nd and byte 3rd of the instruction give the address of the label where the
program jumps. The address of the label is the address of the memory location for next
instruction to be executed. The program jumps to the instruction specified by the
address (label) unconditionally.

Conditional Jump addr (label). After the execution of the conditional jump
instruction the program jumps to the instruction specified by the address (label) if the
specified condition is fulfilled. The program proceeds further in the normal sequence if
the specified condition is not fulfilled. If the condition is true and program jumps to the
specified label, the execution of a conditional jump takes 3 machine cycles: 10 states. If
condition is not true, only 2 machine cycles; 7 states are required for the execution of the
instruction.

(1) JZ addr (label). (Jump if the result is zero)

[PC] « address (label), jump if Z = L States: 7/10. Flags: none. Addressing:
immediate.

Machire cycles: 2/3.

INSTRUCTION SET OF INTEL8085 413

The program jumps to the instruction specified by the address (label) if the result is
zero (i.e. the zero status Z = 1). Here the result after the execution of the preceding
instruction is under consideration.

(ii) JNZ addr (label). (Jump if the result is not zero)

[PC] ¢~ address (label), jump if Z = 0. States: 7/10. Flags: none. Addressing :
immediate. :

Machine cycles: 2/3.

The program jumps to the instruction specifice by the address (label) if the result is
non-zero (i.e the zero status Z = ().

(iii) JC addr (label). (Jump if there is a carry)

[PC] < address (label), jump if CS = 1. States: 7/10. Flags: none. Addressing :
immediate. Machine cycles: 2/3.

The program jumps to the instruction specified by the address (label) if there is a
carry (i.e. the carry status: CS = 1). Here the carry after the execution of the preceding
instruction is under consideration.

(iv) JNC addr (label). (Jump if there is no carry)

[PC] « address (label), jump if CS = 0. States: 7/10. Flags: none. Addressing :
immediate. Machine cycles: 2/3.

The program jumps to the instruction specified by the address (label) if there is no
carry (i.e. the carry states CS = 0).

(v) JP addr (label). (Jump if the result is plus)

[PC] « address (label), jump if S = 0. States: 7/10. Flags: none. Addressing:
immediate.

Machine cycles: 2/3.
The program jumps to the instruction specified by the address (label) if the result is

plus.

(vi) JM addr (label). (Jump if the result is minus)

[PC] < address (label), jump if S = 1. States: 7/10. Flags: none. Addressing:
immediate.

Machine cycles: 2/3.

If the result is minus the program jumps to the instruction specified by the address
(label).

(vii) JPE addr (Iabel). (Jump if even parity)

[PC] < address (label), jump if even parity: the parity status P = 1, States: 7/10.
Flags: none. Addressing: immediate. Machine cycles: 2/3.

If the result contains even number of 1s, the program jumps to the instruction
specified by the address (label).

(viii) JPO addr (label). (Jump if odd parity)

[PC] < address (label), jump if odd parity ; the parity status P = 0, States: 7/10,
Flags: none. Addressing: immediate, Machine cycles: 2/3.

If the result contains odd number of 1s, the program jumps to the instruction
specified by the address (label).

CALL addr (label). (Unconditional CALL: call the subroutine identified by the
address)

[[SP] — 1] «-[PCH], Save the address of the next instruction of the program in the

stack.

1
4.14 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS |

[[SP] - 2] «[PCL],
[SP] «(ISP] - 2)
[PCl+—addr (label)

States: 18. Flags: none, Addressing: immediate /re

8- Indirect. Machine cydles: 5,
CALL instruction is used to call a subroutine. Before the control is transferred to the
subroutine, the address of the next instruction of the main program is saved in the

stack. The content of the stack pointer is decremented by two to indicate the new

stacktop. Then the program jumps to subroutine starting at address specified by the
label.

Conditionai CALL addr (labei) ! 1
[[SP] - 1] < [PCH], [[SP] - 2] < [PCL], _ |
[PC] « addr (label), [SP] « ([sP-2]). ;

States: 9/18. Flags: none. Addressing: immediate/ reg. indirect. Machine cycles:

2/5.If the condition is true and program calls the specified subroutine, the execution of 'I
a conditional call instructio

n takes 5 machine cycles; 18 states. If condition is not true, ’
only 2 machine cycles; 9 states are required for the execution of the instruction.

(i) CC addr (Iabel) Call subroutine if carry status CS = 1.
(ii) CNC addr (label) Call subroutine if carry status CS = (),
(iii) CZ addr (Iabel) Call subroutine if the result is zero;
(iv) CNZ addr (label) Call subroutine if the resultis not zero; the zero status Z = ().
(v) CP addr (label) Call subroutine if the result is plus; the sign status S = (),
(vi) CM addr (label) Call subroutine if the resultis minus, the signstatusS=1,
| (vii) CPE addr (label) Call subroutine if even parity; the parity status P = 1.

(viii) CPO addr (label) Call subroutine if odd parity; the parity status P = 0,
RET. (Return from subroutine)

:
[PCL] « [[SP]],

[PCH] «[[SP] + 1],

[SP] < ([SP] + 2).

N =B

the zero status Z = 1.

Conditional Return

[PCL] «[[SP]], [PCH] «[[SP] + 1,
[SP] «([SP] + 2).

TNSTRUCTION SET OF WTEL 8085

(i RC Return from subro;ltine if carry status CS = 1.
(i) RNC - Return from subroutine if carry status CS = 0.
(i) RZ . Return from subroutine if the result is zero; the zero status Z = 1.
(fv) RNZ Return from subroutine if the result is not zero; the zero status Z = 0.
() RP Return from subroutine if the result is plus; the sign status S = 0.
(vi) RM Return from subroutine if the result is minus, the sign status S = 1.
(viiy RPE Return from subroutine if even parity, the parity status P = 1.
(vii) RPO Return from subroutine if odd parity, the parity status P = (.
RSTn (Restart).
[[SP] — 1] «[PCH], [[SP] - 2] « [PCL],
[SP] <~ ([SP] — 2), [PC] «8 times 1.
States: 12. Flags: none, Addressing: reg. indirect. Machine cycles : 3.

Restart is a one-word CALL instruction. The content of the program counter is
saved in the stack. The program jumps to the instruction starting at restart location.
The address of the restart location is 8 timesn. The restart instruction and locations are
as follows:

Instruction Opcode Restart Locations
RST O C7 0000
RST1 CF 0008
RST2 D7 0010
RST 3 DF 0018
RST 4 E7 0020
RST5 EF 0028
RST 6 E7 0030
RST7 FF 0038

PCHL. (Jump to address specified by H-L pair)

[PC] - [H-1], [PCH] <~ [H], [PCL] «[L]

States: 6. Flags: none. Addressing: register. Machine cycle: 1.

The contents of H-L pair are transferred to program counter. The contents of

register H are moved to high order 8 bits of register PC. The contents of register L are
transferred to low order 8 bits of register PC.

