
C++ and Java Programming
18K3CS04

M.IDA ROSE

Assistant Professor

Department of Computer Science

K.. N. Government Arts College for Women(Autonomous)

Thanjavur – 613 007

Syllabus

• Unit I – Chapters:
1, 2, 3, 4

• Unit II – Chapters:
5.1-5.16, 6, 7.1-
7.2

• Unit III – Chapters:
8, 9

Chapter 1

Principles of Object
Oriented Programming

Software Crisis

• “Software Crisis” in procedural programming:
– Too many modules
– Too many functions
– Too many variables
– …. An expensive mess

• Better organization of the code
• Smaller code
• Reuse of code
• Easier design, analysis and implementation
• User vs. Programmer

Software Evolution

A Look at Procedure – Oriented
Programming

Object – Oriented Programming
Paradigm

Basic Concepts of Object – Oriented
Programming

• Objects

• Classes

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

• Dynamic Binding

• Message Passing

Basic Concepts of OOP

1.Object:

Objects are the basic run – time
entities in an object – oriented system.

2.Classes:

We just mentioned that objects
contain data, and code to manipulate that
data.

Basic Concepts of OOP

3.Data Abstract and Encapsulation:

The wrapping up of data and function
into a single unit (called class) is known as
encapsulation. Data encapsulation is the most
striking feature of a class.

4.Inheritance:

Inheritance is the process by which
objects of one class acquire the properties of
objects of another class.

Basic Concepts of OOP

5.Polymorphism:

Polymorphism is another important
OOP concept.

6.Dynamic Binding:

Binding refers to the linking of a
procedure call to the code to be executed in
response to the call.

Basic Concepts of OOP

7.Message Passing:

An object – oriented program consists
of a set of objects that communicate with
each other.

Benefits of OOP

• Through inheritance, we can eliminate redundant code and
extend the use of existing classes.

• Standard working modules that communicate with one
another.

• Data hiding helps the programmer to build secure programs
that cannot be invaded by code in other parts of the
program.

• It is possible to have multiple instances of an objects to co-
exist without any interference.

• It is possible to map objects in the problem domain to
those objects in the program.

• Ease to partition that work in a project based on objects.

Object–Oriented Languages

Object–Oriented Languages

• The focus of OOP languages in is not on
structure, but on modeling data.

• Programmers code using “blueprints” of data
models called classes.

• Examples of OOP languages include C++,
Visual Basic.NET and Java.

Applications of OOP

• The promising areas of application of OOP
include:

• Real-time system
• Simulation and modeling
• Object oriented data bases
• Hypertext, Hypermedia
• AI and expert systems
• Neural Networks and parallel programming
• Decision support and office automation systems
• CIM/CAM/CAD systems

Chapter 2

Beginning with C++

Applications of C++

• To create hierarchy-related objects, build
special object-oriented libraries

• To map the real-world problem

• Easy maintainable and expandable programs.
Easy to implement new features to the
existing structure.

Difference between
Procedure Oriented Programming and Object

Oriented Programming

Procedure oriented programming

Object Oriented programming

Emphasis is on doing things (algorithms)

Large Programs are divided into smaller programs known
as functions.

Most of the functions share global data.

Data move openly around the system from function to
function.

Functions transform data from one form to another.

Employs top down approach in program design.

Emphasis is on data rather than on procedure

Programs are divided into objects

Data structures are designed in such a way that it
characterizes the object

Functions that operate on data are ties together in a data
structure called class

Data is hidden and cannot be accesses by external
functions.

Objects may communicate to each other with the help of
functions.

New data and functions can be easily added whenever
necessary

Follows bottom-up approach.

Input and Output Operators

• In C++, input and output (I/O) operators are
used to take input and display output. The
operator used for taking the input is known as
the extraction or get from operator (>>),
while the operator used for displaying the
output is known as the insertion or put to
operator (<<).

Input Operator

• The input operator, commonly known as the extraction operator (>>), is used with the standard input stream, cin.
As stated earlier, cin treats data as a stream of characters. These characters flow from cin to the program through
the input operator. The input operator works on two operands, namely, the c in stream on its left and a variable on
its right. Thus, the input operator takes (extracts) the value through cin and stores it in the variable.

•

• To understand the concept of an input operator, consider this example.
•

• A program to demonstrate the working of an input operator.
•

• #include<iostream>
• using namespace, std;
•

• int main ()
• {
• int a;
• cin>>a;
• a = a+1;
• return 0;
• }
• In this example, the statement cin>> a takes an input from the user and stores it in the variable a.

Output Operator

• The output operator, commonly known as the insertion operator (<<), is used. The standard output stream cout
Like cin, cout also treats data as a stream of characters. These characters flow from the program to cout through
the output operator. The output operator works on two operands, namely, the cout stream on its left and the
expression to be displayed on its right. The output operator directs (inserts) the value to cout.

•

• To understand the concept of output operator, consider this example.
•

• A program to demonstrate the working of an output operator.
•

• #include<iostream>
• using namespace std;
• int main ()
• {
• int a;
• cin>>a;
• a=a+1;
• cout<<a;
• return 0;
• }
•

• This example is similar to Example 1. The only difference is that the value of the variable a is displayed through the
instruction cout << a .

