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� Ubiquitous Machine

� Computer

� Omnipresent

� Omnipotent

� Omniscient

Introduction



� Home. Computers are used at homes for several purposes 
like online bill payment, watching movies or shows at 
home, home tutoring, social media access, playing games, 
internet access, etc. ...

� Medical Field. ...
� Entertainment. ...
� Industry. ...
� Education. ...
� Government. ...
� Banking. ...
� Business.

Basic Applications of Computer



� Defined as process,or procedure or method or 
recipe.

� It is a specific set of rules to obtain a definite 
output from specific inputs.

Algorithm

History of Algorithms

� The word algorithm originates from the arabic word algorism.

� Arabic mathematician name Abu Jafer Mohammed Ibn Musa AI Khwarizmi.

� First algorithm designer.

� Designed for adding numbers.



Definition:
Defined as a finite sequence of instructions.

Structure :
i) Input step
ii) Assignment step
iii) Decision step
iv) Repetitive step
v) Output step

Properties:

1. Finiteness
2. Definiteness
3. Generality
4. Effectiveness
5. Input-Output

Definition, Structure and properties of 
Algorithms



1. Problem Statement

2. Model Formulation

3. Algorithm Design

4. Algorithm Correctness

5. Implementation

6. Algorithm analysis

7. Program Testing

8. Documentation

Development of an Algorithm



Data Type – The type of values that variable in 
a programming language hold.
Primitive Data Types - Integer, real, character,  

boolean
Data Object – A list of elements
Abstract Data Types – Data objects which comprise 
the data structure, and their fundamental 
operation.

Defined as a set of data D over a 
domain L and supporting a list of operations O.

Data Structure-Definition and Classification



� Efficiency of Algorithms

� Asymptotic Notations

� Time complexity of an algorithm using O 
notation

� Average, Best and Worst case Complexities

Analysis of Algorithms



The performance of algorithms can be 
measured on the scales of Time and Space.
Time: Looking for fastest algorithm for the problem or 
performs its task in the minimum possible time.
The performance measure is called Time Complexity-
Running time of the algorithm or program.
Space: Looking for an algorithm that consumes or needs 
limited memory space for its execution.
The performance measure is called Space Complexity-
Space needed for the algorithm or program.

Efficiency of Algorithms



� “Big Oh” Notation.

� O(1) – Constant time

� O(n) – Linear time

� O(n2) – Quadratic time

� O(n3)- Cubic time

� O(log n) – Logarithmic time

� O(2n),O(3n),O(kn) – Exponential time
� O(1)<=O(log n)<=O(n)<=O(n log n)<=O(n2)<=O(n3)<=O(2n)

Time complexity of an algorithm using O
notation



� The worst-case complexity of the algorithm is 
the function defined by the maximum number 
of steps taken on any instance of size n.

� The best-case complexity of the algorithm is 
the function defined by the minimum number 
of steps taken on any instance of size n. 

� Finally, the average-case complexity of the 
algorithm is the function defined by the 
average number of steps taken on any 
instance of size n.

Average, Best and Worst Case Complexities



Classification of Data Structure



INTRODUCTION
� An array is an ADT whose objects are sequence of elements 

of the same type. 
� The two operations performed on it are store and retrieve. 
� Thus if a is an array the operations can be represented as 

STORE (a, i, e) and RETRIEVE (a, i) 
where i is termed as the index and e is the 

element that is to be stored in the array.
� These functions are equivalent to    

a[i]: = e 
where i - subscript   

a - array variable name
e - value in programming language.



CONTD…
� Arrays could be of 
⮚ One-dimensional
⮚ Two dimensional
⮚ Three-dimensional/Multidimensional.

� One-dimensional arrays are mathematically 
likened to vectors.

� Two-dimensional arrays are likened to 
matrices.

� Two-dimensional arrays have rows and 
columns associated with them.



Examples of arrays



Contd…
� A[1:5] refers to a one-dimensional array 

where 1, 5 are referred to as the lower and 

upper  indexes or the lower and upper bounds 

of the index range. 

� Similarly, B[1:3, 1:2] refers to a two-dimensional 
array with 1, 3 and 1, 2 being the lower and upper 
indexes of the rows and columns respectively.

� Also, each element of the array viz.,A[i ] or B[i, j ] 
resides in a memory location also called a cell. 
Here cell refers to a unit of memory and is 
machine dependent.



Array Operations

� An array when viewed as a data structure 
supports only two operations viz.,

� (i) storage of values - writing into an array 
(STORE (a, i, e) ) and,

� (ii) retrieval of values - reading from an 
array 

( RETRIEVE (a, i) )



Array operations: Store and Retrieve

� For example, if A is an array of 5 elements then.



Number of Elements in an Array

� The computation of size of the array by 
way of number of elements.

� When arrays are declared in a program, it 
is essential that the number of memory 
locations needed by the array are ‘booked’ 
before hand.



One-dimensional array

� Let A[1:u] be a one-dimensional array.
� The size of the array, as is evident is u and the 

elements are A[1], A[2], … A[u -1], A[u].
� In the case of the array A[l : u] 
� where l is the lower bound and u is the upper 

bound of the index range.
� The number of  elements is given by (u - – l + 1).

Example 
The number of elements in

(i) A[1:26] = 26
(ii) A[5:53] = 49 (i,e 53 –- 5 + 1)
(iii) A[–-1:26] = 28



Multi-dimensional array



Size of a three dimensional array



Representation of Arrays in Memory

� The name of the array is associated with 
the address of the starting memory 
location so as to facilitate efficient storage 
and retrieval.

� The computer memory is considered one-
dimensional (linear) it has to 
accommodate arrays which are multi-
dimensional. 



One-dimensional array

� Consider the array A(1 : u1) and let a be the 
address of the starting memory location 
referred to as the base address of the array.

� A[1] occupies the memory location whose 
address is a, A(2) occupies a + 1 and so on. In 
general, the address of A[i] is given by a + (i –-
1).

� In general, for a one-dimensional array A(l1 : 
u1) the address of A[i] is given by a + (i – l1), 
where a is the base address.



Representation of one-dimensional arrays in 
memory





Two-dimensional array

� The array A[1 : u1, 1 : u2] which is to be stored in the 
memory. 

� It is helpful to imagine this array as u1 number of one-
dimensional arrays of length u2. 

� Thus if A[1, 1] is stored in address a , the base address, then 
A[i, 1] has address a + (i -– 1) u2, and 

A[i, j ] has address a + (i –-1) u2 +( j –-1).

� compute the address of A[i, j ] as a + (i –-1) u2 + ( j –-1). 

� The addresses of array elements are expressed in terms of 
the cells.

� In general, for a two-dimensional array 

A[l1 : u1, l2 : u2 ] the address of A[i, j ] is given by

� a + (i –- l1)(u2 - l2 + 1) + ( j -– l2)



Representation of a two-dimensional array 
in memory







Three-dimensional array

� the three-dimensional array A[1 : u1, 1 : u2, 1 : u3]. 
As discussed before, we shall imagine

� it to be u1 number of two-dimensional arrays of 
dimension u2. u3.