4.6.5 Stack, VO and Machine Controi Group
IN port-address. (Input to accumulator from I/O port)

[A] < [Port]. States: 10. Flags: none. Addressing: direct. Machine cycles: 3.

The data available on the port is moved to the accumulator. After instruction IN,
the address of the port is specified. The 2nd byte of the instruction contains the address
of the port. The address of a port is an 8-bit address. For example, IN 01. The address of
the port B of an I/O port 8255.1 of a microprocessor kit is 01.

4.16 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

OUT port-address. (Output from accumulator to I/0 port)
[Port] < [A]. States: 10. Flags: none. Addressing: direct. Machine cycles: 3.

The content of the accumulator is moved to the port specified by its address. After
the OUT instruction, the port address is specified. The 2nd byte of the instruction
contains the address of the port. For example, OUT 00. The address of the port A of
an I/0 port 8255.1 of a microprocessor kit is 00.

PUSH rp. (Push the content of register pair to stack)

[[SP] - 1] «[rhA],

[ISP] - 2] «[r1],

[SP] «-([SP] - 2).

States: 12. Flags: none. Addressing: register(source)/reg, indirecé(desﬁnaﬁon),
Machine cycles: 3. 2

The content of the register pair rp is pushed into the stack.

PUSH PSW. (PUSH program status word to the stack)

[ISP] — 1]« [A]

[[SP] - 2] «PSW (Program Status Word)

[SP] «([SP] - 2).

States: 12, Flags: none. Addressing: register(source)/ reg.indirect(destination),
Machine cycles: 3.

The content of the accumulator is pushed into the stack. The contents of status flags

are also pushed into the stack. The content of the register SP is decremented by 2 to.
indicate new stacktop.

POP rp. (Copy two bytes from the top of the stack into the specified register)
(1] «[[SP]]

[7h] < [[SP] + 1]

[SP] < ([SP] + 2).

States: 10. Flags: none. Addressing: register(destination)/ reg.indirect (source),
Machine cycles: 3.

The content of the register pair, which was saved earlier is moved from the stack to
the register pair.

POPPSW. (Copy two bytes from the top of the stack into PSW and Accumulator)
PSW «[[SP]]

[A] «[[SP] +1]

[SP] «([SP] + 2).

States: 10. Flags: all. Addressing: reg. indirect. Machine cycles: 3.

The processor status word which was saved earlier during the execution of the

program is moved from the stack to PSW. The content of the accumulator which was
- also saved is moved from the stack to the accumulator.,

HLT (Halt)
States: 5. Flags: none. Machine cycle: 1.

When this instruction is executed, any further program execution is stopped. The
microprocessor remains in Halt state. An interrupt or reset is required to exit from Halt
state. Registers and status flags remain unaffected.

XTHL. (Exchange stack-top with H-L)

INSTH

pro

%]

e LAl

UNIT-1I

Microprocessor Programming

ASSEMBLY
LANGUAGE PROGRAMS

6.1 INTROCDUCTION

To learn assembly language programming the beginner should write simple programs
given in this chapter and try to execute them on Intel 3085 based microprocessor kit.
The memory addresses given in the program are for a particular microprocessor kit.
These addresses can be changed to suit the microprocessor kit available in the
laboratory. Before writing assembly language program, one should learn some
important Intel 8085 instructions such as MOV, MVI, ADD, SUB, LXI, LDA, INX, INR,
HLT etc. described in chapter 4. While learning programs, one should gradually pick
up new instructions which have not been used earlier.

6.2 SIMPLE EXAMPLES
The use of some important instructions are described below with very simple
examples.
The memory addresses given in these examples are for Vinytics” kit.
Example 1. Object: Place 05 in register B.
PROGRAM
Memory address Machine codes Mnemonics Operands Comments
FCO0 06,05 MVI B, 05 Get 05 in register B.
FCo02 76 HLT Stop.

The instruction MVI B, 05 moves 05 to register B. HLT halts the program. A
program is fed to the microprocessor kit in machine codes. The machine code for the
instruction MVI B, 05 is 06, 05. The 1st byte of the instruction is 06 which is the machine
~ode for the instruction MVI B. The second byte of the instruction, 05 is the data which
is to be moved to register B. The code for HLT is 76. The machine codes for a program
are entered in the memory. In the above program the memory addresses from FCO0 to
TC02 have been used. The machine code 06 is entered in the memory location FC00 H;
75 in FC01 H and 76 in FC02 H. This program can be executed on a microprocessor kit
and the register B can be examined. After the execution of the program the register B
31l contain 05. The memory address can be changed to suit the microprocessor kit
available in the laboratory. The address and data used for a microprocessor based
system are in hexadecimal system. The symbol H after a digit denotes that it is in
hexadecimal system.

Example 2 Object: Get 05 in register A; then move it to register B.

PROGRAM
Memory address Machine Codes Mnemonics Operands Commenis
FCO0 3E, 05 MVI A, 05 Get 05 in register A.
FCo02 47 MOV B, A Transfer 05 from register Ato B.
FCO03 76 HLT Stop.
Mote: Microprocessors are designed to process hexadecimal numbers. Hence, data and address given in
== assembly language program are hexadecimal numbers.

8.2 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

The instruction MVI A, 05 will move 05 to register A. In the code from it is written
as 3E, 05. The 1st byte of the instruction is 3E. This code is for MVI A. The second byte 05
is the data which is to be placed in A. The instruction MOV B, A transfers the content of
register A to register B. After the execution of the above program register B will contain
05. The program can be executed on a microprocessor kit and the register B can be
examined.

Example 3

Object: Load the content of the memory location FC50 H directly to the
accumulator, then transfer it to register B. The content of the memory location FC50 H
is 05.

PROGRAM _

Memory Machine Mnemonics Operands Comrmenis

address Codes

FCo00 3A, B0, FC LDA FC50 Get the content of the memory
location FC50 H into accumulator.

FCO03 47 Mov B.A Move the content of register A to B.

FC04 76 HLT Halt.

DATA

FC50 — 05

The instruction LDA loads the accumulator directly with the content of the
memory location specified in the instruction. Thus the instruction LDA FC50 H will
load the accumulator with the content of the memory location FC50 H. The instruction
MOV B, A will move the content of the accumulator to B. The content of the memory
location FC50 H is 05. It is fed to the microprocessor kit as data. After the execution of
the above program the register B will contain 05.

Example 4

Object: Move the content of the memory iocation FC50 H to register C. The content
of the memory location FC50 H is 08.

PROGRAM

Memory Machine Mnemonics Operanads Comments

address Codes

FCO0 21,80, FC LXI H,FC50 Get the memory address FC50 H
in H-L pair.