Cascading the Inputand Output
Operator

• The cascading of the input and output operators refers to the consecutive occurrence of input or output operators
in a single statement.

• To understand the concept of cascading of the input/output operator, consider these examples.
•

• A program without cascading of the input/output operator.
•

• #include<iostream>
• using namespace std;
• int main ()
• {
• int a, b;
• cin>>a;
• cin>>b;
• cout<<"The value of a is
• cout<<a;
• cout<<"The value of b is
• cout<<b;
• return 0;
• }
•

• In this example, all cin and cout statements use separate input and output operators respectively However, these
statements can be combined by cascading the input and output operators accordingly as shown in this example.

• A program with cascading of the input/output operator
•

• #include<iostream>
• using namespace std;
• int main ()
• {
• int a, b;
• cin>>a>>b;
• Cout<<"The value of b is : "<<b;
• cout<<"The value of a is "<<a;
• return 0;
• }
•

• In this example, the cascaded input operators wait for the user to input two values and the
cascaded output operator first displays the message The value of a is: and then displays the value
stored in a. Similar is the case for the next statement.

• It can be observed that cascading of the input/output operator improves the readability and
reduces the size of the program.

Structure of C++ Program

Example for C++ Program

Chapter 3

Tokens, Expressions and
Control Structures

Tokens

• Keywords

• Identifiers

• Constants

• Strings

• Operators

• The smallest individual units in a program are
known as tokens.

• Including white space and syntax of the language.

Keywords

• Definition:
– The words which are explicitly reserved for identifiers and cannot be

used as names for the program variables or other user-defined
program elements.

• Examples:
– double
– continue
– private
– typedef
– if
– int
– long
– for
– default

Identifiers and Constants

• Identifiers
– Definition:

• Refer to the names of variables, functions, arrays, classes,
etc. created by the programmer.

– Rules
• Only alpha numeric characters, digits and underscrores are

permitted.

• The name cannot start with a digit.

• Uppercase and lowercase letters are distinct.

• A declared keyword cannot be used as a variable name.

• 32 characters are allowed.

Identifiers and Constants

• Constants:
– Definition:

• Refer to fixed values that do not change during the
execution of a program.

– Examples:
• 123 //decimal integer
• 12.34 // floating point integer
• 037 //octal integer
• 0X2 //hexadecimal integer
• “C++”// string constant
• ‘A’ //character constant
• L’ab’ //wide-character constant

Basic Data Types

Size and Range
of C++ basic data types

User-Defined Data Types

• Structures

• Unions

• Classes

• Enumerated Data type

User-Defined Data Types

• Various user-defined data types provided by C++ are structures,
unions, enumerations and classes.

• Structure, Union and Classes: Structure and union are the
significant features of C language. Structure and union provide a
way to group similar or dissimilar data types referred to by a single
name. However, C++ has extended the concept of structure and
union by incorporating some new features in these data types to
support object -oriented programming.

• C++ offers a new user-defined data type known as class, which
forms the basis of object-oriented programming. A class acts as a
template which defines the data and functions that are included in
an object of a class. Classes are declared using the keyword class.
Once a class has been declared, its object can be easily created.

Structures

• While arrays are used to group together similar type data elements, structures are used for
grouping together elements with dissimilar types.

• General format:
– struct name
– {

• datatype member1;
• datatype member2;
• …..
• …

– }

• Example:
– struct book
– {

• char title[25];
• char author[25];
• int pages;
• float price;

– };
– struct book1, book2, book3;

– book1.pages = 400;
– book1.price = 525;

Union

• Conceptually both unions and structures are same.
• But the difference is :

– the size of the structure is equal to the sum of the sizes of individual
member types.

– The size of a union is equal to the size of its largest member element.

• Example:
– union result
– {

• int marks;
• char grade;
• float percent;

– };

• Here size the union occupy four bytes in memory as its largest
member element is the floating type variable percent.

enum

• Enumeration: An enumeration is a set of named integer constants that specify all
the permissible values that can be assigned to enumeration variables. These set of
permissible values are known as enumerators. For example, consider this
statement.

• enum country {US, UN, India, China}; // declaring an
• // enum type
• In this statement, an enumeration data-type country (country is a tag name) ,

consisting of enumerators US, UN and so on, is declared. Note that these
enumerators represent integer values, so any arithmetic operation can be
performed on them.

• By default, the first enumerator in the enumeration data type is assigned the value
zero. The value of subsequent enumerators is one greater than the value of
previous enumerator. Hence, the value of US is 0, value of UN is 1 and so on.
However, these default integer values can be overridden by assigning values
explicitly to the enumerators

• as shown here.
• enum country {US, UN=3, India, china} ;
• In this declaration, the value of US is O by default, the value of UN is 3, India is 4

and soon.

enum

• Once an enum type is declared, its variables can be declared using this statement.
• country countryl, country2;
• These variables countryl, country2 can be assigned any of the values specified in

enum declaration only. For example, consider these statements.
• countryl India; // valid
• country2 Japan; // invalid
• Though the enumerations are treated as integers internally in C++, the compiler

issues a warning, if an int value is assigned to an enum type. For example, consider
these statements.

