
Programming with C++
18k3MACS1

UNIT 1:

Overview of C:Introduction -Importance of C Basic Structure of C

Programs - Constants,variables and Data types :Operators and Expressions:

Arithmetic, Relational, Logical, Assignment, Increment, Decrement,

Conditional, Bitwise, Special Operators-Arithmetic Expressions-Evaluation

of Expressions -Type Conversions -Operator precedence and Associativity.

UNIT II :

Beginning with C++ - Application of C++ - More C++ Statements -Structure

of C++ Program -Tokens, Expressions and Control Structures: Tokens-

Keywords -Identifiers and Constants-Data Types-Declaration and

Initialization of variables-Operators in C++-Expressions and their types-

Operator precedence-Control Structures.

UNIT 1

CHAPTER 1

 OVERVIEW OF C

• History of c

• Importance of c

• Sample program

• Structure of C program

.

History of ANSI C

YEAR LANGUAGE DEVELOPER

1960 ALGOL International group

1967 BCPL Martin Richards

1970 B Ken Thompson

1972 Traditional c Dennies Ritchie

1978 K&R C Kerningam and

Ritchie

1989 ANSI C ANSI Committee

1990 ANSI C / ISO C ISO Committee

1999 C99 Standardization

committee

Importance of C

• C is a programming Language

• C is a Robust Language

• Programs written in c are efficient and fast

• C is highly portable.i.e.., software written for one computer

and run on another computer

• An important features of c is its ability to extend itself.A c

program is basically a collection of functions

Format of Simple C Program

Function name <----------- main()

start of program <----------- {

……

Program statements <----------- ……

……

End of program <----------- }

SAMPLE PROGRAM: Adding Two Numbers

main()

{

int number;

float amount;

number=100;

amount=30.75+75.35;

printf(“%d\n”,number);

printf(“%5.2f”,amount);

}

Output

100

106.10

Basic Structure of C Programs

Documentation section

Link section

Definition section

Global Declaration section

Main() Function section

{

}

Subprogram section

(User defined fuctions)

Declaration part

Executable part

Fun 1

Fun 2

……

……

Fun n

C Structure

• Documentation Section. It is the section in which you can give

comments to make the program more interactive.

• Preprocessor directives Section. This section involves the

use of header files that are to included necessarily

• Definition section. This section involves the variable definition

and declaration in C.

• Global declaration Section. This section is used to define the

global variables to be used in the programs.

• Function prototype declaration section.

CHAPTER 2

 constants,variables and datatypes

• Character Set

• Tokens

• Constants

• Variables

• Data types

Character set

The C character set includes the upper case letter A to Z,the

lower case letter a to z ,the decimal degits 0 to 9 and certain

special charecters.

Letters a,b,c…..z

Digits 0,1,2,……9

Special Characters , . ; : ‘? ”!|/ \~_&$%^*-

+< >{}[]()#

White Spaces blank space,horizontal tab,

carriage return,new line,form feed

TOKENS

TOKENS

keywords

constants Strings

Operators

identifiers Spl symbol

keywords

• Keywords are Predefined tokens in c.

• These are also called reserved words

• Keywords have special meaning to the compiler.

• These keywords can be used only for their intended

action;They cannot be used for any other purpose.

• C has 32 Keywords.

C Keywords

auto double int struct

break else long Switch

case enum register Typedef

char extern return Union

const float short Unsigned

continue for signed Void

default goto sizeof Volatile

do if static while

Identifiers

• Identifiers are distinct names given to programs elements such

as constants variables,etc…

• An identifiers is a sequence of letters,digits and the special

character’_’(underscore).

1.It must start with either a letter or underscore.

2.No commas or blanks are allowed within a variable

name.

3.Identifiers are case sensitive.

4.An identifiers can be of any length.

5.No special symbol can be used in a variable name.

Constants

• Constant is a literal,which remain unchanged during

the execution of a program.

• Constant is a fixed value that cannot be altered during

the execution of a program.

• Two types of constants.

1.Numeric constants

int,real

2.Character constants

single character,string

Integer constants

• An integer constant refer to a sequence of digits.

• It should not contain either a decimal point or

exponent.

• Commas,blanks and non digit characters are not

allowed in integer constants.

• The value of integer constant cannot exceed

specifieds limits.The valid range is -32768 to +32767

Real constants

• Real values are often called floating point constant. There are
two ways to represent a real constant decimal form
and exponential form.

• In exponetial form of representation ,the real constant is
represented in two parts.The part appearing before ‘e’ is called
mantissa,where as the part following ‘e’ is called exponent.