FC03 4E MOV C.M Move the content of the memory

location, whose address is in the

H-L. pair, to register C.
FCo4 76 HLT Halt.
DATA i
FC50 —08
The instruction LXI H, FC50 H will place FC50 H in register pair H-L. FC50 H is the
address of the memory location from where the data is to be transferred to register C. In
the code form the instruction is written as 21, 50, FC. The 1stbyte of the instruction is 21.
It is the machine code for the instruction LXI H. The operand is FC50 which is to be
placed in H-L pair. The 2nd byte of the instruction is 50. It is 8 LSBs of the operand. The
3rd byte is FC which is 8 MSBs of the operand. In the code form the LSB is written first
then the MSB. Due to this reason the operand FC50 has been written in the code form as
50, FC. The instruction MOV C, M transfers the content of the memory location, whose

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM 6.3

address is in H-L pair, to register C. The execution of the previous instruction has

placed FC50 H in H-L pair. Therefore, MOV C, M will move the content of FC50 H to

register C. After the execution of the above program the register C will contain 08.
Example 5

Object : Place the content of the memory location FC50 H in register B and that of
FC51 Hinregister C. The contents of FC50 and FC51 Hare 11 Hand 12 Hrespectively.

PROGRAM

Memory Machine Mnemonics Operands Comments
address Codes

FCO0 21,50,FC LXI H, FC50 H Get FC50 H in H-L pair.

FCa3 46 MOV B, M Move the content of FC50 to B.
FCQ4 23 INX H Increment H-L pair by one.
FC05 4E MOV C.M Move the content of FC51 to C.
FCo6 76 HLT Halt.

DATA

FC50—11H
FC51 —12H.

The instruction LXI H, FC50 H will place FC50 H in H-L pair. FC50 H is the address
of the memory location which contains 11 H. MOV B, M will move the content of FC50
H to register B. The instruction INX H increases the content of H-L pair by 1. The
execution of the instruction INX H will increase the content of H-L pair from FC50 H to
FC51 H. MOV C, M will move the content of FC51 H to register C. Thus, after the

execution of the above program, the register B and C will contain 11 H and 12 H
respectively.
Example 6

Object: Place 05 in the accumulator. Increment it by one and store the result in the
memory location FC50 H.

PROGRAM

Memory Machine Mnemonics Operands Comments
address Codes

FCO0 3E,05 MVI A,05 Get 05 in the accumulator.

FCOo2 3C INR A Increment the content of accumulator
by one.

FC03 32,50,FC STA FC50 H Store result in FC50 H.

FC08 76 HLT Halt

The instruction MVI A, 05 moves 05 to the accumulator. INR A increases the
content of the accumulator from 05 to 06. STA FC50 stores the content of the
accumulator in the memory location FC50 H. After the execution of the above program
the memory location FC50 H will contain 06.

A number of important and useful assembly language programs are given in the
subsequent sections. Memory addresses used for them are for Professional’s
kits/Vinytics’ kits.

6.3 /ADDITION OF TWO 8-BIT NUMBERS; SUM 8-BIT
Problem:

Add 49 H and 56 H.

FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

The 1st number 49 H is in the memory location 2501 H.
The 2nd number 56 H is in the memory location 2502 H.
The result is to be stored in the memory location 2503 H.
Numbers are represented in hexadecimal system.

PROGRAM

Memary Machine Mnemonics Operands Comments
address Codes .

2000 21,01,25 LXI H, 2501 H Get address of 1st number in
H-L pair.

2003 7E MOV AM : 1st number in accumulator.

2004 23 INX H Increment content of H-L pair.

2005 86 ADD M Add 1st and 2nd numbers.

2006 STA Store sum in 2503 H.

2009 76 HLT Step

DATA |

2501 —49 H

2502 —56 H

The sum is stored in the memory location 2503 H.

Result
2503 — 9F H.

2501 H is the address of memory location for the 1st number. 2501 is placed in H-L
pair by the instruction LXT H, 2501 H. The next instruction is MOV A, M which moves
the content of the memory location addressed by H-L pair to the accumulator. In this
case H-L pair contains 2501 H and, therefore, the content of the memory location 2501
H is moved to the accumulator. Thus, the 1st number 49 H has been moved to the
accumulator. The instruction INX H increases the content of H-L pair by one.
Previously, the content of H-L pair was 2501 H. After the execution of INX H it becomes
2502 H. ADD M adds the contents of the accumulator and the content of the memory
location addressed by H-L pair. The content of 2502 H is the 2nd number 56 H. So, 56 H
is added to 49 H. Sum resides in the accumulator. The instruction STA 2503 H stores the
sum in the memory location 2503 H. The instruction HLT ends the program.

6.4 8-BIT SUBTRACTION*
Example 1

49 H 1stnumber
—-32H 2nd number

Result 17H

The 1st number 49 H is in the memory location 2501 H.
The 2nd number 32 H is in the memory location 2502 H.
The result is to be stored in the memory location 2503 H.

*Note: |f the second number is greater than the first number, the processor will give result in 2's complement
i.e. negative result. See Section 8.39.

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM

PROGRAM

Memory Machine Mnemonics Operands Comments
address Codes

2000 21,01,25 LX} H, 2501 H Get address of 1st number in
H-L pair,
2003 7E MOV A M 1st number in accumulator.

2004 23 INX H " Content of H-L pair increases
from 2501 to 2502 H.

2005 96 SuUB 1st number - 2nd number.

2006 23 INX Content of H-L pair becomes
2503 H.

2007 77 MOV Store result in 2503 H.
2008 76 HLT Halt

Example 1 Example 2

DATA : DATA

2501 — 49 H - ' 2501 —F8 H

2502 — 32 H 2502 —9BH

Resuit is stored in the Memory location 2503 H Result

2503 —17H 2503 —5D H

The 1st number is in the memory location 2501 H. 2501 is placed in H-L pair by the

execution of the instruction LXI H, 2501 H. The instrucion MOV A, M moves the
content of the memory location addressed by H-L pair to the accumulator. Thus, the 1st
number 49 H (Example 1) which is in 2501 H is placed in the accumulator. INX H
increases the content of H-L pair from 2501 to 2502 H. The instruction SUB M subtracts
the content of the memory location addressed by H-L pair from the accumulator. The
2nd number which is in the memory location 2502 H is subtracted from the 1st number
which is in the accumulator. The result resides in the accumulator. The instruction INX
H increases the content of II-L pair from 2502 to 2503 H. The instruction MOV M, A
transfers the content of the accumulator to the memory location addressed by H-L pair.
So the result which is in the accumulator is sotred in the memory location 2503 H. The
instruction HLT ends the program.

6.5 ADDITION OF TWO 8-BIT NUMBERS; SUM: 16-BITS
Example 1

Add 98 H and 9A H.

SUM =01, 32 H.
The 1st number 98 H is in the memory location 2501 H.
The 2nd number 9A H is in the memory location 2502 H.
The results are to be stored in 2503 and 2504 H.
Numbers are represented in hexadecimal.

In this case the sum is to be stored in two consecutive memory locations. The LSBs
of the sum is 32 H and it will be stored in the memory location 2503 H. The MSB of the
sum is 01 which will be stored in 2504 H.