• Country1 = 3; //warning
• Country1 = UN; / /valid
• Country1 = (country) 3; / /valid
• C++ also allows creating special type of enums known as anonymous enums, that

is, enums without using tag name as shown in this statement.
• enum {US, UN=3, India, China};
• The enumerators of an anonymous enum can be used directly in the program as

shown here.
• int count = US;

The typedef Keyword

• C++ provides a typedef feature that allows to define new data type
names for existing data types that may be built-in, derived or user-
defined data types. Once the new name has been defined, variables
can be declared using this new name. For example, consider this
declaration.

• typedef int integer;
• In this declaration, a new name integer is given to the data type

into This new name now can be used to declare integer variables as
shown here.

• integer i, j, k;
• Note that the typedef is used in a program to contribute to the

development of a clearer program. Moreover, it also helps in
making machine-dependent programs more portable.

Structures and Unions

Difference between Structure and
Union

Enumerated Data Type

Enumerated data types - Example

Storage Classes

Derived Data Types

• Arrays

– Example:

• char string[3]=“xyz”;

• Char string[4]=“abc”; //null is allowed.

• Functions

• Pointers

– char *const ptr1=“GOOD”; // constant pointer

– int const *ptr2=&m; //pointer to a constant

– const char *const cp=“xyz”; //constant pointer to string.

Type Compatibility

• C++ is very strict with regard to type
compatibility to C.

• Short int, long int

• Unsigned char, char, signed char

• Int is not compatibile with char

• Function overlaoding

Type Compatibility

• sizeof()

• It returns size of a variable.

• Example:

– Sizeof(‘x’); //if x is integer, then it will return 1.

– sizeof(char);

Type compatibility

• The sizeof is a keyword but it is compile time
operator that determine the size, in byte, of a
variable or data type.

• It can be used to get the size of classes, structure,
union and any other user defined data type.

• Syntax:
– sizeof(datatype)

• Ex:
– sizeof(x) or sizeof(int)

• sizeof operator will return integer value.

Declaration of Variables

• All variables must be declared before they are used in
executable statements.

• Example:
– Int a;
– Cin>>a;

– Cin>>b; //error: variable not declared.
– Declaration syntax error.

– For (int i=0; i<10; i++)

– Int I;
– For (i=0; i<10; i++)

Declaration of variable

• Syntax:
– Datatype variablename;

• Example:
– int a; // a is an integer variable.
– char x[5]; // x is a character variable; it can store 5

characters. Its size is 5 bytes.

• Syntax:
– Datatype var1, var2, var3;

• Example:
– Int a, b, c;

Dynamic Initialization of Variables

• C++ permits initialization of the variable at run
time.

• Example:

– ……

– ……

– ……int n=strlen(string);

– ……

– ……float area= 3.14 *rad*rad;

Reference Variables

• A reference variable provides an alias
(alternative name) for a previously defined
variable.

• Syntax:

– Data-type &reference-name = variable-name

• Example:

– Float total =100;

– Float &sum = total;

Operators in C++

• :: scope resolution operator

• ::* pointer-to-member declarator

• ->* pointer-to-member operator

• .* pointer-to-member operator

• delete memory release operator

• endl line feed operator

• new memory allocation operator

• setw field width operator

Scope Resolution Operator

• A variable declared inside a block is said to be local to that block.
• Example:
• ………
• {
• ……….int x=10;
• ……
• }
• ……..
• {
• ………
• ……. int x=1;
• ……..
• }

Member Dereferencing Operators

• ::* to declare a pointer to a member of a
class

• .* to access a member using object
name and a pointer to that member

• ->* to access a member using a pointer
to the object and a pointer to that member

Memory Management Operators

• new
• Syntax:

– Pointer-variable =new data-type;
– Pointer-variable =new data-type(value);
– Pointer-variable =new data-type[size];

• Example:
– Array-ptr= new int;

• delete
• Syntax:

– delete pointer-variable;
– delete [size]pointer-variable;

• Example:
– delete p;
– Delete []p;

Manipulators

• Defintion:
– Manipulators are operators that are used to format

the data display.
– endl \n – new line
– setw \t – width space
– setprecision()

• Example:
– Cout<<“m=“<<m<<endl;
– Count<<“n=“<<n<<endl;
– M=2597
– N=14

Use of manipulators

#include<iostream.h>
#include<conio.h>
Using namespace std;
int main()
{

int Basic=950,Allowance = 95, Total=1045;
cout<<setw(10)<<“Basic=“<<setw(10)<<Basic<<endl;
cout<<setw(10)<<“Allowance=“<<setw(10)<<Allowance<<endl;
cout<<setw(10)<<“Total=“<<setw(10)<<Total<<endl;

return 0;
}
Output:

Basic= 950
Allowance= 95
Total= 1045

Note: character strings are also right-justified.

Setprecision()

• control the precision of floating point
numbers appearing in the output.