– The mantissa part and the exponential part should be
separated by a letter e

– The mantissa part may have a positive or negative sign.

– Default sign of mantissa part is positive.

– Exponent must have atleast one digit, which must be a
positive or negative integer.default sign is positive.

– Range of real constants expressed in exponential form is -
3.4e38 to3.4e38

Character Constant

• A character constant is a single alphabet,a single digit

or a single special symbol enclosed within single

inverted commas. Both the inverted commas point to

the left. ’A’ is valid character constant whereas A is

not.

• The maximum length of a character constant can be

1 character.

Note: every character has its ASCII value.That means

every character is interchange with integer constant.

ex.’A’ value is 65 and ‘a’ value is 97

String constants

• A string constant is a sequence of characters enclosed

in double quotes.The character may be letters,

numbers,blank space or special characters.

• Single string constant “A” is not equalent to the

single character constant ‘A’.

• Each string constant must end with a special

character’\0’.This character is called null character

and used to terminate the string.The compiler

automatically places a ‘\0’ null character at the end of

every string constant

Escape sequance

• Some non-printing characters and some other characters such as

double quote(“),single quote(‘),Question mark(?),and back

slash(\),require an escape sequence.

A list of commanly used back slash character constant is given below:

Escape

sequance

Meaning ASCII value Escape

sequence

Meaning ASCII value

\a Bell 7 \r Carriage

return

13

\b Back space 8 \” Double quote 34

\t tab 9 \’ Single quote 39

\n New line 10 \? Question

mark

63

\v Vertical tab 11 \\ back slash 92

\f Form feed 12 \o null 0

file://back

Variables

• A variable can be considered as a name given to the
location in memory.

• The term variable is used to denote any value that is
refferred to a name instead of explicit value.

• A variable is able to hold different values during
execution of a program,where as constant is restricted to
just one value.

• Ex..2x+3y=10;since x and y can change,They are
variables ,whereas 2 , 3 and 10 cannot change ,hence
they are constants.The total equation is known as
Expression.

Rules for constructing variable name

• They must begin with a letter.some systems permit underscore

as the first character.

• No special characters other than letters,digits and underscore

be used in variable name.

• Commas or blanks are not allowed with a variable name.

• Uppercase and Lowercase letters are significant.That is the

variable name “income”is not same as “INCOME”.Some ex of

such variable names are:average,height,total,counter_1.

• Ex .of variable declarations,

int average;

float height;

Data Types
• A data type define set of values and the operation that can be

performed on them.

• There are three classes of datatypes here:

• Primitive data types

-int,float,double,char.

• Derived data types

-arrays name under this category

-arrays can contain collectin of int or float or char or

double

• User dfined data types

-structures and enum fall under this category

Size and Range of data types

Data types Description Size(no.of.bytes) Range

char Single character 1 0 to 255

Int An integer 2 -32768 to +32767

Float Floating point number 4 -2147483648 to

+2147483647

Double Floating point number 8 Approximately 15

digits of precision

Void No data tyoe 0

Signed char Character 1 -128 to 127

Unsigned char Unsigned character 1 0 to 255

Short signed int Short signed integer 2 -32768 to 32767

Short unsigned int Short unsigned integer 3 0 to 65535

Long signed int Long signed integer 4 -2147483648 to

+2147483647

CHAPTER 3

Operators and Expressions

• Types of Operators

• Arithmetic Expressions

• Evaluation of Expressions

• Precedence of Arithmetic Operators

• Type Conversions in Expressions

• Operator Precedence and Associativity.

Operators

• An operator is a symbol that tells the computer to

perform certain mathematical or logical

manipulations.

• Operators are used in program to manipulate data and

variables. The data items that operators act upon are

called operands.

• The operators are classified into unary, binary and

ternary depending on whether they operate on one,

two,or three operands respectively.

Types of Operators

• C has four classes of operators

1.Arithmetic operators.

2.Relational operators.

3.Logical operators.

4.Bit-wise operators.

• C has some special operators,which are unique to c,
they are

1.Incr and Decr Operators.

2.Conditional Operators.

3.Assignment Operators.

Arithmetic Operators

• There are five Arithmetic Operators in c.

• The following table lists the Arithmetic operators

allowed in C:

Operators Meaning

+ Addition

_ Subtraction ;also for unary

minus

* Multiplication

/ Division

% Modulo Division

Relational Operators

• Relational Operators are symbol that are used to test the

relationships between two variables or between a variable and

constant.we often compare two quantities,and depending on

their relation takes certain decisions.These comparision can be

done with the help of relational operators.