� the address of A[i, 1, 1] would be a + (i – 1) u2. u3.
� Similarly the address of A[i, j, 1] requires accessing 

the first room on the jth floor of the ith
� building which works out to a + (i – 1) u2 u3

� + ( j – 1) u3. Proceeding on similar lines, the 
address

� of A[i, j, k ] is given by a + (i – 1) u2 u3 + ( j – 1) u3 + (k – 
1).



Applications

� Two concepts that are useful to computer science 
and also serve as applications of arrays.

1. Sparse matrices 

2. Ordered lists.

Sparse matrix

� A matrix is a mathematical object which finds its 
applications in various scientific problems. 

� A matrix is an arrangement of m.n elements 
arranged as m rows and n columns. 

� The Sparse matrix is a matrix with zeros as the 
dominating elements. 



Matrix and a sparse matrix



Ordered lists

� One of the simplest and useful data objects in computer science is an 
ordered list or linear list.

� An ordered list can be either empty or non empty. In the latter case, the 
elements of the list are known as atoms, chosen from a set D. 

� The ordered lists provide a variety of operations such as retrieval, 
insertion, deletion, update etc. 

� The most common way to represent an ordered list is by using a one-
dimensional array. 

� Such a representation is termed sequential mapping.        

� Example 

(i) (sun, mon, tue, wed, thu, fri, sat)

(ii) (a1, a2, a3, a4, … an)

(iii) (Unix, CP/M, Windows, Linux)



operations performed on ordered lists, with examples.



What is a stack?

• It is an ordered group of homogeneous items of elements.

• Elements are added to and removed from the top of the 
stack (the most recently added items are at the top of the 
stack).

• The last element to be added is the first to be removed 
(LIFO: Last In, First Out).



Stack Specification

• Definitions: (provided by the user)

– MAX_ITEMS: Max number of items that might be on 
the stack

– ItemType: Data type of the items on the stack

• Operations

– MakeEmpty

– Boolean IsEmpty

– Boolean IsFull

– Push (ItemType newItem)

– Pop (ItemType& item)



Push (ItemType newItem)

• Function: Adds newItem to the top of the 
stack.

• Preconditions: Stack has been initialized 
and is not full.

• Postconditions: newItem is at the top of 
the stack.



Pop (ItemType& item)

• Function: Removes topItem from stack and 
returns it in item.

• Preconditions: Stack has been initialized and is 
not empty.

• Postconditions: Top element has been 
removed from stack and item is a copy of the 
removed element.





Stack overflow
• The condition resulting from trying to push 

an element onto a full stack.

if(!stack.IsFull())

stack.Push(item);

Stack underflow
• The condition resulting from trying to pop 

an empty stack.

if(!stack.IsEmpty())

stack.Pop(item);



Implementing stacks using dynamic 
array allocation

template<class ItemType>

class StackType {

public:

StackType(int);

~StackType();

void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;

void Push(ItemType);

void Pop(ItemType&);

private:

int top;

int maxStack;

ItemType *items;

};



Implementing stacks using dynamic 
array allocation (cont.)

template<class ItemType>

StackType<ItemType>::StackType(int max)
{

maxStack = max;

top = -1;

items = new ItemType[max];
}

template<class ItemType>

StackType<ItemType>::~StackType()
{

delete [ ] items;
}



Example: postfix expressions

• Postfix notation is another way of writing arithmetic 
expressions.

• In postfix notation, the operator is written after the 
two operands.

infix: 2+5    postfix: 2 5 +

• Expressions are evaluated from left to right.

• Precedence rules and parentheses are never 
needed!!



Example: postfix expressions
(cont.)



Postfix  expressions:
Algorithm using stacks (cont.)



Recursive

Recursion is the process of repeating items in a self-
similar way. In programming languages, if a program 
allows you to call a function inside the same 
function, then it is called a recursive call of the 
function.

void recursion()
{

recursion(); /* function calls itself */
}
Int main()
{
recursion();

}





Infix Expression Prefix Expression Postfix Expression

A + B + A B A B +

A + B * C + A * B C A B C *



INFIX TO PREFIX CONVERTION

STEP1: REVERSE THE INFIX STRING .MUST EXCHANGE LEFT AND RIGHT 
PARENTHESES.

STEP 2: OBTAIN THE POSTFIX EXPRESSION OF THE INFIX EXPRESSION 
OBTAIN IN STEP 1

STEP3: REVERSE THE POSTFIX EXPRESSION TO GET THE PREFIX 
EXPRESSION

EXAMPLE: (A+B)*(C-D)

STEP1: (D-C)*(B+A)

STEP2: DC- BA+*

STEP3: *+AB-CD PREFIX NOTATION



QUEUES-CHAPTER-5
OUT COMES:

• WHAT IS QUEUE?

• OPERATIONS ON QUEUES

• UNDERSTANDING HOW TO IMPLEMENTING THE QUEUE

• TYPES OF QUEUE

• APPLICATIONS OF QUEUE





• What is QUEUE?

• Queue is an abstract data structure,It similar to Stacks. 

• It queue is open at both its ends.

• One end is always used to insert data (enqueue) and the 

other is used to remove data (dequeue). 

• Queue follows First-In-First-Out methodology, i.e., the 

data item stored first will be accessed first
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OPERATIONS :

1. ENQUEUE

Adds an element at the beginning of the 
queue. If the queue is full, then it is an 
overflow.

2. DEQUEUE

Deletes an element at the end of the queue. If 
the queue is empty, then it is an underflow.



‘Queue Full(Overflow)’ Condition

• Queue Full(Overflow):

– Inserting an element in a queue which is already full is known as 

Queue Full condition (Rear = Max-1).

– When the  queue is fully occupied and enqueue() operation is called 

queue overflow occurs.

• Example: Queue Full: 

– Before inserting an element in queue  1st check whether space is 

available for new element in queue. This can be done by checking 

position of rear end. Array begins with 0th index position & ends 

with max-1 position. If numbers of elements in queue are equal to 

size of queue i.e. if rear end position is equal to max-1 then queue is 

said to be full. Size of queue = 4 



‘Queue Empty(Underflow)’ Condition

• Queue Empty:

– Deleting an element from queue which is already empty is known 

as Queue Empty condition (Front = Rear = -1)

– When the  queue is fully empty and dequeue() operation is called 

queue underflow occurs.

–

• Queue Empty:

– Before deleting any element from queue check whether there is an 

element in the queue. If no element is present inside a queue & 

front & rear is set to -1 then queue is said to be empty.

– Size of queue = 4

– Front = Rear = -1 



Disadvantages of linear queue 

• On deletion of an element from existing 

queue, front pointer is shifted to next 

position.

• This results into virtual deletion of an 

element. 

• By doing so memory space which was 

occupied by deleted element is wasted 

and hence inefficient memory utilization 

is occur. 