– 10.5

– 205.7

– 1050.2

Our own maninpulators

#include<iostream.h>

ostream & symbol (ostream &output)

{

return output <<“\tRs.”;

}

Type Cast Operator

• Usage:

– Explicit type conversion of variables or expressions.

• Implicit conversion : example: Int I; i=10.2; ➔i=10

• Type cast conversion:

– syntax:

• type-name expression

– Example:

• Average = sum/float (i);

Explicit Type Casting

#include<iostream.h>
#include<conio.h>
Using namespace std;
Int main()
{

int intvar=25;
float floatvar=35.87;
cout<<“integer variable=“<<intvar;
cout<<“\n float variable=“<<floatvar;

cout<<\n float variable=“<<float(intvar); //float(25)
cout<<“\n integer variable=“<<int(floatvar); //int(35.87)

return 0;
}

Output:
Integer variable = 25
Float variable = 35.87
Integer variable = 25
Float variable = 35

New cast operators in ANSI C++

• const_cast

• static_cast

• dynamic_cast

• reinterpret_cast

Expressions and their Types

• Definition:

– An expression is a combination of operators,
constants and variables arranged as per the rules
of the language.

– It may also include function calls which return
values.

– An expression may consists of one or more
operands, and zero or more operators to produce
a value.

7 types of expressions:

• Constant expressions

• Integral expressions

• Float expressions

• Pointer expressions

• Relational expressions

• Logical expressions

• Bitwise expressions

Constant expressions

• Constant expressions consists of only constant
values.

• Examples:

– 15

– 20.57

– ‘x’

– 20+5/2.0

Integral expressions

• Integral expressions are those which produce
integer results after implementing all the
automatic and explicit type conversions.

• Example:

– m

– m * n - 5

– m * ’x’

– 5 + int(2.0)

Float expressions

• Float expresssions are tho0se which, after all
conversions, produce floating-point results.

• Examples:

– x + y;

– x * y / 10

– 5 + float(10)

– 10.75

Pointer Expressions

• Pointer expressions produces address values.

• Example:

– &m

– Ptr

– Ptr +1

– “xyz”

Relational expressions

• Relational expressions yield results to type
bool which takes a value true or false.

• Examples:

– X=10; y=15; X <= Y

– A=2; b=3; c=2; d=4; A+b == c+d

– 10<25

– M=10; n=20; M+n>100

– 10.5<10

Logical expressions

• Logical expressions combine two or more
relational expressions and produces bool type
results.

• Example:

– A>b && x==10

– X==10 || y==5

Bitwise expressions

• Bitwise expressions are used to manipulate
data at bit level.

• Basically used for testing or shifting bits.

• Examples:

– X<<3; //shift three bit position to left.

– Y>>1; //shift one bit position to right.

Special Assignment Expressions

• Chained Assignment

• Embedded Assignment

• Compound Assignment

Chained Assignment

• Assigning same to more than one variable is called chained
assignment.

• Example:
– X= (y=10);
– Or
– X=y=10;

– Float a = b= 12.4; //wrong

– Float a, b;
– a = b = 12.34; //correct

– Float a=12.34, b=12.34; //correct

• A chained statement cannot be used to initialize variables at the
time of declaration.

Embedded Assignment

• X=(y=50)+10; // x=60

• Y=50;

• X=y+10; //x=60

Compound Assignment

• Compound assignment operator → +=
• Example:

– X += 10; // x = x+10

• Syntax:
– Variable1 op= variable2;
– Variable1 = variable1 op variable2;

• Examples:
– X += y; // x=x+y
– X -= y; //x=x-y
– X *= y; //x=x*y
– X /= y; //x=x/y

Implicit Conversion

• Automatic or implicit conversion

• Water fall model: smaller type to wider type

Mixed – mode operations

• Int x = int y + float z;

• int x = 10 + 12.5; // x=22 (x integer – explicit)

• X = 10+12.5; //x=22.5 (x float –
implicit)

• Integral widening conversion

Operator overloading

• Assign multiple meaning to operators.

• <<

• Example:
– cout<<75.86; //integer op

– Cout<<“Hello”; //string op

• Member access operators: (. and *)

• Conditional operator: (?:)

• Scope resolution operator: (::)

• Size operator: (sizeof())

Operator
Precedence

• BODMAS

– Brackets

– Of

– Division

– Multiplication

– Addition

– Subtraction

Basic Control Structures

Basic Control Structure

• Sequence Structure (straight line)

• Selection Structure(Branching)

• Loop Structure (iteration or repetition)

Sequence Structure

Selection Structure

Loop Structure

First level abstraction

Second level of Abstraction

Detailed level of abstraction

The if statement

• Simple if statement
• Form1:

if (expression is true)
{

action1;
}
Action2;
Action3;

• If..else statement
• Form2:
if (expression is true)
{

action1;
}
else
{

action2;
}
Action3;

Switch statement
• Multiple branching statement, where based on a condition, the control is transferred to one of the many

possible blocks.