• C has six relational operators as given below.

Operator Meaning

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

Logical Operators

• Logical operators are Symbols that are used to

compine or negate expressions containing relational

operators.

• C has three logical operators as defined below.

Operator Meaning

&& Logical AND

|| LOGICAL OR

! LOGICAL NOT

Bitwise Operators

• The lowest logical element in the memory is bit.c allows the

programmer to interact directly with the hardware of a

particular system through bitwise operators and expression.

• Thease operator work only with int and char datatypes and

cannot be used with float and double type .

• The following table shows the bitwise operators.

Operator Meaning

. One’s complement

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< Shift left

>> Shift right

Increment or Decrement Operator

• C has two very useful for adding and subtracting a

variable.These are ++,--.These two operators are unary

operators.

• The Increment operator ++ adds 1 to its operand and the

decrement operator – subtract 1 from its operand.Therefore

,the following are equalent operators.

• ++i is equalent to i=i+1.

• --i is equalent to i=i-1.

• Thease operators are very useful in loops

• In addition to useful Assignment operator =,c has a

set of short hand operators that simplifies the coding

of a certain type of assignment statement.

• It is of the form

Var op=exp ;

• Where var is a variable, op is a c binary arithmetic

operator and exp is an expression.

Assignment Operators

Shorthand Assignment Operators

Statement Equalent statement

a+=b a=a+b

a-=1 a=a-1

a*=n+1 a=a*(n+1)

a/=n+1 a=a/(n+1)

a%=b a=a%b

Conditional Operator

• C provides a peculiar operator ?:which is useful in
redusing the code.it is ternary operator requiring
three operands.

• The general format is

exp1?exp2:exp3;

Where exp1,exp2,exp3 are expressions.

• In the above conditional expression,exp1 is evaluated
first.if the value of exp1 is non zero(true),then the
value returned will be exp2.if the value of exp1 is
zero(false),then the value returned will be exp3.

Arithmetic Expressions

• An arithmetic expression is a combination of

variables,constants and operators .

Algebraic Expression C expression

ab-c a*b-c

(m+n)(x+y) (m+n)*(x+y)

(ab/c) A*b/c

3x+2x+1 3*x+2*x+1

Evaluation of Expressions

• Expressions are evaluated using an assignment

statement of the form:

variable=expression;

• Given an integer variables a,b,c,d and where

a=1,b=2,c=3 and d=4.

• Evaluate the following expressions:

x=a*b-c;

y=b/c*a;

z=a-b/c+d;

Precedence of Arithmetic operators

• The priority or precedence in which the operations of an

arithmetic statement are performed is called the hierarchy

(precedence) of operators.

• The operators of at the higher level of precedence are evaluated

either from left to right or from right to left,depending on the

level. This is known as associativity property of an operator

operator Description Associativity Rank

* Multiplication Left to right 3

/ Division Left to right 3

% Modulo Left to right 3

+ Addition Left to right 4

- subtraction Left to right 4

Type

conversions

1.Implicit type conversion

2.Explicit type conversion

• C performs automatic conversions of
type in order to evaluate the expression.
This is called implicit type conversion.

• In explicit type conversion we decide
what type we want to convert the
expression.

• Syntax of explicit type conversion is:

(type) expression

• Where, type is any of the type we want
to convert the expression into. Ex.,
x=(int)7.5., z=(double)sum/n.

Long double

double

float

Unsigned long int

Long int

Unsigned int

int

charshort

Operator precedence and Associativity

• Operator precedence gives priorities to

operators while evaluating an expression

Ex., when 2*3+2 is evaluated ,

output is 8 but not 12 because

the * operator is having more

priority than + hence 2*3 is

evaluated first followed by 6+2

Operator precedence table

Operator precedence table gives the detail list of priorities for some operator

• Operators are listed from higher priority to lower

Precedence Operator Description

1 :: Scope resolution

2 ++ -- Suffix/postfix incr and decr

2 type() type{} Function-style typecast

2 () Function call

2 [] Array subscripting

2 . Element selection by reference

2 -> Element selection through pointer

3 ++ -- Prefix incrand decr

3 + - Unary plus and minus

3 ! ~ Logical NOT and bitwise
NOT

3 (type) C-style type cast

History of C++

• C++ evolved from C, which evolved from two
previous programming languages, BCPL and B