Note. The program given below is also applicable for addition of 8-bit numbers;
sum: 8-bit. The MSBs of the sum for the such a case will be 00.

FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

-

PROGRAM

Memory Machine Labels Mnemonics Operands Comments
address Codes

2000 21,01, 25 X LXI H, 2501 H Address of 1st number in H-L
pair.
2003 OE, 00 MVI MSBs of sum in register C.
Initial value = 00.
7E 1st number in accumulator.
23 Address of 2nd number 2502 in
’ H-L pair.
86 1st number + 2nd number.

Is carry? No, go o mg,label

_ AHEAD.
2008 ocC Yes, increment C.
200C 32, 03, 25 AHEAD LSBs of sum in 2503 H.
200F . 79 : MSBs of sum in accumulator.
2010 32,04, 25 MSBs of sum in 2504 H.
2013 76 Halt

Example 1 Example 2

DATA DATA

2501 — 98 H 2501 —F5 H

2502 — 9AH 2502 —8AH

Resuft Result

2503 — 32 H, LSBs of sum. 2503 — 7F H, LSBs of sum.
2504 — 01 H, LSBs of sum. 2504 — 01 H, MSBs of sum.

The 1st instruction of the program LXI H, 2501 H gets the address of the 1stnumber
in H-L pair. The MSBs of the sum is placed in register C. The initial value of the MSBs of
the sum is kept 00. MOV A, M transfers 1st number from the memory location 2501 Hto
the accumulator. INX H increases the content of H-L pair from 2501 to 2502 H. The 2nd
aumber is in 2502 H. ADD M adds 1st and 2nd numbers. After the execution of the
instruction JNC the instruction INR C is executed if the addition of two numbers
produces a carry. In binary system carry is equal to one and, therefore, the content of
the register C is increased from 00 to 01. The value 01 is nothing but the MSBs of the
sum. Now the register C contains the MSBs of the sum. The accumulator contains the
1.8Bs of the sum. The instruction STA 2503 H places the 1.5Bs of the sum in memory
location 2503 H. The instruction MOV A, C moves the MSBs of the sum from register 6
to the accumulator. The instruction STA 2504 H stores the MSBs of the sum in 2504 H.

After the execution of the instruction INC the program jumps to label AHEAD-and
executes STA 2503 H, if the addition of two numbers does not produce a carry. The
1.SBs of the sum is placed in the memory location 2503 H. Register C contains 00, so the
execution of the instruction MOV A, C transfers 00 in the accumulator. The instruction
STA 2504 H stores 00 in the memory location 2504 H. This is the MSB of the sum. Sucha
situation will arise when the sum of two numbers is of 8-bits, and hence there is no

carry.

=

2502 —69H

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM

GET SECOND NUMBER

Y

FIND ITS 10'S COMPLEMENT

1

FIRST NUMBER + 10'S

COMPLEMENT OF 2ND NUMBER

v

DECIMAL ADJUST

Y

STORE RESULT

Fig. 6.1 Program Flow Chart for Decimal Subtraction

96 H = 10010110

PROGRAM

Address Machine Codes
2000 3A,01,25

2003 oF

2004 32,02, 25

2007 76

Example 1

DATA

2501 — 96 H

Resuilt

@) (©
One’s complement = 01101001 = 69 H.

©)

Mnemonics Operands
LDA 2501 H
CMA
STA 2502 H
HLT

6.9 FIND ONE’S COMPLEMENT OF AN 8-BIT NUMBER

Example 1. Find one’s complement of 96 H. The number in the binary form is
represented as follows:

To obtain one’s complement of a number its 0 bits are replaced by 1 and 1by 0.
The number is placed in the memory location 2501 H.
The result is stored in the memory location 2502 H.

Comments

Get data in accumulator,
Take its compiement.
Store result in 2502 H.
Halt.

Example 2

DATA

2501 —E4 H

Result
2502 —1BH

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM

6.16 SHIFTING OF A 16-BIT NUMBER LEFT BY 2 BITS
Example. Shift 1596 H left by 2 bits. 1596 = 0001 0101 1001 0110
» 6 O ©
Result of shifting left by one bit 0010 1011 0010 1100 = 2B2C
@ B @ O
Result of shifting 2 bits left 0101 0110 0101 1000 = 5658
G © © -6
The number is stored in the memory locations 2501 and 2502 H.
The result is to be stored in the memory locations 2503 and 2504 H.

PROGRAM
Memory Address Machine Codes Mnemonics Operands Comments
2000 24A,01,25 LHLD 2501 H Getdata in H-L pair.
2003 29 DAD H Shift left by one bit.
2004 29 DAD H Again shift left by one bit.
2005 22,083, 25 SHLD Store result in 2503 and 2504 H.
2008 76 HLT Stop

DATA
2501 — 96 H, LSBs of the number.
2502 — 15 H, MSBs of the number.

Result
2503 — 58 H, LSBs of the resuit.
2504 — 56 H, MSBs of the result.

6.17 MASK OFF LEAST SIGNIFICANT 4 BITS OF AN 8-BIT NUMBER
Example.
Number = A6
=1010 0110
Ay (©
Result = 06 = 0000 0110
A O
We want to mask off the least significant 4 bits of a given number. The LSD of the
given number A6 is 6. It is to be cleared (masked off) i.e. it is to be made equal to zero.
The MSD of the number A6 is A. In the binary form it is 1010. It is not to be affected. If
this number is ANDed with 1111 i.e. F, it will not be affected. Similarly, the LSD of the
number is 6. In the binary form it is represented by 0110. If it is ANDed with 0000, it
becomes 0000 i.e. it is cleared. Thus, if the number A6 is ANDed with FO, the LSD of the
number is masked off.

PROGRAM
Address Machine Codes Mnemonics Operands Comments
3A,01,25 LDA 2501 H Get data in accumulator.
ES, FO ANI FO Mask off the least significant 4 bits.
32,02,25 STA 2502 H Store result in 2502 H.
76 HLT Stop

FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

DATA
2501 —A6

Result

2502 — A0

The instruction LDA 2501 H transfers the content of memory location 2501 H f.e.
the given number to the accumulator. ANI FQ logically ANDs the content of the
accumulator with F0 to clear the least significant 4 bits of the number. STA 2502 H
stores the result in memory location 2502 H. HLT stops the program.

6.18 MASK OFF MOST SIGNIFICANT 4 BITS OF AN 8-BIT NUMBER
. Example.
Number = A6
= 1010 0110
(A) (6)
Result =06 =0000 0110
©) (6)

To mask off 4 most significant bits of a number, 4 MSBs are ANDed with 0000. The
least significant bits are not to be affected and, therefore, they are ANDed with 1111 i.e.
E. Thus, if an 8-bit number is ANDed with OF, the 4 most significant bits are cleared.

Address Machine Codes ~ Mnemonics Operands Comments

2000 3A, 01,25 LDA 2501 H Get data in accumulator.