• Syntax:

switch(expression)

{

case1:

{

action1;

}

case2:

{

action2;

}

case3:

{

action3;

}

default:

{

defaultaction4;

}

}

action5;

Do-while statement

• Exit-controlled loop.

• Based on a condition, the control is transferred to
a particular point of a program.

• Syntax:

do

{

action1;

}while (condition is true);

action2;

While statement

• Entry-controlled loop

• Syntax:

While (condition is true)

{

action1;

}

action2;

The for statement

• Entry-controlled loop.

• It is used when an action is to be repeated for a
predetermined number of times.

• Syntax:

for (initial value; test; increment)

{

action1;

}

action2;

Chapter 4

Functions in C++

Introduction

• Dividing a program into functions is one of the major principles of top-down, structured
programing.

• Example:
void show () ;
main ()
{

.
show () ;
.

}
void show ()
{

.

.

.
}

• When the function called, control is transferred to the first statement in the function body. The
other statement in the function body are then execute and control returns to the main program
when the closing brace is encountered.

The Main Function

• C does not specify any return type for the main ()
function which is the starting point for the
executing of a program.

• Example:

main ()

{

// main programing statements

}

• Function should return a value.

Function Prototyping

• The prototype describe the function interface to the
compiler by giving details such as the number and the
type of arguments and the type of return values. With
function prototyping, a template is always used when
declaring and defining a function. When a function is
called, the compiler uses the template to ensure that
proper arguments are passed, and the return value is
treated correctly.

• Syntax:
type function-name (argument-list) ;

• Example:
float volume (int x, float y, folat z) ;

Call By Reference

• A function call passes arguments by value.
• The ‘called function’ creates a new set of variables and copies the values

of arguments into them. The function does to have access to the actual
variables in the calling program and can only work on the copies of values.
This mechanism is fine if the function does not need to alter the values to
the original variables in the calling program.

• But, there may arise situations where we would like to change the values
of variables in the calling program.

• When we pass arguments by reference, the ‘formal’ arguments in the
called function become aliases to the ‘actual’ arguments in the calling
function.

• Example:
– Void swap(int &a, int &b)
– {

int t=a;
a=b;
b=t;
}

Return by Reference

• A function can also return a reference.

• Example:
int &max(int &x, int &y)

{

if (x>y)

return x;

else

return y;

}

Inline Functions

• A function that is expanded in line when it is invoked.

• Syntax:
inline function-header

{
Function body

}

• Example:
Inline double cube (double a)

{

return (a*a*a);

}

Situations where inline may not work

1. For functions returning values, if a loop, a
switch, or a goto exists.

2. For functions not returning values, if a return
statement exists.

3. If functions contain static variables.

4. If inline functions are recursive.

Default Arguments

• Default values are specified when the function is
declared.

• Example:
– float amount (float principal, int period, float rate=0.15);

– Value = amount(5000,7);

– Value = amount(5000, 5, 0.12);

• Advantages:
– We can use default arguments to add new parameters to

the existing functions.

– Default arguments can be used to combine similar
functions into one.

const Arguments

• An argument to a function can be declared.

• Examples:

– int strlen(const char *p);

– int length(const string &S);

Recursion

• Recursion is a situation where a function calls
itself i.e., on e of the statements in the function
definition makes a call to the same function in
which it is present.

• It may sound like an infinite looping condition but
just as a loop has a conditional check to take the
program control out of the loop, a recursive
function also possesses a base case which returns
the program control from the current instance of
the function to call back to the calling function.

Recursion - example
//Calculating factorial of a Number.

#include<iostream>
#include<conio.h>
using namespace std
long fact(int n)
{

if (n==0)
return 1;

else
return (n*fact(n-1));

}
int main()
{

int num;
cout<<“Enter a positive integer:”; cin>>num;
cout<<“Factorial of “<<num<<“is:”<<fact(num);
getch();
return 0;

}

Model Output

Enter a positive
integer: 10

Factorial of 10
is : 362880

Function Overloading

• Overloading refers to the use of the same
thing for different purposes.

• C++ also permits overloading of functions.

• This means that we can use the same function
name to create functions that perform a
variety of different tasks. This is known as
function polymorphism in OOP.

Function overloading - example

//declaration

• int add(int a, int b);

• int add (int a, int b, int c);

• double add (double x, double y);

• double add (int p, double q);

• double add (double p, int q);

//function calls

• cout<<add(5, 10);

• cout<<add(5, 10, 15);

• cout<<add(12.5, 10.5);

• cout<<add(5, 10.5);

• cout<<add(12.5, 10);

Function Selection - Steps

1. The compiler first tries to find an exact match in which the types
of actual arguments are the same, and use that function.

2. If an exact match is not found, the compiler uses the integral
promotions to the actual arguments, such as char to int or float to
double to find a match.

3. When either of them fails, the compiler tries to use the built-in
conversions (the impilict assignment conversions) to the actual
arguments and then uses the function whose match is unique. If
the conversion is possible to have multiple matches, then the
compiler will generate an error message.

4. If all the stepts fail, then the compiler will try the user-defined
conversions in combination with integral promotions and built-in
conversions to find a unique match. User-defined conversions are
often used in handling class objects.