• ANSI C established worldwide standards for C
programming

• C++ “spruces up” C and provides capabilities for
object-oriented programming
– objects - reuseable software components, model things in the real

world

– Object-oriented programs are easy to understand, correct and
modify

STRUCTURE OF C++ PROGRAM

#include<iostream> \\include header file

int main()

{
cout<< “ C++ is better then C.\n ”; \\ C++ Statement
retutn 0;

}

Output:
C++ is better then C

OUTPUT OPERATORS

cout << variable-name;

Meaning: print the value of variable <variable-name>
to the user

cout << “any message “;

Meaning: print the message within quotes to the
user

cout << endl; Meaning: print a new line

Example:
cout << a;

cout << b << c;

cout << “This is my character: “ << my-character << “ end ” <<

endl;

INPUT OPERATORS

cin >> variable-name;

Meaning: read the value of the variable called

<variable-name> from the user

Example:

cin >> a;

cin >> b >> c;

cin >> x;

cin >> my-character;

SAMPLE PROGRAM

#Include <iostream>

int main()

{
float number1,number2,sum,average;
cout<< “ Enter two number:”;

cin>> number1;
cin>> number2;
sum = number1 + number2;
average = sum / 2;

cout <<“ sum = “ << sum <<“\n”;
cout << “Average = “ << average <<“\n”;
return 0;
}

CASCADING OF I/O OPERATOR

cin>> number1; cascading Means: The Multiple use of << in
one statement is called cascading

cin>> number2

cin>> number1>>number2;

cout <<“ sum = “ << sum <<“\n”;
cout << “Average = “ << average <<“\n”;

cout <<“ sum = “ << sum <<“\n” << “Average = “ << average
<<“\n”;

TOKENS

Symbolic Constants
There are two ways of creating symbolic constantsin C++

 Using the qualifier const
 Defining a set of interger constants using enum

keyword
C and C++ any value declared as const connot be modified by the

program during the execution.
Example:

const int pi = 3.1415;
const name [size];
enum{ X,Y,Z};

• This define X,Yand Z as integer constant with values 0,1,2
• We can assign values to X,Y,Z Explicitly

• Enum{X=100,Y=50,Z=200};

Dynamic Initialization of variable

C++ Permits initialization of the variables at run
time this is referred to as dynamic initialization

float area = 3.14159 * rad * rad;
 In C++ a variable can be initialized at run time

using expressions at the place of declaration.
 Both the declaration and the initialization of

avariable can be done simultaneously at the place
where the variable used in the first time .

 float average;
 average = sum/i;

 Combine both : float average = sum/i;

Reference Variable

• A reference varaible provides an alias
(altetnative name) from a previously.

The variable sum as a reference to the variable total.

Example : float total =100;

float & sum=total;

A reference variable must be initialized at the time of
declaration.

Operators in C++

– :: Scope resolution operator

– ::* Pointer-to-member declaration

–->* Pointer-to-member operator

– .* Pointer-to-member operator

–delete Memory release operstor

–endl Line feed operator

– new Memory allocation operator

–setw Field width operator.

C++ Manipulators:
Manipulators are operators used in C++ for formatting output. The data is
manipulated by the programmer's choice of display.

In this C++ tutorial, you will learn what a manipulator is,
• endl manipulator,
• setw manipulator,
• setfill manipulator and
• setprecision manipulator

are all explained along with syntax and examples.

endl : linefeed to be inserted (“ \n ”)

cout<<“m= “m<<endl;
Setw :Specify the field of width(right justification)

MANIPULATORS

Control Structure

• Control structure from the basic entities of
“structured programming language.

• Control structures are used to alter the flow of
execution of the program.

• “decision making“ We use control structures to
make decisions and alter the direction of program
flow in one or the other path(s) available.

• There are three types of control structures available
in C and C++

1) Sequence structure (straight line paths)
2) Selection structure (one or many branches)
3) Loop structure (repetition of a set of

activities)

Entry

Exit Exit

True False

Action1

Action2

Loop

Entry

True

False

CLASS : II B.Sc.,Maths [SF & SSS].

SUBJECT : PROGRAMMING WITH C++.

SUBJECT CODE : 18K3MACS1

UNIT 1: 1. Class Incharge

N.Anuradha.,M.sc.,M.Phil.,

Guest Lecturer.,

Dept of Comp.Science.,

K.N.G.A.C.,Thanjavur.

UNIT II: 2. Class Incharge
G.MuthamizhSelvi.,M.Sc.,M.Phil.,P.hd.,

Guest Lecturer.,

Dept of Comp.Science.,

K.N.G.A.C.,Thanjavur.