Types of Queues in Data Structure

1. Simple Queue

2.    Circular Queue

3.    Priority Queue

4.    Dequeue (Double Ended Queue)

Simple Queue

The simple queue is a normal queue 
where insertion takes place at the FRONT of 
the queue and deletion takes place at the 
END of the queue.



enqueue() 

1. Check if the queue is full.
2. If the queue is full, then print "Queue overflow".
3. Else increment REAR by 1.
4. Assign QUEUE [ REAR ] = ELEMENT

Algorithm for enqueue operation
procedure enqueue(data)      

if queue is full
return overflow

endif

rear ← rear + 1
queue[rear] ← data
return true

end procedure



dequeue()
1. Check if the queue is empty.

2. If the queue is empty, the print "Queue underflow".

3. Copy the element at the front of the queue to some temporary 

variable, TEMP = QUEUE[ FRONT ].

4. Increment FRONT by 1. 

5. Print temp and delete it.

Algorithm for dequeue operation

procedure dequeue

if queue is empty

return underflow

end if

data = queue[front]

front ← front + 1

return true

end procedure



Circular Queue
In a circular queue, the last node is connected to the first 

node.Circular queue is also called as Ring Buffer.Insertion in a 

circular queue happens at the FRONT and deletion at the E



CIRCULAR QUEUE 

• A queue, in which the last node is connected back to 

the first node to form a cycle, is called as circular 

queue. 

• Circular queue are the queues implemented in circular 

form rather than in a straight line.

• Circular queues overcome the problem of unutilized 

space in linear queue implemented as an array.

• The main disadvantage of linear queue using array is 

that when elements are deleted from the queue, new 

elements cannot be added in their place in the queue, 

i.e. the position cannot be reused. 



Priority Queue
In a priority queue, the nodes will have some predefined priority.
Insertion in a priority queue is performed in the order of arrival of 
the nodes.The node having the least priority will be the first to be 
removed from the priority queue.



Trees and Binary Trees

• The data structures of trees and graphs  

are termed non-linear data structures.

• Trees and their variants, binary trees and  
graphs, have emerged as truly powerful data  
structures registering immense contribution  
to the develop-ment of efficient algorithms  
or efficient solutions to various problems in  
science and engineering.

Unit - III



Trees: Definition and  

Basic
Definition of trees

• A tree is deTfienerdmasianfionitleosegtioefosne or more  
nodes such that

(i) there is a specially designated node called the  
root and

(ii) the rest of the nodes could be partitioned into t  
disjoint sets (t ≥ 0) each set representing a

tree Ti, i = 1, 2, . . . t known as subtree of the
tree.
• A node is an item of information.

• The links between the nodes termed as  
branches, represent an association between the  
items of information.



• The definition of the tree emphasizes on the  
aspect of (i) connectedness and (ii) absence of  
closed loops or what are termed cycles.

• Beginning from the root node, the structure of the  
tree permits connectivity of the root to every  
other node in the tree.

• In general, any node is reachable from any where  
in the tree.

• Branches providing the links between the nodes.

• The structure ensures that no set of nodes link  
together to form a closed loop or a cycle.





Basic terminologies of

trees
• There are several basic terminologies associated with  

the tree.
• The specially designated node called root.

• The number of subtrees of a node is known as the  
degree of the node.

• Nodes that have zero degree are called leaf nodes or  
terminal nodes.

• The rest of them are called as non terminal nodes.

• These nodes which hang from branches emanating  
from a node are known a children and the node from  
which the branches emanate is known as the parent  
node.



• Children of the same parent node are referred to as  
siblings.

• The ancestors of a given node are those nodes that  
occur on the path from the root to the given node.

• The degree of a tree is the maximum degree of the  
node in the tree.

• The level of a node is defined by letting the root  
to occupy level 1 .

• Thus if a parent node occupies level i, its children  
should occupy level i+1.

• This renders the tree to have a hierarchical  
structure with root occupying the top most level of  
1.

• The height or depth of a tree is defined to be  
the maximum level of any node in the tree.

• depth of a node to be the length of the longest path



• A forest is a set of zero or more disjoint trees.

• The removal of the root node from a tree results in
a forest (of its subtrees!).

• The degree of node E is 2 and L is 0. F, G, H, C, I, J and
L are leaf or terminal nodes and all the remaining
nodes are non leaf or non terminal nodes.

• Nodes F, G and H are children of B and B is a  
parent node.

• Nodes J, K and nodes F, G, H are sibling nodes with  
E and B as their respective parents.

• For the node L, nodes A, E and K are ancestors.

• The degree of the tree is 4 which is the maximum  
degree reported by node A. While node A which is  
the root node occupies level 1, its children B,C,D and  
E occupy level 2 and so on.

• The height of the tree is its maximum level which is 4.

• Removal of A yields a forest of four disjoint (sub)



Representation of
Trees

• Though trees are better understood in their pictorial

forms, a common representation of a tree to suit its

storage in the memory of a computer, is a list.

• The tree could be represented in its list form  

as (A (B(F,G,H), C, D(I), E(J,K(L))) ).

• The root node comes first followed by the list of  

subtrees of the node.

• This is repeated for each subtree in the tree.

• This list form of a tree, paves way for a naïve  

representation of the tree as a linked list.



Binary Trees: Basic Terminologies and  

Types
Basic terminologies

• A binary tree has the characteristic of all  
nodes having at most two branches, that  
is, all nodes have a degree of at most 2.

• A binary tree can therefore be empty or  
consist of a root node and two disjointed  
binary trees termed left subtree and  
right subtree.



Types of binary trees

• A binary tree of height h which has all its permissible  
maximum number of nodes viz., 2h ’1 intact is known as a  
full binary tree of height h.

• Note the specific method of numbering the nodes.

• A binary tree with n’ nodes and height h is complete if its  
nodes correspond to the nodes which are numbered 1 to n  
(n’≤ n) in a full binary tree of height h.

• In other words, a complete binary tree is one in which its  
nodes follow a sequential numbering that increments from  
a left-to-right and top-to-bottom fashion.

• A full binary tree is therefore a special case of a complete  
binary tree.



Binary Tree Traversals

• An important operation that is performed on a binary tree is its  
traversal.

• A traversal of a binary tree is where its nodes are visited in a

particular but repetitive order, rendering a linear order of the  
nodes or information represented by them.

• A traversal is governed by three actions, viz. Move left (L), Move  
Right (R) and Process Node (P).

• In all, it yields six different combinations of LPR, LRP, PLR, PRL and  
RLP. Of these, three have

• emerged significant in computer science. They are,

• LPR ’Inorder traversal

• LRP ’Postorder traversal

• PLR ’Preorder traversal.



Inorder Traversal , Preorder, Postorder Traversal

• The traversal keeps moving left in the binary tree until  one can move no 

further, processes the node and  moves to the right to continue its 

traversal again.
• In the absence of any node to the right, it  retracts

backwards by a node and continues the  traversal.