Friend and Virtual Function

• Two new functions introduced in C++:

– Friend function

– Virtual function

• They are basically introduced to handle some
specific tasks related to class objects.

Math Library Function

• Math functions that can be used for performing certain
commonly used calculations.

Chapter 5

Classes and Objects

Introduction

• A Class is an extension of the idea of structure
used in c. it is a new way of creating and
implementing a user-defined data type.

C Structures Revisited

• Structures provide a method
for packing together data of
different types.

• A structure is a convenient
tool for handling a group of
logically related data items.

• It is a user-defined data type
with a template that serves to
define its data properties.

• Once the structure type has
been defined, we can create
variables of that type using
declarations that are similar to
the built-in type declarations.

struct student
{

char name[20];
int roll-number;
float total-marks;

}

struct student A;

strcpy(A.name=“John”);
A.roll-number=123;
A.total-makrs=400;

Limitations of C Structure

• Cannot add two Complex
numbers.

• Do not permit data hiding.

• Ex.

struct complex

{

float x;

float y;

}

struct complex c1, c2, c3;

C3 = c1 + c2;

Extensions to C Structures

• Inheritance: inherits
characteristics from other
types.

• A structure can have both
variables and functions as
members.

• The keyword struct can be
omitted in the declaration
of structure variables.

Specifying a Class

A class specification has
two parts:

1. Class declaration

2. Class function
definitions.

Syntax:

class class-name

{

private:

variable declarations;

function declarations;

public:

variable declarations;

function declarations;

};

Data hiding in Classes

A Simple Class Example

class item

{

int number;

float cost;

public:

void getdata(int a, float b);

void putdata(void);

};

Creating Objects

Accessing Class Members

• The private data of a class can be accessed
only through the member functions of the
class.

• Syntax:

object-name . Function-name (actual-
arguments);

• Example:

x.getdata(100, 75.5);

Defining Member functions

• Member functions can be defined in two
places:

– Outside the class definition

– Inside the class definition

Outside the Class Definition

return types class-name :: function-name
(argument declaration)
{

function body;
}

void item :: getdata (int a, foat b)
{

number =a ;
cost =b;

}
void item :: putdata(void)
{

cout<<“Number”<<number;
cout<<“Cost”<<cost;

}

• An important difference between a
member function and a normal
function is that a member function
incorporates a membership ‘identity
label’

• Several different classes can use the
same function name. the
‘membership label’ will resolve their
scope.

• Member functions can access the
private data of the class. A
nonmember functin cannot do so.
(However, an exception to this rule is
a friend function.

• A member function can call another
member function directly, without
using the dot operator.

Inside the Class Definition

• Another method of
defining a member
function is to replace the
function declaration by
the actual function
definition inside the
class.

• When a function is
defined inside a class. It
is treated as an inline
function. Therefore, all
the restrictions and
limitations that apply to
an inline function are
also applicable here.

class item
{

int number;
float cost;
public:

void getdata (int a,float b);
void putdata (void)
{

cout<<number;
cout<<cost;

}
};

C++ Program with Class

#include<iostream>
Using namespace std;
class item
{

int number;
float cost;
public:

void getdata (int a,float b);
void putdata (void)
{

cout<<number;
cout<<cost;

}
};
void item :: getdata(int a, float b)
{

number =a ;
cost = b;

}

int main()
{

item x;
cout<<“object x”;
x.getdata(100, 299.95);
x.putdata();
item y;
cout<<“object y”;
y. getadata(200, 175.50);
y.putdata();
return 0;

}
Model Output:
Object x
Number:100
Cost: 299.95
Object y
Number : 200
Cost : 175.5

Making an Outside Function inline

We can define a member function outside the class definition and still make it
inline by just using the qualifier inline in the header line of function definition.
class item
{

…..
…..
public:

void getdata(int a, float b);
};
Inline void item::getdata(int a, float b)
{

number=a;
cost =b;

}

Nesting of Member Functions

A member function can be called by using its name
inside another member function of the same class. This
is known as nesting as member function.

#include<iostream>
#include<conio.h>
#include<string>
using namespace std;
class binary
{

string s;
public:
void read(void)
{

cout<<“Enter a binary
number”;

cin>>s;
}
Void chk-bin(void)
{

for (int i=0; i<s.length(); i++)
{

if(s.at(i)!=‘0’ && s.at(I)!=‘1’)

Private Member Functions

A private member function can only be called by another function that is a member of
its class. Even an object cannot invoke a private function using the dot operator.
class sample
{

int m;
void read(void);
public:

void update(void);
void write(void);

};

S1.read();//won’t work. Objects cannot access private members.

void sample :: update(void)
{

read(); //simple call.no objects used.
}

Arrays within a Class

The arrays can be used as member variables in a
class.
const int size=10;
class array
{

int a[size];
public:

void setval(void);
void display(void);

};

Memory Allocation for Objects

The member functions
are created and placed in
the memory space only
once when they are
defined as a part of a
class specification.
Since all the objects
belonging to that class
use the same member
functions, no separate
space is allocated for
member functions when
the objects are created.