2003 E6, OF ANI OF Mask off the most significant 4 bits.

2005 32,02, 25 STA 2502 H Store result in 2502 H.

2008 76 HLT Stop.

DATA

2501 — A6

Result

2502 — 06

The instruction LDA 2501 H transfers the content of memory location 2501 H to the
accumulator. ANIOF logically ANDs the content of the accumulator with OF to clear the
most significant 4 bits of the number. STA 2502 H stores the result in 2502 H. HLT stops
the program.

6.19 TO FIND SQUARE FROM LOOK-UP TABLE
Example. Find square of 07 (decimal) using look-up table technique.
" The number 07 D is in the memory location 2500 H.

The result is to be stored in the memory location 2501 H.

The table for square is stored from 2600 to 2609 H.

The address of the memory locations is in hexadecimal.

The number and squares are to be entered in decimal.

The squares of data are stored in certain memory locations in the tabular form. This
is called look-up table. For this example the squares of numbers from 00 to 09 are stored
in memory locations 2600 to 2609 H. The values of squares are in decimal. The data
form the index and it is transferred from memory to the accumulator and then to
register L. It forms the LSBs of the memory location where square of the data is placed.
The MSBs of the address is moved to register H. Now, the address of the desired

" memory logation where the square of the data resides is in H-L pair. The square of the
data is now moved to the accumulator and then it is stored.

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM 6.19

—

In the program LDA 2500 H moves data (07) to the accumulator. MOV L, A moves
07 to register L. MVI H, 26 H moves 26 H in register H. Now, in H-L pair 2607 H is
residing which is the address of the memory location where the square of 07 D is
placed. MOV A, M transfers 49 D from memory location 2607 to the accumulator. This
is stored in 2501 H. '

PROGRAM

Address Machine Codes Mnemonics Operands . Comments

2000 3A, 00, 25 LDA 2500 H Get data in accumulator.
2003 6F MoV L, A Get data in register L.

2004 26, 26 MVI H, 26 H Get 26 in register H.

2006 7E MOV A M Square of data in accumnulator.
2007 32,01,25 5TA 2501 H Store square in 2501 H.

200A 76 HLT Stop

DATA

2500—07D

Resuit
2501 — 49D

Look-up Table
Address (Hex) 2600 2601 2602 2603 2604 2605 2806 2607 2608 2809
Square (Decimal) 00 01 02 09 16 25 36 49 64 81

6,20 TO FIND LARGER OF TWO NUMBERS
- ~Example 1. Find the larger of 98 H and 87 H.

The first number 98 H is placed in the memory location 2501 H.

The 2nd number 87 H is placed in the memory location 2502 H.

The result is stored in the memory location 2503 H.

The numbers are represented in hexadecimal system. The 1st number is moved
from its memory location to the accumulator. It is compared with 2nd number. The
larger of the two is then placed in the accumulator. From the accumulator the larger
number is moved to the desired memory location.

PROGRAM ’
Memory address Machine Codes Labels Mnemonics Operands Commsnts

2000 21,01,25 LXI H, 2501 H Address of 1st number in H-L pair.

2003 7E MOV A M 1st number in accumulator,

2004 23 INX H Address of 2nd number in H-L pair.

2005 BE CMP M Compare 2nd number with 1st
number. Is the 2nd number > 15t ?

2006 D2, 0A, 20 JNC Mo, larger number is in
accumulator. Go to AHEAD.

2009 7E MOV A M Yes, get 2nd number in
! accumulator.

200A 32,03,25 AHEAD STA 2503 H Store larger number in 2503 H.
200D 76 HLT Stop

Example 1 Example 2

DATA DATA

2501 —98 H 2501 — A9 H
2502 —87H 2502 —EBH

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM

2{';':3 FIND THE SMALLEST NUMBER IN A DATA ARRAY
~ Example 1. The numbers of a series are: 86, 58 and 75.
As there are three numbers in the series, count = 03.
The count is placed in the memory location 2500 H.
The numbers are placed in the memory location 2501 to 2503 H.
The result is to be stored in the memory location 2450 H.

The 1st number of the series is placed in the accumulator and it is compared with
the 2nd number which is in the memory. The smaller of the two is placed in the
accumulator. Again this number which is in the accumulator is compared with the 3rd
number of the series and smaller number is placed in the accumulator. This process of
comparison is repeated till all the numbers of the series are compared and the smallest
number is stored in the desired memory location.

The memory location 2500 H contains the count of the series. In Example 1 count is
03. 2500 is placed in H-L pair. The instruction MOV C, M places the count in register C.
INX H increases the content of H-L pair from 2500 to 2501 H. The 1st number of the
series resides in the memory location 2501 H. MOV A, M moves the 1st number (86) in
the accumulator. DCR C decreases the count from 03 to 02, which means that now there
are 2 more numbers in the series. INX H increases the content of H-L pair from 2501 to
2502 H. The 2nd number of the series is in 2502 H. CMP M compares the content of the
accumulator (1st number) with the content of memory location 2502 H (2nd number).
Since the 1st number 86 is greater than the 2nd number 58, there will be no carry. As
there is no carry, the instruction MOV A, M will be executed. The smaller number 58
will be placed in the accumulator. DCR C will decrease count from 02 to 01 Itindicates
that there is one more number left in the series. As the content of register C is not zero,
the program will jump to the label LOOP. The INX H will change the content of H-L
pair from 2502 to 2503 H. The 3rd number of the series is in 2503 H. Again CMP M will
compare the content of the accumulator (58) with the content of 2503 H. The content of
2503 H is 75 which is greater than the content of the accumulator. In this case there will
be a carry. After the execution of the instruction JC AHEAD the program will jump to
the label AHEAD. The content of the accumulator will remain as it is. DCR C will
reduce the count from 01 to 00. As the content of register C is zero, the program will not
jump. It will proceed further to execute STA 2450 H. The smallest number (58) which is
in the accumulator will be stored in the memory location 2450 H. The instruction HLT
will end the program.

_ PROGRAM

Memory Address Machine Codes Labels Mnemonics Operands ~ Comments

2000 21,00, 25 LXI H,2500 H Get address for count in H-L
pair.

2003 4E MOV .M Count in register C.

2004 23 INX Get address of 1st number in
H-L pair.

2005 7E MOV ; 1st number in accumulator.

2006 oD DCR Decrement count.

2007 23 INX § Address of next number in H-L
pair.