• The traversal proceeds by keeping to the left until it is  no further 
possible, turns right to begin again or if  there is no node to the 
right, processes the node and  retraces its direction by one node 
to continue its  traversal.

• The traversal processes every node as it moves left  until it can 
move no further. Now it turns right to  begin again or if there is 
no node in the right, retracts  until it can move right to continue 
its traversal.



Linked representation of a threaded  

binary tree



• If the LEFT THREAD TAG or RIGHT THREAD TAG is  
marked true then LCHILD and RCHILD fields  
represent threads otherwise they represent links.

• The linked representation of a threaded binary tree
includes a head node. The dangling threads point
to the head node.

• The head node by convention has its LCHILD  
pointing to the root node and therefore has its LEFT  
THREAD TAG set to false.

• The RIGHT THREAD TAG field is also set to false  
but the RCHILD link points to the head node itself.



Growing threaded binary  
trees



That expressions are represented in three forms viz.,  

infix, postfix and prefix.

An infix expression which is the commonly used  

representation of an expression follows the  

scheme

<operand> <operator> <operand>.

Examples are A + B, A * B.

Postfix expressions follow the scheme < operand > <  

operand > < operator >.

Examples are AB+, AB*.

Prefix expressions follow the scheme < operator > <  

operand > < operand >.



Graph

A graph G = (V, E ) consists of a finite non  
empty set of vertices V also

called points or nodes and a finite set E  
of unordered pairs of distinct

vertices called edges or arcs or links.

Here V = {a, b, c, d} and E = {(a, b), (a, c), (b, c),  
(c, d)}.



V : Vertices : {a, b, c, d}

E : Edges : {e1, e2, e3, e4}

A graph G = (V, E) where E = f, is called as a null  
or empty graph. A graph with one vertex and no  
edges is called a trivial graph.



Multigraph

A multigraph G = (V, E) also consists of a set of  
vertices and edges except that E may contain  
multiple edges (i.e.) edges connecting the  
same pair of vertices, or may contain loops or  
self edges.



Directed and undirected graphs
A graph makes reference to unordered pairs of  
vertices as edges is known as an undirected  
graph.

The edge eij of such an undirected graph is  
represented as (vi, vj) where vi, vj are  
distinct vertices. Thus an undirected edge  
(vi, vj) is equivalent to (vj, vi).

e1 is an undirected edge between v1 and v2,  
(i.e.) e1 = (v1, v2).

,



Directed and undirected graphs
Directed graphs or digraphs make reference to
edges which are directed (i.e.) edges which
are ordered pairs of vertices.



Complete graphs

An n vertex undirected graph with  
exactly n.(n-1)/2 edges is said to be  
complete.

Directed graph=n.(n-1)



Subgraph



Path
A path from a vertex vi to vertex vj in an  

undirected graph G is a sequence of  
vertices.

A simple path is a path in which all the  

vertices except possibly the first and last vertices  

are distinct.

The length of a path is the number of edges on
it.

A cycle is a simple path in which the first and  
last vertices are the same. A cycle is also  
known



Connected graphs
Two vertices vi, vj in a graph G are said to be  
connected only if there is a path in G between  
vi and vj.

In an undirected graph if vi and vj are connected
then it automatically holds that vj and vi are
also connected.

An undirected graph is said to be a connected

graph if every pair of distinct vertices vi, vj

are connected.



Trees
A tree is defined to be a connected acyclic  
graph. The following properties are satisfied by  
a tree:

(i)There exists a path between any two vertices of  
the tree, and

(ii)No cycles must be present in the tree. In other  
words, trees are acyclic.



Degree
The degree of a vertex in an undirected graph  
is the number of edges incident to that vertex.

A vertex with degree one is called as a  
pendant vertex or end vertex.

A vertex with degree zero and hence has  
no incident edges is called an isolated  
vertex.



Hamiltonian circuit

A Hamiltonian circuit in a connected graph is  
defined as a closed walk that traverses every  
vertex of G exactly once, except of course  
the starting vertex at which the walk  
terminates.

A circuit in a connected graph G is said to  
be Hamiltonian if it includes every vertex of  
G.



Representations of  Graphs

The representation of graphs in a computer  
can be categorized as (i) sequential  
representation and (ii) linked representation.



Sequential representation of graphs:

The sequential or the matrix representation  
of graphs have the following methods:

(i) Adjacency matrix representation

(ii)

(iii)

(iv)

(v)

Incidence matrix representation  

Circuit matrix representation  

Cut set matrix representation  

Path matrix representation



Graph Traversals

Graphs support the following traversals:

• Breadth first Traversal-The Breadth First Search

(BFS) traversal is an algorithm, which is used to visit all

of the nodes of a given graph. In this traversal algorithm

one node is selected and then all of the adjacent nodes

are visited one by one.

• Depth first Traversal-Depth-first search (DFS) is an

algorithm for traversing or searching tree or graph data  

structures. The algorithm starts at the root node (selecting  

some arbitrary node as the root node in the case of a graph)  

and explores as far as possible along each branch before  

backtracking.



Single-source, shortest-path  

problem
Given a network of cities and the  
distances between them, the objective of  
the
single-source, shortest-path problem is to find

the shortest path from a city (termed source)  

to all other cities connected to it.

The network of cities with their distances  
is represented as a weighted digraph.



Thus the shortest path between vertex 1  
and vertex 5 is 1 ’4 ’3 ’5 and the distance is  
given

by DISTANCE[5] is 90.



UNIT - IV
BINARY SEARCH TREE:

A binary search tree is a rooted binary tree, whose internal nodes each store a key

(and optionally, an associated value), and each has two distinguished sub-trees, commonly

denoted left and right. The tree additionally satisfies the binary search property: the key in

each node is greater than or equal to any key stored in the left sub-tree, and less than or equal

to any key stored in the right sub-tree. The leaves (final nodes) of the tree contain no key and

have no structure to distinguish them from one another.

Often, the information represented by each node is a record rather than a single data

element. However, for sequencing purposes, nodes are compared according to their keys

rather than any part of their associated records. The major advantage of binary search trees

over other data structures is that the related sorting algorithms and search algorithms such as

in-order traversal can be very efficient.

Binary search trees are a fundamental data structure used to construct more abstract data

structures such as sets, multisets, and associative arrays.

 When inserting or searching for an element in a binary search tree, the key of each visited  

node has to be compared with the key of the element to be inserted or found.

 The shape of the binary search tree depends entirely on the order of insertions and  

deletions and can become degenerate.

https://en.wikipedia.org/wiki/Rooted_tree
https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Binary_search
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/In-order_traversal
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Set_(computer_science)
https://en.wikipedia.org/wiki/Set_(computer_science)#Multiset
https://en.wikipedia.org/wiki/Associative_array


Operations in Binary search Tree:

Binary search trees support three main operations: insertion of elements, deletion of  

elements, and lookup (checking whether a key is present).