Static Data Members

• A data member of a class
can be qualified as static.
The properties of a static
member variable are
similar to that of a C static
variable. A static member
variable has certain
special characteristics.

• Example:
– static int count;

• It is iitialized to zero when
the first object of its class
is created. No other
initialization is permitted.

• Only one copy of that
member is created for the
entire class and is shared
by all the objects of that
class, no matter how
many objects are created.

• It is visible only within the
class, but its lifetime is
the entire program.

Sharing of a static data member

Static Member Functions

• A static function can have access to only other
static members (functions or variables)
declared in the same class.

• A static member function can be called using
the class name (instead of its objects)

• Syntax:
class-name :: function-name

• Example:
static int count;

Arrays of Objects

• Arrays of variables that are of the
type class.

• Example:
class employee
{

char name[30];
float age;
public:
void getdata(void);
void putdata(void);

}
employee manager[13];
employee foreman[15];
employee worker[75];

Objects as Function Arguments

• Like other data type, an
object may be used as a
function argument.

• 2 methods:

• Pass-by-value
• A copy of the entire object is

passed to the function.

• Pass-by-reference
• Only the address of the object is

transferred to the function.

Example:

class time

{

public:

void sum(time, time);

}

int main()

{

time t1,t2, t3;

t3.sum(t1,t2);

}

Friendly Functions

• To make an outside function
“friendly” to a class, we
have to simply declare this
function as a friend.

• Characteristics:
– It is not in the scope of the

class to which it has been
declared as friend.

– Since it is not in the scope of
the class, it cannot be called
using the object of that class.

– It can be invoked like a
normal function without the
help of any object.

– Unlike member functions, it
cannot access the member
names directly and has to use
an object name and do
membership operator with
each member name.

– It can be declared either in
the public or the private part
of a class without affecting
the meaning.

– Usually, it has the objects as
arguments.

Friendly functions

Syntax:

class abc

{

public:

friend void xyz(void);

}

Example:

class sample

{

public:

friend float mean(sample s);

};

float mean (sample a)

{

return float (s.a+s.b)/2.0;

}

Returning Objects

• A function cannot only
receive objects as
arguments but also can
return them.

Example:

class sample

{

public:

int sum(int a, int b);

};

int sum(int a, int b)

{

return a+b;

}

Chapter 6

Constructors and Destructors

Introduction

• Constructors enables an object to initialize
itself when it is created. This is known as
automatic initialization of objects.

• It also provides another member function
called the destructor that destroys the objects
when they are no longer required.

Constructors

• A constructor is a ‘special’
member function whose
task is to initialize the
objects of its class.

• Constructor’s name is the
same as the class name.

• The construtor is invoked an
object of its associated
class is created.

• It is called constructor
because it constructs the
values of data members of
the class

class integer
{

int m, n;
public:

integer(void);
};
integer::integer(void)
{

m=0; n=0;
}

• Characteristics:
• They should be declared in the public section.
• They are invoked automatically when the objects are created.
• They do not have return types, not even void and therefore, and

they cannot return values.
• They cannot be inherited, though a derived class can call the base

class constructor.
• Like other C++ functions, they can have default arguments.
• Constructors cannot be virtual.
• We cannot refer to their addresses.
• An object with a constructor (or destructor) cannot be used as a

member of a union.
• They make ‘implict calls’ to the operators new and delete when

memory allocation is required.

Parameterized Constructors

• The constructors that
can take arguments are
called parameterized
constructors.

• 2 ways:

– By calling the
constructor explicitly.

– By calling the
constructor implicitly.

• Example:

– integer int1(100, 150);

Multiple Constructors in a Class

• A class can have multiple constructors that
assign the fields in different ways. Sometimes
it's beneficial to specify every aspect of an
object's data by assigning parameters to the
fields, but other times it might be appropriate to
define only one or a few.

• One class may have more than one constructors.
• Multiple constructors are used to initialize

different sets of class attributes.
• When a class has more than one constructors. It

is call constructor overloading.
• Constructors those receive parameters are

called parameterized constructors.

#include <iostream>
using namespace std;
class ABC
{

private:
int x,y;

public:
ABC () //constructor 1 with no arguments

{
x = y = 0;

}
ABC(int a) //constructor 2 with one argument

{
x = y = a;

}
ABC(int a,int b) //constructor 3 with two argument
{

x = a; y = b;
}
void display()
{

cout << "x = " << x << " and " << "y = " << y << endl;
}

};

int main()
{

ABC cc1; //constructor 1
ABC cc2(10); //constructor 2
ABC cc3(10,20); //constructor 3
cc1.display();
cc2.display();
cc3.display();
return 0;

} //end of program

Model Output:
x = 0 and y = 0

x = 10 and y = 10
x = 10 and y = 20

Constructors with Default Arguments

• Default argument
constructor can be
called with either one
argument or no
arguments.

• When called with no
arguments, it becomes
a default constructor.

• Limitations:
1. Constructors do not

have any return type.