2008 BE CMP Compare next number with
previous smallest. Is previous
smallest less than next
number?

6.30 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

2009 DA, 0D, 20 JC AHEAD Yes, smalier number in
accumulator. Go to AHEAD.
200C 7E MOV No, get next number in
accumulator.
200D cD DCR Decrement count.
200E C2,07,20 JNZ
2011 32,50, 24 STA Store smallest number in
2450 H.
2014 76 HLT ’ Stop.
Example 1 Example 2
DATA DATA
2500 — 03 H 2500 —05H
2501 — 86 H 2501 — EBH
2502 — 58 H 2502 — D4 H
2503 —75H 2503 —3CH
Resuit 2504 —0OF H
2450 — 58 H 2505 — A8 H
Result
2450 —0F H

6.24.1 An Alternative Program to Find the Smaliest Number from a Series of
Numbers

Example 1. The numbers of a series are: 86, 58 and 75. As there are three numbers in the

series, count = 03. The count is stored in the memory location 2500 H. The numbers are

stored in the memory location 2501 to 2503 H.

The result is to be stored in the memory location 2450 H.

PROGRAM

Memory Address ~ Machine Codes Label ~ Mnemonics Operands Comments

2000 21,00, 25 LXI H, 2500 H Get address for count in H-L
pair.

2003 4E C, M Count in register C.

2004 3E, FF A, FF Get FF in accumuiator.

2006 23 H Address of the next number of
the series.

2007 BE Compare next number with
previous smallest. Is next
number < previous smallest?

200A DA, 0C, 20 JC No, smallest number is in
accumulator. Go to AHEAD.

2008 7E MOV Yes, get smaller number in
accumulator.

200C oD DCR Decrement count.

200D C2, 06, 20 JNZ

2010 32, 50, 24 STA Store result in 2450 H.

2013 76 HLT Stop.

Example 1 Example 2
DATA DATA

2500 — 03 H 2500 — 05 H
2501 —86 H 2501 —EB

Fig. 6.4 Flow Chart to find sum of a series
of 8-Bit numbers; sum: 8-bit

START

| INITIALISE H-L PAIR J

1

| countmmece |

+ z

[INTIAL VALUE OF suM=00_|

—

INCREMENT H-L PAIR TO
GET NEXT NUMBER

?

SUM = PREVIOUS SUM
+ NEXT NUMBER

y

| DECREMENT COUNT J

YES

‘ STORE SUM |

FUNDAMENTALS OF MICROPROCESSCRS AND MICROCONTROLLERS

@

Y

INITIALISE H-L PAIR |

i

COUNT IN REG. C
INITIAL VALUE :
LSBs OF SUM =00
MSBs OF SUM =00

¥

INCREMENT H-L PAIR TO
GET NEXT NUMBER

Y

SUM = PREVIOUS SUM +
NEXT NUMBER

MSBs OF SUM = PREVIOUS
VALUE +1

STCORE LSBs OF SUM
STORE MSBs OF SUM

Fig. 8.5 Flow Chart to find sum of a series

of 8-hit numbers; sum; 18-bit

6.27 SUM OF A SERIES OF 8-BiT NUMBERS, SUM; 16-BIT
Exampie 1. Add 45, 98, 8A and E2 H; these are hexadecimal numbers.
The numbers are placed in the memory locations 2501 to 2504 H, and the countin

2500 H.

The sum is to be stored in the memory locations 2450 and 2451 H.

As there are 4 numbers in the series, count

made 00.

04. The initial value of the sum is

The number of the series are taken one by one and added to the sum. The program

flow chartis

shown in Fig. 6.5.

PROGRAM

Memory Address Machine Codes Label
2400 21, 00,25

2403 4E

2404 3E, 00

2406

47

iinemonics Operands

LXI H, 2500 H
MOV C.M
MVI A, 00
MOV B A

Comments
Address of count in H-L pair.
Count in register C.
LSBs of sum = 00 (initial value).
MSBs of sum = 00 (initial value).

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM 6.35

2407 23 LOOP INX Address of next data in H-L pair.
2408 88 ADD Previous sum + next number.
2408 D2, 0D, 24 JNC Is carry ? No, go to AHEAD.
240C 04 INR Yes, add carry to MSBs of sum.
240D oD DCR Decrarment count.
240E Cz, 07,24 JNZ LOOP Is count = 0 7 No, jump to LOOP.
2411 32,50, 24 STA 2450 H Store LSBs of the sum in 2450 H.
2414 78 MOV A B Get MSBs of sum in accumulator.
2415 32,51, 24 STA 2451 H Store MSBs of sum in 2451 H.
2418 76 HLT Stop.
Example 1 Exampie 2
DATA DATA
2500 — 04 H 2500 — 05 H
2501 — 45 H 2501 — 98 H
2502 — 98 H 2502 — 24 H
2503 — 8A H 2503 — 35 H
2504 —E2 H 2504 — 46 H
Resuit 2505 —39H
2450 — 49 H, LSBs of sum, Result
2451 — 02 H, MSBs of sum. 2450 — 70 H, LSBs of sum.

2451 — 01 H, MSBs of sum.

The count is placed in register C. The LSBs of the sum reside in the accumulator,
and MSBs of the sum in register B. Initial values of the LSBs and MSBs of the sum are
made 00. The 1st number is added to the initial sum. Count is decreased by one and the
program jumps to LOOP. The address of the 2nd number is placed in H-L pair. ADD M
adds 2nd number to the previous sum which is in the accumulator. If there is any carry
after addition, that is stored in register B. This is nothing but the MSB of the sum. The
process is repeated and the remaining numbers of the series are added. The 1.SBs of the
sum is stored in memory location 2450 H and MS5Bs of the sum in 2451 H.

6.28 SUM OF A SERIES OF 8-BIT DECIMAL NUMBERS, SUM: 16-BIT
Example 1. Add 65, 46, 35 and 98 D, these are decimal numbers. D stands for
decimal. Sum = 0244 D

The numbers are placed in the memory locations 2501 to 2504 H.

The sum is to be stored in the memory locations 2450 and 2451 H.

The instruction DAA is used in the program for decimal adjustment. It is used after
ADD instruction. Details for DAA instruction have already been given in Section 6.6
under the heading of "Decimal Addition of Two 8-Bit Number."

PROGRAM

Memory Address Machine Codes Label ~ Mnemonics Operands Comments

2400 21,00, 25 LXI H, 2500 H Address of count in H-L pair.
2403 4E MOV C,M Count in register C.

2404 3E, 00 MVI A, 00 LSBs of the sum = 00 (initial
value).

2406 47 MOV B, A MSBs of sum = 00 (initial value).
2407 23 INX H Address of next data in H-L pair.
2408 86 ADD M Sum = Sum + data.

6.36 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

2409 27 DAA Decimal adjust.
240A D2, OE, 24 AHEAD s carry? No, go to AHEAD.
240D 04 B Yes, add carry to MSBs of sum.
240E oD C Decrement count.
240F Cc2, 07,24 LOOP Is count = 0? No, jump to LOOP.
2412 32,50,24 2450 H Store LSBs of sum in 2450 H.
2415 78 . AB Get MSBs of sum in accumulator.
2416 Y 32,51, 24 2451 H Store MSBs of sum in 2451 H.
2419 76 “Stop.
Example 1 Example 2
DATA DATA
2500 — 04 H 2500 — 05 H
2501 — 65D 2501 — 96 D
2502 — 46 D 2502 —98 D
2503 —35D 2503 —85D
2504 —098D 2504 —89 D
Result 2505 —93D
2450 — 44 D, LSDs of the sum. Sum = 0461
2451 — 02 D, MSDs of the sum. 2450 — 61 D, LSDs of the sum.