Searching

Searching in a binary search tree for a specific key can be programmed recursively or

iteratively. We begin by examining the root node. If the tree is null, the key we are searching

for does not exist in the tree. Otherwise, if the key equals that of the root, the search is

successful and we return the node. If the key is less than that of the root, we search the left

subtree. Similarly, if the key is greater than that of the root, we search the right subtree. This

process is repeated until the key is found or the remaining subtree is null. If the searched key

is not found after a null subtree is reached, then the key is not present in the tree. This is

easily expressed as a recursive algorithm.

Algorithm: Procedure to retrieve ITEM from a binary search tree T  

Procedure FIND – BST (T, ITEM, LOC)

/* Loc is the address of the node containing Item which is to be retrieved from the binary

search tree T. In case of unsuccessful search the procedure prints the message “ITEM not

found” and returns loc as NIL*/

If T= NIL then { Print {“ binary search tree T is empty”}

Exit;}

Else  

Loc = T;

While { LOC ≠ NIL} do  

Case:

:ITEM =DATA (LOC) : return(LOC);

:ITEM =DATA (LOC) : LOC=LCHILD(LOC);

: ITEM =DATA (LOC) : LOC=RCHILD(LOC);

End case  

End while

Insertion

https://en.wikipedia.org/wiki/Tree_(data_structure)#root_nodes


Insertion begins as a search would begin; if the key is not equal to that of the root, we

search the left or right subtrees as before. Eventually, we will reach an external node and add

the new key-value pair (here encoded as a record 'newNode') as its right or left child,

depending on the node's key. In other words, we examine the root and recursively insert the

new node to the left subtree if its key is less than that of the root, or the right subtree if its key

is greater than or equal to the root.

Here's how a typical binary search tree insertion might be performed in a binary tree in C++:

void insert(Node*& root, int key, int value) {

if (!root)

root = new Node(key, value);

else if (key == root->key)  

root->value = value;

else if (key < root->key)  

insert(root->left, key, value);

else // key > root->key

insert(root->right, key, value);

}

Deletion

When removing a node from a binary search tree it is mandatory to maintain the in-order

sequence of the nodes. There are many possibilities to do this. However, the following

method which has been proposed by T. Hibbard in 1962[4] guarantees that the heights of the

subject subtrees are changed by at most one. There are three possible cases to consider:

 Deleting a node with no children: simply remove the node from the tree.

 Deleting a node with one child: remove the node and replace it with its child.

 Deleting a node with two children: call the node to be deleted D. Do not delete D. Instead,

choose either its in-order predecessor node or its in-order successor node as replacement

node E (s. figure). Copy the user values of E to D.[note 2] If E does not have a child simply

remove E from its previous parent G. If E has a child, say F, it is a right child. Replace E

https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Binary_search_tree#cite_note-5
https://en.wikipedia.org/wiki/Tree_traversal
https://en.wikipedia.org/wiki/Binary_search_tree#cite_note-6


Deleting a node with two children from a binary search tree. First the leftmost node in the

right subtree, the in-order successor E, is identified. Its value is copied into the node D being

deleted. The in-order successor can then be easily deleted because it has at most one child.

The same method works symmetrically using the in-order predecessor C.

In all cases, when D happens to be the root, make the replacement node root again.

Nodes with two children are harder to delete. A node's in-order successor is its right subtree's

left-most child, and a node's in-order predecessor is the left subtree's right-most child. In either

case, this node will have only one or no child at all. Delete it according to one of the two

simpler cases above.

Consistently using the in-order successor or the in-order predecessor for every instance of the

two-child case can lead to an unbalanced tree, so some implementations select one or the

other at different times.

Runtime analysis: Although this operation does not always traverse the tree down to a leaf,

this is always a possibility; thus in the worst case it requires time proportional to the height of

the tree. It does not require more even when the node has two children, since it still follows a

single path and does not visit any node twice.

AVL TREES:

AVL trees were proposed by Adelson, Velski & Landis in 1962. AVL trees are

height balancing binary search tree. AVL tree checks the height of the left and the right sub-

trees and assures that the difference is not more than 1. This difference is called the Balance

https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree


In the second tree, the left subtree of C has height 2 and the right subtree has height 0, so the  

difference is 2. In the third tree, the right subtree of A has height 2 and the left is missing, so  

it is 0, and the difference is 2 again. AVL tree permits difference (balance factor) to be only  

1.

Balance Factor = height(left-subtree) − height(right-subtree)

If the difference in the height of left and right sub-trees is more than 1, the tree is balanced

using some rotation techniques. |h(TL)- h(TH)|≤1 where h(TL) and h(TH) are the heights of

the left subtree and right subtree of T respectively.

Insertion into an AVL search tree:

The insertion of an element u into an AVL search tree, proceeds exactly as one would to insert

u in a binary search tree. However, if after insertion the balance factors of any of the nodes

turns outs to be anything other than 0 or +1 or -1, then the tree is said to be unbalanced. To

balance itself, an AVL tree may perform the following four kinds of rotations

 Left rotation

 Right rotation

 Left-Right rotation

 Right-Left rotation



The first two rotations are single rotations and the next two rotations are double

rotations. To have an unbalanced tree, we at least need a tree of height 2. With this simple

tree, let's understand them one by one.

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right  

subtree, then we perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right  

subtree of A's right subtree. We perform the left rotation by making A the left-subtree of B.

Right Rotation

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left subtree.  

The tree then needs a right rotation.



As depicted, the unbalanced node becomes the right child of its left child by performing a  

right rotation.

Left-Right Rotation

Double rotations are slightly complex version of already explained versions of rotations. To

understand them better, we should take note of each action performed while rotation. Let's

first check how to perform Left-Right rotation. A left-right rotation is a combination of left

rotation followed by right rotation.

State Action

A node has been inserted into the right subtree of the left subtree. This  makes C an unbalanced node. These 
scenarios cause AVL tree to perform  left-right rotation.

We first perform the left rotation on the left subtree of C. This makes A, the  left subtree of B.



Node C is still unbalanced, however now, it is because of the left-subtree of  the left-subtree.

We shall now right-rotate the tree, making B the new root node of this  subtree. C now becomes the right 

subtree of its own left subtree.

The tree is now balanced.

Right-Left Rotation

The second type of double rotation is Right-Left Rotation. It is a combination of right  

rotation followed by left rotation.State Action

A node has been inserted into the left subtree of the right subtree. This  makes A, an unbalanced node with 

balance factor 2.



First, we perform the right rotation along C node, making C the right  subtree of its own left subtree B. Now, B 

becomes the right subtree of A.

Node A is still unbalanced because of the right subtree of its right subtree  and requires a left rotation.

A left rotation is performed by making B the new root node of the  subtree. A becomes the left 

subtree of its right subtree B.

The tree is now balanced.

Operations on an AVL Tree

The following operations are performed on AVL tree...

1. Search

2. Insertion

3. Deletion

Search Operation in AVL Tree

In an AVL tree, the search operation is performed with O(log n) time complexity. The search

operation in the AVL tree is similar to the search operation in a Binary search tree. We use the

following steps to search an element in AVL tree...