2. Constructors can
neither be used as
virtual nor inherited.

3. Constructors should be
declared in public
section only.

4. Constructors’ memory
address cannot be
fetched.

Dynamic Initialization of Objects

The dynamic initialization of object means to the data
members of the class while creating the object when we want
to provide initial or default values to the data members while
creating of object we need to use dynamic initialization of
object.

Model Output:
Enter roll number to initialize the object:101

Enter percentage to initialize the object :84.02
After initializing the object the values are…

Roll number:101
percentage:84.02%

Enter roll number:102
Enter percentage:87

Enter number:102
Percentage :87%

#include<iostream>
using namespace std;
struct student
{

private:
int r No;
float price;

public:
student(int r ,float p)
{

r. No =r;
price =p;

}
void read (void)
{

cout <<“Enter roll number:”;
cin >>r No;
cout<<“Enter percentage:”;
cin>> percen;

}
void print(void)
{

cout<<end1;
cout<<“Roll number:”<< r No<<end1;
cout<<“percentage:”per<<“%”<<end1;

}
};

int main()
{
cout<<“Enter roll number to initialize the

object:”;
std . read();

std . print();
return 0;

}

Copy Constructors

• A copy constructor is used to declare and
initialize an object from another object.

• The process of initializing through a copy
constructor is known as copy initialization.

• A copy constructor takes a reference to an
object of the same class as itself as an
argument.

• Example:
– integer(integer &i);

Dynamic Constructors
The constructors can also be used to allocate
memory while creating objects . This will enable
the system to allocate the right amount of
memory for each object when the objects are
not of the same size, thus resulting in the saving
of memory . Allocation of memory to objects
at the run time of their construction is known as
dynamic construction of objects . The memory is
allocated with the help of the’ new ‘operator.
In constructors that are used to construct strings
in objects

Model Output:
Joseph
Louis
Lagrange
Joseph Louis
Joseph Louis Lagrange

#include<iostream>
#include<string>
using namespace std;

class String
{

char *name;
int length;

public:
String() //constructor-1

{
length = 0;
name = new char[length +1];

}
String(char *s) //constructor-2
{

length = strlen(s);
name = new char[length +1];
strcpy(name, s);

}
void display (void)
{ cout << name << “\n” ;}

void join(String &a, String &b);
};
void String :: join(String &a, String &b)
{

length = a . length + b . length;
delete name;
name = new char[length+1]; //dynamic allocation

strcpy(name, a. name);
strcat(name, b. name);

};
int main()

{
char *first = “ Joseph “;
string name1(first),name2(“ Louis ”),name3(
“Lagrange “),s1,s2;
s1.join(name1,name2);
s2.join(s1,name3);
name1.display();
name2.display();
name3.display();

s1.display();
s2.display();
return 0;

}

Constructing Two-Dimensional Arrays

• We can construct matrix variables using the
class type objects.

const Objects

• A const member is a function prototype or
function definition where the keyword const
appears after the function’s signature.

Destructors

• A destructor, as the
name implies, is used to
destroy the objects that
have been created by a
constructor.

• Syntax:

– ~classname() {}

• Example:

– ~integer() {}

– matrix :: ~matrix()

{

delete p;

}

Chapter 7

Operator Overloading and
Type Conversions

Introduction

• C++ has the ability to
provide the operators
with a special meaning
for a data type.

• The mechanism of
giving such special
meanings to an
operator is known as
operator overloading.

• Class member access
operators(., .*)

• Scope resolution
operator (::)

• Size operator (sizeof)

• Conditional operator
(?:)

Defining Operator Overloading

• Syntax:
return-type classname ::
operator op(arglist)
{

function body;
}

• Process steps:
1. Create a class that defines

the data type that is to be
used in the overloading
operation.

2. Declare the operator
function operator op() in
the public part of the
class. It may be either a
member function or a
friend function.

3. Define the operator
function to implement the
required operations.

Some other Operator Overloading
Example

• Overloading the Subscript Operator []

– Used to access and modify a specific element in
an array.

• Overloading the Pointer-to-member (->)
Operator

– Used in conjunction with an object pointer to
access any of the object’s members.

Rules for Operator Overloading

1. Only existing operators can be overloaded. New operators cannot be created.
2. The overloaded operator must have at least one operand that is user-defined

type.
3. Overloaded operators follow the syntax rules of the original operators. They

cannot be overridden.
4. There are some operators that cannot be overloaded.
5. We cannot use friend functions to overload certain operators. However, member

functions can be used to overload them.
6. Unary operators, overloaded by means of a member function, take no explicit

arguments and return no explicit values, but, those overloaded by means of a
friend function, take one reference argument (the object of the relevant class).

7. Binary operators overloaded through a member function take one explicit
argument and those which are overloaded through a friend function take two
explicit arguments.

8. When using binary operators overloaded through a member function, the left-
hand operand must be an object of the relevant class.

9. Binary arithmetic operators such as +, -, *, and / must explicitly return a value.
They must not attempt to change their own arguments.

Rules for Operator Overloading

Limitations:

1. Some of the operators like
::, ->, and Sizeof() cannot
be overloaded.

2. By operator overloading,
you cannot change the
precedence, associative
and number of arguments
of an operator.