2451 — 04 D, MSDs of the sum.

The program is exactly same as that for "sum of a series of 8-Bit Numbers, sum
16-bit," Section 6.27; except that the instruction DAA has been incorporated after the

instruction ADD M. The instruction ADD M gives the sum in hexadecimal system. The
instruction DAA makes correction and gives the result in decimal system. Similarly,
the program for "sum of a series of 8-bit decimal numbers, sum 8-bit" can be obtained
incorporting the instruction DAA in the program for "sum of a series of 8-bit Numbers,
sum 8-bit" given in Section 6.26.

6.29 8-BIT MULTIPLICATION : PRODUCT 16-BIT
Decimal Multiplication. For decimal multiplication the following procedure is
followed:
Example 36 D, Multiplicand
x 29 D, Multiplier

Product:
D stands for decimal number
36x29 = 9x 36+20x 36
324 +720 = 1044 D.

First of all the multiplicand 36 is multiplied by 9 and the result 324 is written on the
paper. Again 36 is multipled by 2 and the result 72 is shifted left to make it 720. 324 and
790 are added. Either 72 is shifted left or 324 right with respect to 72 the final result will
be same.

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM

Binary Multiplication
Example. Multiply 7 by 5
First of all 7 and 5 are represented in binary form;
0111 = 7, Multiplicand
x 0101 = 5, Multiplier

0111
0000
0111
0000
Product = 010, 0011 =235

It should be noted that the above product is in the binary form. It is not in BCD.

In binary multiplication we see that when a multiplicand is multipled by 1 the
product is equal to the multiplicand. When a multiplicand is multiplied by zero, the
product is zero. The procedure for multiplication is that first the multiplicand is
multipled by the LSB of the multiplier and the partial product is stored and shifted
right. Again, the multiplicand is multipled by the 2nd bit and the result is added to the
previous shifted partial product. The procedure is repeated. If the bit of the multiplier
is 1 the multiplicand is added to the previous partial product. In case of 0 bit there is
nothing to be added to the partial product but it will be simply shifted right by one bit.
In case of binary multiplication by computer if the partial product is shifted left instead
of right, and we take bits of multiplier from MSB side instead of LSB side the final
product will remain same.

Conclusion. The conclusion is that each bit of multiplier is taken one by one and it
is checked whether it is 1 or 0. If the bit of the multipler is one the multiplicand is added
to the product and the product is shifted left. If the bit of multipler is zero, the product is
simply shifted left by one bit.

Example 1. Multiply 84 H by 56 H.

In this example multiplicand is 84 H. It is extended to 16-bits and stored in the two
consecutive memory locations 2501 and 2502 H. The multiplier is 56 H and it is stored
in 2503 H. The product is a 16-bit number and it is stored in 2504 H and in 2505 H. Data
and results are in hexadecimal. The program flow chart is shown in Fig. 6.6.

PROGRAM

Memory Machine Label Mnemonics Operands Comments

Address Codes

2000 2A, 01,25 LHLD 2501 H Get multiplicand in H-L pair.

2003 EB XCHG Multiplicand in D-E pair.

2004 3A, 03, 25 LDA 2503 H Multiplier in accumulator.

2007 21,00, 00 LXI H, 0000 Initial value of product = 00 in
H-L pair.

200A OE, 08 MVI C, 08 Count = 8 in register C.

200C 29 . DAD H Shift partial product left by 1 bit.

200D 17 RAL Rotate multiplier left one bit. Is
multipler's bit=17

200E D2, 12, 20 JNC No, go to AHEAD.

2011 19 DAD Product = Product +
Multiplicand.

2312 oD DCR Decrement count.

2013 C2,0C, 20 JNZ

2016 22, 04, 25 SHLD Store result.

2019 76 HLT Stop.

6.38 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

Example 1 Example 2

DATA DATA

2501 — 84 H, LSBs of multiplicand. 2501 — 8A H, LSBs of multiplicand.
2502 — 00, MSBs of multiplicand. 2502 — 00, MSBs of multiplicand.
2508 — 56 H, Multiplier. 2503 — 52 H, Multiplier.

Resuit Resuit

2504 — 58 H, LSBs of product. 2504 — 34 H, LSBs of product.
2505 — 2C H, MSBs of product. 2505 — 2C H, MSBs of product.

GET MULTIPLICAND
GET MULTIPLIER

'

INITIAL VALUE OF PRODUCT
=00, COUNT =08

T
i

/

SHIFT PRODUCT LEFT ONE BIT
SHIFT MULTIPLIER LEFT ONE BIT

1S
CARRY FROM

MULTIPLIER
1

PRODUCT = PRODUCT +
MULTIPLICAND

i
COUNT = GOUNT —1

YES

STORE PRODUCT —J

Fig.6.6 Program Flow Chart for 8-Bit Multiplication

The instruction LHLD 2501 H transfers 16-bit multiplicand from the memory
locations 2501 and 2502 H to H-L pair. By the execution of the instruction XCHG the
contents of H-L pair are exchanged with the contents of D-E pair. Thus the
multiplicand is placed in D-E pair. The instruction LDA 2503 H transfers multiplier
from the memory location 2503 H to the accumulator. LXI H, 0000 makes the initial
value of the product equal to zero and it is placed in H-L pair. The count is equal to the
number of bits of the multiplier. In this case it is 08 and it is placed in register C. DADH
is an instruction for 16-bit addition. It adds the contents of H-L pair to itself. Thus, the

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM 6.39

partial product which is in H-L pair is shifted left by one bit. RAL rotates the content of
the accumulator left by one bit. The accumulator contains multiplier and hence it is
rotated left by one bit, The instruction DAD D adds the content of D-E pair and H-L pair
and places the result in H-L pair. D-E pair and H-L pair contain multiplicand and
partial product respectively. Thus, the execution of the instruction DAD D adds the
multiplicand to the partial product and places the sum which is the new partial product
in H-L pair. The instruction DAD D is executed only when the bit of the multiplicand
under consideration is one, otherwise it is not executed. To get the result the program
moves in the LOOP 8 times as there are 8-bit in the multiplier.

6.30 8-BIT DIVISION

The computer performs division by trial subtractions. The divisor is subtracted from
the 8 most significant bits of the dividend. If there is no borrow, the bit of the quotient is
set to 1; otherwise 0. To line up the dividend and quotient properly the dividend is
shifted left by one bit before each trial of subtraction. The dividend and quotient share a
16-bit register. Due to shift of dividend one bit of the register falls vacant in each
step. The quotient is stored in vacant bit positions. The program flow chart is shown in

Fig. 6.7.