 Step 1 - Read the search element from the user.



 Step 3 - If both are matched, then display "Given node is found!!!" and terminate the  

function

 Step 4 - If both are not matched, then check whether search element is smaller or  

larger than that node value.

 Step 5 - If search element is smaller, then continue the search process in left subtree.

 Step 6 - If search element is larger, then continue the search process in right subtree.

 Step 7 - Repeat the same until we find the exact element or until the search element is  

compared with the leaf node.

 Step 8 - If we reach to the node having the value equal to the search value, then

display "Element is found" and terminate the function.

 Step 9 - If we reach to the leaf node and if it is also not matched with the search  

element, then display "Element is not found" and terminate the function.

Insertion Operation in AVL Tree

In an AVL tree, the insertion operation is performed with O(log n) time complexity. In AVL

Tree, a new node is always inserted as a leaf node. The insertion operation is performed as

follows...

 Step 1 - Insert the new element into the tree using Binary Search Tree insertion logic.

 Step 2 - After insertion, check the Balance Factor of every node.

 Step 3 - If the Balance Factor of every node is 0 or 1 or -1 then go for next  

operation.

 Step 4 - If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is

said to be imbalanced. In this case, perform suitable Rotation to make it balanced and  

go for next operation.



Hash Table is a data structure which stores data in an associative manner. In a hash

table, data is stored in an array format, where each data value has its own unique index value.

Access of data becomes very fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very

fast irrespective of the size of the data. Hash Table uses an array as a storage medium and

uses hash technique to generate an index where an element is to be inserted or is to be

located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an

array. We're going to use modulo operator to get a range of key values. Consider an example

of hash table of size 20, and the following items are to be stored. Item are in the (key,value)

format.

 (1,20)

 (2,70)

 (42,80)

 (4,25)

 (12,44)

 (14,32)

 (17,11)

 (13,78)

 (37,98)

Sr.No. Key Hash Array Index

1 1 1 % 20 = 1 1



2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already

used index of the array. In such a case, we can search the next empty location in the array by

looking into the next cell until we find an empty cell. This technique is called linear probing.Sr.No. Key Hash Array Index After Linear Probing, Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2



3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18

What is Collision?

Since a hash function gets us a small number for a key which is a big integer or string, there is a  

possibility that two keys result in the same value. The situation where a newly inserted key  

maps to an already occupied slot in the hash table is called collision and must be handled using  

some collision handling technique.

How to handle Collisions?

There are mainly two methods to handle collision:

1) Separate Chaining

2) Open Addressing

In this article, only separate chaining is discussed. We will be discussing Open addressing in  

the next post.

Separate Chaining:

The idea is to make each cell of hash table point to a linked list of records that have same hash  

function value.



Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 85,  

92, 73, 101.

Advantages:

1) Simple to implement.

2) Hash table never fills up, we can always add more elements to the chain.

3) Less sensitive to the hash function or load factors.

4)It is mostly used when it is unknown how many and how frequently keys may be inserted or  

deleted.

Disadvantages:

1)Cache performance of chaining is not good as keys are stored using a linked list. Open  

addressing provides better cache performance as everything is stored in the same table.

2) Wastage of Space (Some Parts of hash table arenever used)

3) If the chain becomes long, then search time can become O(n) in the worst case.

4) Uses extra space for links.



UNIT-V

SEARCHING
Searching:

Searching are designed to check for an element or retrieve an element from any data structure  

where its stored.There are two types.

1.Sequential.  

2.Interval.

1.Sequential:

In this the list or array is traversed sequentially and every element is checked.  

Ex.Linear search.

2.Interval:

These type of searching algorithms are much more efficient than linear search as they repeatedly  

target the center of the search structure and divide the search space in half

Ex.Binary search

Linear Search:

Linear search or sequential search is one where a key k is searched for,in a linear list l of data  

elements.The list L is commonly represented using a sequential data structure such as an array.If  

L is ordered then the search is said to be an ordered linear search and if L is unordered then it is  

said to be unordered linear search.

 A linear search scans one item at a time

 The worst case complexity is o(n)

 Time taken to search elements keep increasing as the number of elements are increased.

Linear search is the simplest searching algorithm that searches for an element in a list in  

sequential order. We start at one end and check every element until the desired element is not

found.

How Linear Search Works?
Let’s consider the following array to understand the working of the algorithm.



Now, suppose we want to search 92 in the above-mentioned array, the linear search algorithm

shall follow the steps mentioned below.

Step 1: The algorithm begins from the left-hand side, and the element to be searched is matched  

with every element. In the first, the matching doesn’t happen.

Step 2: Now the algorithm moves to the next element and compares the two elements to check if

matching happens.

Step 3: Similarly, the searching happens until no match happens.

Step 4: Finally, when the match happens, the algorithm returns the position of the element.



Ordered Linear search:

 Where the elements of a list have been already sorted, our search algorithm can be

improved. Assuming the elements have been sorted in ascending order, the search

operation can take advantage of the ordered nature of the list to make search more

efficient.

 Let L={k1,k2,k3,k4….kn},k1<k2<k3<….kn be the list of ordered elements.To search for  

a key k in the list L,we undertake a linear search comparing k with each of the ki.so long  

as k>ki comparing k with the data elements of the list L progresses.

Algorithm:

Procedure LINEAR SEARCH ORDERED(L,n,k)  

I=0;

While((i<n) and (k>L[i]))do  

I=i+1;

Endwhile

If(k=L[i]) then

{

Print(“key found”);  

Return(i);

}

Ordered List of elements:



L[0,5]={16,18,56,78,90,100}

Let us search for the key k=78  

Step1:16 18 56 78 90 100

L[0] L[1] L[2] L[3] L[4] L[5]
K=78

Step2:
16 18 56 78 90 100

L[0] L[1] L[2] L[3] L[4] L[5]
K=78

Step3:
16 18 56 78 90 100

L[0] L[1] L[2] L[3] L[4] L[5]
K=78

Step 4:
16 18 56 78 90 100

L[0] L[1] L[2] L[3] L[4] L[5]
K=78

Finally key found ,Algorithm return the position of the element.

Unordered linear search:

In this search ,a key k is looked for in an ordered linear list L={k1,k2,k3,k4…..kn} of data  

elements.

Algorithm:

Procedure LINEAR SEARCH UNORDERED(L,n,k)  

i=0;

While((i<n) and (L[i]!=k))do  

i=i+1;

Endwhile  

If(L[i] =k) then



{

Print(“key found”);  

Return(i);

}

Else

Print(“key not found”)

End LINEAR SEARCH UNORDERED.

UnOrdered List of elements:  

L[0:5]={23,14,98,45,67,53}

Let us search for the key k=53  

Step1:

23 14 98 45 67 53

L[0] L[1] L[2] L[3] L[4] L[5]
K=53

Step2:
23 14 98 45 67 53

L[0] L[1] L[2] L[3] L[4] L[5]
K=53

Step3:
23 14 98 45 67 53

L[0] L[1] L[2] L[3] L[4] L[5]
K=53

Step 4:
23 14 98 45 67 53

L[0] L[1] L[2] L[3] L[4] L[5]
K=53

23 14 98 45 67 53

L[0] L[1] L[2] L[3] L[4] L[5]
K=53



23 14 98 45 67 53

L[0] L[1] L[2] L[3] L[4] L[5]
K=53

Finally key found ,Algorithm return the position of the element  

Binary search:

 Search a sorted array by repeatedly dividing the search interval in half. Begin with an  

interval covering the whole array. If the value of the search key is less than the item inthe  

middle of the interval, narrow the interval to the lower half. Otherwise narrow it to the  

upper half. Repeatedly check until the value is found or the interval is empty.

 A binary search searches for a key k in an ordered list  

L={k1,k2……..kn},k1<k2<k3<…knof data elements,by halving the search list with each  

comparision until the key is either found or not found.The key k is first compared with the  

median element of the list viz….,kmid..for a sub list {ki,ki+1,ki+2,…kj},kmid is obtained  

as the key occurring at the position mid which is computed as mid =[(i+j)/2].The  

comparision of k with kmid yields the following cases:

o If(k=kmid)then the binary search is done.

o If(k<kmid)then continue binary search in the sublist{ki,ki+1,ki+2……kmid-1}

o `If(k>kmid)then continue binary search in the  

sublist{kmid+1,kmid+2,kmid+3…..kj}

 Binary search adopts the divide and conquer method of algorithm design.divide-and  

conquer is an algorithm design technique where to solve a given problem ,the problem is  

first recursively divided into subproblems.The subproblems that are small enough are  

easily solved and the solutions combined to obtain the solutions to the whole problem.

Ex:

Consider an ordered list L={k1,k2,k3……k15}={2,5,8,12,16,23,38,56,72,91}  

Search 23

0 1 2 3 4 5 6 7 8 9

2 5 8 12 16 23 38 56 72 91

23>16 take 2 nd half

L=0 1
2 3 M=4 5 6 7 8 H=9

2 5 8 12 16 23 38 56 72 91



23>56 take 1st half

0 1
2 3 4 L=5 6 M=7 8 H=9

2 5 8 12 16 23 38 56 72 91

Found 23,return 5

0 1
2 3 4 L= 5,M=5 H= 6 7 8 9

2 5 8 12 16 23 38 56 72 91

Algorithm:

Procedure binary_search(L,low,high,k)  

If(low>high) then

{

Binary search=0;  

Print(“key not found”);  

Exit();

}

Else

{

Mid=[low+high/2]  

Case:

K=L[mid];

{

Print(“key found”);

Binary search,L[mid];  



k>L[mid]:binary search=binary search(L,mid+1,high,k);

End case

}

End binary _search

Fibonacci search:





Fibonacci Search examines closer elements in few steps. So when input array is big that  

cannot fit in CPU cache or in...

 On average, fibonacci search requires 4% more comparisons than binary search

 Fibonacci search requires only addition and subtraction whereas binary search requires bit-

shift, division or...

Fibonacci search can reduce the time needed to access an element in a random access  

memory.

 On magnetic tape where seek time depends on the current head position, there are...

 Fibonacci search is an efficient search algorithm based on divide and conquer principle  

that can find an element in the given sorted array with the help of Fibonacci series

in O(log N) time complexity. This is based on Fibonacci series which is an infinite  

sequence of numbers denoting a pattern which is captured by the following equation:
 F(n+1)=F(n)+F(n-1)

 where F(i) is the ith number of the Fibonacci series where F(0) and F(1) are defined as 0  

and 1 respectively.

 The first few Fibonacci numbers are:

0,1,1,2,3,5,8,13....

F(0) = 0

F(1) = 1

F(2) = F(1) + F(0) = 1 + 0 = 1  

F(3) = F(2) + F(1) = 1 + 1 = 2
F(4) = F(3) + F(2) = 1 + 2 = 3 and so continues the series

 binary search also work for the similar principle on splitting the search space to a smaller  

space but what makes Fibonacci search different is that it divides the array in unequal  

parts and operations involved in this search are addition and subtraction only which  

means light arithmetic operations takes place and hence reducing the work load of the  

computing machine.

100 90 30 15 60 120 10



The element do be found be 100

According to the algorithm we will first sort the array.

A=

Then check the value in Fibonacci series which is greater or equal to value of n=7  

7 <=8
fbM=8 fbM1=5 fbM2=3 offset=-1

i=2 //-1+3 < 7 min((offset+fBM2),n-1)

A

A[2]=30 < 100

fbM=5 fbM1=3 fbM2=2 offset=2  

i=5//2+3<7 min((offset+fBM2),n-1)

Sort:

Sorting also referred to as ordering deals with arranging elements of a list or a set or records of a

file in the ascending or descending order.

Bubble sort:

Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly

steps through the list, compares adjacent elements and swaps them if they are in the wrong order.

The pass through the list is repeated until the list is sorted. The algorithm, which is a comparison

sort, is named for the way smaller or larger elements "bubble" to the top of the list.

Algorithm:

Procedure for Bubble sort  

For i=1 to n-1 do

For j=1 to n-1 do

10 15 30 60 90 100 120

10 15 30 60 90 100 120

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Swap_(computer_science)
https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Comparison_sort


Insertion sort is based on the idea that one element from the input elements is consumed in each  

iteration to find its correct position i.e, the position to which it belongs in a sorted array. It  

iterates the input elements by growing the sorted array at each iteration. It compares the current  

element with the largest value in the sorted array.

void insertion_sort ( int A[ ] , int n)

{

for( int i = 0 ;i < n ; i++ ) {

/*storing current element whose left side is checked for its  

correct position .*/

int temp = A[ i ];  

int j = i;

/* check whether the adjacent element in left side is greater or  

less than the current element. */

while( j > 0 && temp < A[ j -1]) {

// moving the left side element to one position forward.

A[ j ] = A[ j-1];

j= j - 1;

}

// moving current element to its correct position.  

A[ j ] = temp;
}

}

Take array A[]=[7,4,5,2].

Step 1:

----------no elements on left side of 7,so no change in its position

Step 2:

--------As 7>4 therefore 7 will be moved forward and 4 will be

moved to 7 th position.

Step 3:

---------as 7>5 7 will be moved forward,but 4<5,so no change in

7 4 5 2

7 4 5 2

4 7 5 2

4 7 5 2

4 5 7 2



position of 4.and 5 will be moved to position of 7.

Step 4:

---------as all the elements on left side of 2 are greater than 2,so  

all the elements will be moved forward and 2 will be shifted to  

position of 4

Since 7 is the first element has no other element to be compared with, it remains at its position.  