GET DIVIDEND
GET DIVISOR

COUNT =08
QUOTIENT =00

SHIFT DIVIDEND LEFT OME BIT
SHIFT QUOTIENT LEFT ONE BIT

1S
MSBs OF
DIVIDEND =

DIVISOR
?

QUOTIENT = QUOTIENT +1 J

{

8 MSBs OF DIVIDEND
8 MSBs OF DIVIDEND
—DIVISOR

Y
| count=count-1 |

NO

[sToRe ResuLT

Fig.6.7 Program Flow Chart for, 8-Bit Division

=

6.40

Example 1. Divide 489B by 1A.

These are hexadecimal numbers. The dividend is a 16-bit number and divisor 8-b
number. If the dividend of a problem is an 8-bit number, it is extended to a 16-bi
number by placing zeros in MSBs positions.

The dividend is placed in the memory locations 2501 and 2502 H.

The divisor is placed in the memory location 2503 H.

The results are stored in the memory locations 2504 and 2505 1.

The quotient is stored in the memory locations 2504 H.

The remainder is stored in the memory location 2505 H.

PROGRAM
Memory
Address

2400 2A, 01,25
2403 3A, 08,25
2408 47

2407 OE, 08
2409 29

Machine
Codes

Label

240A 7C

240B 20

240C DA, 11,24

240F 67

2410 2C
2411 oD
2412 C2, 09, 24

2415 22,04, 25

2418 76

Example 1

DATA

2501 — 9B H, LSBs of dividend.
2502 — 48 H, MSBs of dividend.
2503 — 1A H, Divisor.

Result

2504 — F2, Quotient.

2505 — 07, Remainder.

Mnemonics

LHLD
LDA
MOV
MVI
DAD

MOV

SuB

JC

FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

Operands Comments

2501 H
2503 H
B,A
G, 08

Get dividend in H-L pair.

Get divisor from 2503 H.
Divisor in register B.

Count = 08 in register C.

Shift dividend and quotient le=
by one bit.

Most significant bits of dividens
in accumulator,

Subtract divisor from mos
significant bits of dividend.

Is most significant part o
dividend > divisor? No, go fo
AHEAD.

Most significant bits of dividena
in register H.

Yes, add 1 to quotient.
Decrement count.

Is count = 0? No, jump &=
LOOP.

Store quotient in 2504 anc
remainder in 2505 H.

Stop.

Example 2

DATA

Divide 54 H by 09.

The dividend 54 is extended to 16 bits.
54 =0054 H

DATA

2501 — 54 H, LSBs of dividend.
2502 — 00, MSBs of dividend.
2503 — 09, Divisor.

Result

2504 — 09, Quotient

2505 — 08, Remainder

The count in register C is kept 08. The trial subtraction is done 8 Himes and an 8-bx
quotient is obtained. The instruction DAD H shifts dividend and quotient left by one

EXAMPLES OF ASSEMBLY LANGUAGE PROGRAM

6.41

bit. Due to shift of dividend the bit positions in register L fall vacant. In the vacant bit

positions quotient is stored. Note that the dividend is
shifted prior to trial subtraction. The MSB of the dividend
should be zero, otherwise it will be shiffed to carry bit. If a
problem contains MSB not equal to zero, it will be solved by
splitting it in two parts. Shifting of dividend before
subtraction is not done in ordinary division by pen and
paper, but the computer method gives correct result as the
numbers are represented in binary coded hexadecimal
system. You can check this by taking simple numerical
examples.

6.31 MULTIBYTE ADDITION
Example 1. 3A9C8A67H, 1st number

+9B476C8BH, ann__unl]:ler _
D5E3F6F2H,Sum

A byte consists of 8-bits. In the above example two
multibyte hex numbers are to be added. Each number
consists of 4 bytes. An 8-bit microcomputer takes one byte
of the numbers at a time and adds them with carry. A
counter is initiated to count the byte. In Example 1, the
count = 4.

The count is placed in the memory location 2500 H.

The 1st number is placed in the memory locations 2501
to 2504 H.

The 2nd number is placed in the memory locations
2601 to 2604 H.

The sum is placed in the memory locations 2501 to
2504 H.

The program flow chart is shown in Fig. 6.8.
PROGRAM

Memory Address Machine Codes Label
2400 21,00, 25

Mnemonics
LXI

Operands
H, 2500 H

2403 4E
2404 23

MOV C,M
INX H

2405 11,01,26 LXI D, 2601 H

2408 B7 ORA A
2409 1A D

240A 8E M
2408 77

240C 23

GET (i) BYTE COUNT
(i) BYTE OF 18T
NUMBER
(iily BYTE OF 2ND
NUMBER
(iv) CARRY =0

|
ADD BYTES OF 18T & 2ND
NUMBERS WITH CARRY

y

STORE SUM IN MEMORY
WHERE BYTE OF 15T
NUMBER WAS AESIDING

i

GET NEXT BYTES OF
15T & 2ND NUMBERS

1

DECREMENT BYTE
GOUNT

IS BYTE
COUNT=07?

Fig.6.8 Program/Flow Chart
for Multibyte Addition

Comments

Address of byte count in H-L
pair.

Byte count in register C.
Address of 1st byte of 1st
number.

Address of 1 st byte of 2nd
number.

Clear carry.

Get byte of 2nd number in
accumulator.

Byte of 2nd number + byte of
1st number + carry.

Store sum in memory
addressed by [H-L pair.
Increment the content of H-L
pair.

6.42 FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

240D 13 INX D

240E oo DCR
240F Cz, 08, 24 JNZ

2412 76 HLT
Example 1

DATA

2500 — 04

2501 — 67 2601 — 8B
2502 —BA 2602 — 6C
2503 — 9C 2603 — 47
2504 — 3A 2604 — 9B

Increment the content of D-E
pair

Decrement count.

Is count = 0?7 No, jump to
LOOP.

Stop.

The sum is stored in the memory locations 2501 to 2504 H.

Result

2501 — F2
2502 — F6
2503 —E3
2504 — D5

Example 2 (00B8968B7E
 009C8A5C46

015520E7C4

DATA

2500 — 05

2501 —7E 2601 — 48
2502 — 8B 2502 —5C
2503 — 96 2603 — 8A
2504 — B8 2604 — 9C
2505 — 00 2605 —00
Result

2501 —C4

2502 — E7

2503 — 20

2504 — 55

25056 — 01

Example 3 00156987 H
00982142 H

00ADBAC9 H

DATA

2500 — 04

2501 — 87 2601 — 42
2502 — 69 2602 — 21
2503 — 15 2603 —98
2504 — 00 2604 — 00
Result

2501 — C9

2502 — 8A

2503 — AD

2504 — 00

Books for Study & Reference:

1. Fundamentals of Microprocessors and Microcontrollers by
B. RAM

DHANPAT RAI Publications (P) Ltd., New Delhi

2. Microprocessor Architecture, programming and application
with 8085 by R. Gaonkar

Penram International Publishing, Mumbai