Now when on moving towards 4, 7 is the largest element in the sorted list and greater than 4. So,  

move 4 to its correct position i.e. before 7. Similarly with 5, as 7 (largest element in the sorted  

list) is greater than 5, we will move 5 to its correct position. Finally for 2, all the elements on the  

left side of 2 (sorted list) are moved one position forward as all are greater than 2 and then 2 is  

placed in the first position. Finally, the given array will result in a sorted array.

Time Complexity:

In worst case,each element is compared with all the other elements in the sorted array.  

For N elements, there will be N2 comparisons. Therefore, the time complexity is O(N2)

Selection sort:

The selection sort algorithm sorts an array by repeatedly finding the minimum element  

(considering ascending order) from unsorted part and putting it at the beginning. The algorithm  

maintains two subarrays in a given array. 1) The subarray which is already sorted. 2) Remaining  

subarray which is unsorted.

arr[] = 64 25 12 22 11

// Find the minimum element in arr[0...4]

// and place it at beginning

11 25 12 22 64

// Find the minimum element in arr[1...4]

// and place it at beginning of arr[1...4]  

11 12 25 22 64

4 5 7 2

2 4 5 7



Merge sort:

Merge sort is a divide-and-conquer algorithm based on the idea of breaking down a list into  

several sub-lists until each sublist consists of a single element and merging those sublists in a  

manner that results into a sorted list.

 Divide the unsorted list into N sublists, each containing 1 element.

 Take adjacent pairs of two singleton lists and merge them to form a list of 2  

elements. N will now convert into N/2 lists of size 2.

 Repeat the process till a single sorted list of obtained.

MergeSort(arr[], l, r)

If r > l

1. Find the middle point to divide the array into two 

halves:  middle m = (l+r)/2
2. Call mergeSort for first half:

Call mergeSort(arr, l, m)

3. Call mergeSort for second 

half:  Call mergeSort(arr, 

m+1, r)
4. Merge the two halves sorted in step 2 and 3:

Call merge(arr, l, m, r)

Time Complexity: Sorting arrays on different machines. Merge Sort is a recursive algorithm and  

time complexity can be expressed as following recurrence relation.
T(n) = 2T(n/2) + θ(n)

The above recurrence can be solved either using the Recurrence Tree method or the Master  

method. It falls in case II of Master Method and the solution of the recurrence is θ(nLogn).Time  

complexity of Merge Sort is θ(nLogn) in all 3 cases (worst, average and best) as merge sort  

always divides the array into two halves and takes linear time to merge two halves.
Applications of Merge Sort

1. Merge Sort is useful for sorting linked lists in O(nLogn) time.In the case of linked lists, the  

case is different mainly due to the difference in memory allocation of arrays and linked lists.  

Unlike arrays, linked list nodes may not be adjacent in memory. Unlike an array, in the  

linked list, we can insert items in the middle in O(1) extra space and O(1) time. Therefore,  

the merge operation of merge sort can be implemented without extra space for linked lists.  

https://www.geeksforgeeks.org/merge-sort-for-linked-list/


Quick sort:

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It picks an element aspivot and partitions

the given array around the picked pivot. There are many different versions of quickSort that pick pivot in

differentways.

1. Always pick first element as pivot.

2. Always pick last element as pivot (implemented below)

3. Pick a random element as pivot.

4. Pick median as pivot.

The key process in quickSort is partition(). Target of partitions is, given an array and an element x  

of array as pivot, put x at its correct position in sorted array and put all smaller elements (smaller  

than x) before x, and put all greater elements (greater than x) after x. All this should be done in  

linear time.

Pseudo Code for recursive QuickSort function :

/* low --> Starting index, high --> Ending index */  

quickSort(arr[], low, high)

{

if (low < high)

{

/* pi is partitioning index, arr[pi] is now  

at right place */

pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi  

quickSort(arr, pi + 1, high); // After pi

}

}

http://quiz.geeksforgeeks.org/merge-sort/


Partition Algorithm

There can be many ways to do partition, following pseudo code adopts the method given in CLRS  

book. The logic is simple, we start from the leftmost element and keep track of index of smaller (or  

equal to) elements as i. While traversing, if we find a smaller element, we swap current element  

with arr[i]. Otherwise we ignore current element.

/* low --> Starting index, high --> Ending index */

quickSort(arr[], low, high)

{

if (low < high)

{

/* pi is partitioning index, arr[pi] is now  

at right place */

pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi  

quickSort(arr, pi + 1, high); // After pi

}

}

Pseudo code for partition()

/* This function takes last element as pivot, places



of pivot */

partition (arr[], low, high)

{

// pivot (Element to be placed at right position)  

pivot = arr[high];

i = (low - 1) // Index of smaller element  

for (j = low; j <= high- 1; j++)

{

// If current element is smaller than the pivot  

if (arr[j] < pivot)

{

i++; // increment index of smaller element  

swap arr[i] and arr[j]

}

}

swap arr[i + 1] and arr[high])  

return (i + 1)

}

Illustration of partition() :

arr[] = {10, 80, 30, 90, 40, 50, 70}

Indexes: 0 1 2 3 4 5 6

low = 0, high = 6, pivot = arr[h] = 70  

Initialize index of smaller element, i = -1



j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])

i = 1

arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30

j = 3 : Since arr[j] > pivot, do nothing

// No change in i and arr[]

j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])

i = 2

arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped

j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j]

i = 3

arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped

We come out of loop because j is now equal to high-1.  

Finally we place pivot at correct position by swapping  

arr[i+1] and arr[high] (or pivot)
arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70 Swapped

Now 70 is at its correct place. All elements smaller than

70 are before it and all elements greater than 70 are after

it.

Heap sort:

Heap sort is a comparison based sorting technique based on Binary Heap data structure. It is  

similar to selection sort where we first find the maximum element and place the maximum element  

at the end. We repeat the same process for the remaining elements.

What is Binary Heap?

Let us first define a Complete Binary Tree. A complete binary tree is a binary tree in which every  

level, except possibly the last, is completely filled, and all nodes are as far left as possible  

(Source Wikipedia)
A Binary Heap is a Complete Binary Tree where items are stored in a special order such that value

in a parent node is greater(or smaller) than the values in its two children nodes. The former is  

called as max heap and the latter is called min-heap. The heap can be represented by a binary tree  

or array.
Why array based representation for Binary Heap?

https://www.geeksforgeeks.org/binary-heap/
http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees
https://www.geeksforgeeks.org/binary-heap/


heapification must be performed in the bottom-up order.  

Lets understand with the help of anexample:

Input data: 4, 10, 3, 5, 1

4(0)

/ \

10(1) 3(2)

/ \

5(3) 1(4)

The numbers in bracket represent the indices in the array  

representation of data.

Applying heapify procedure to index 1:  

4(0)

/ \

10(1) 3(2)

/ \

5(3) 1(4)

Applying heapify procedure to index 0:  

10(0)

/ \

5(1) 3(2)

/ \

4(3) 1(4)

The heapify procedure calls itself recursively to build heap  



THANK YOU


