
 

VB.Net(18K4CS06) 

Unit - I 

Introduction to Programming - Converting source code - Converting Source Code to Machine             
Language Code - Explaining Program Development Cycle. Introducing .NET Framework4.5 and           
Visual Studio 2012. Exploring Visual Studio 2012 IDE - Developing a Console Application. 

Unit - II 

Visual Basic: Getting started with Visual Basic 2012 - Visual Basic 2012 Keywords - Operators               
- Variables - Constants - Arrays. WindowsForms: Adding Controls to a Forms - Resizing and               
Moving Forms and Controls at Runtime - Creating Input Boxes - Creating Dialog Boxes. 

Unit - III 

Windows Forms Controls I: Introducing the Control Classes - Using the Label Control - Using               
the Textbox control - Using the Button Control - Using the Radio Control - Using the Checkbox                 
Control - Using the Panel Control - Using the PictureBox Control - Using the ProgressBar               
Control. 

Unit - IV 

Windows Form Controls II: Using the toolstrip Control - Using the Menustrip Control - Using               
the CheckBox Control - Using the StatusStrip Control - Working with DialogBoxes - Using              
FolderBrowser Dialog Control - Using the OpenFileDialog Control - Using the SaveFile Dialog             
Control - Using the FontDialogControl - Using the ColorDialog Control. 

Unit - V 

Windows Presentation Foundation: Exploring the improvements in WPF4.5: The Ribbon Control           
- Support for Binding to Types that implement CustomTypeProvider - New Virtualizing Panel             
Features - Extensions for Events. Explaining WPF 4.5 Architecture : Windows Base - The              
Milecore Component - Exploring WPF4.5 Designer - Using XMAML in WPF - Working with              
WPF Controls. 

Text : “.NET Programming” - Vikas Gupta - DreamTechPress - Edition - 2014. 

E-Content Prepared by 

 1.N.Subha M.Sc., M.Phil., 

2.Ramya M.Sc., M.Phil., 
 
 
 



 

UNIT I 

Introduction to Programming 

A computer is a calculating and computing device that is used to perform calculations and               
manipulations on various types of data, such as integers, strings, and float numbers. A computer               
performs all these tasks with the help of numbers of software, such as word processors,               
spreadsheets, and database applications. Software can be defined as a set of one or more               
programs, which are organized sets of certain statements and instructions that direct a computer              
to perform a specific task. These programs are converted into executable files with the help of a                 
compiler or an interpreter.  

A programming language is a ​formal language comprising a ​set of instructions that produce              
various kinds of ​output​. Programming languages are used in ​computer programming to            
implement ​algorithms​. 
Each programming language has it own set of rules, known as syntax, which governs the               
structure of the statements in a program. 

Programming languages can be broadly divided into the following two categories:  

§​  ​High level language 

§​  ​Low level language 

High level language 

A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that               
enables a programmer to write programs that are more or less independent of a particular type of                 
computer. Such languages are considered high-level because they are closer to human languages             
and further from machine languages. Programs written in a high-level language must be             
translated into machine language by a ​compiler​ or ​interpreter​. 
 Program to add two numbers in BASIC 

10 LET A =2 

20 LET B=3 

30 LET SUM = A+B 

40 PRINT SUM 

50 END  
 
 
 

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Algorithm
https://www.webopedia.com/definitions/compilier/
https://www.webopedia.com/definitions/interpreter/


 

Low level language  

A low-level language is a type of ​programming language that contains basic instructions             
recognized by a computer. Unlike ​high-level languages used by software ​developers​, low-level            
code is often cryptic and not human-readable. Two common types of low-level programming             
languages are 

§​  ​ ​assembly language  

§​  ​ ​machine language​. 
  

Assembly language 

Earlier than high level languages were not invented, the programmers used to write programs in               
the Assembly language. Similar to high level language, a program written in assembly language              
is also not understandable by a computer. To make it understandable to a computer it needs to be                  
translated into machine language code with help of an assembler. A program written in the               
Assembly language consists of a set of instructions called mnemonics. 

Machine language 

The Machine language is the only language a computer can understand directly. A program              
written in machine language is a sequence of binary digits - 1s and 0s. The machine language is                  
very difficult to understand and learn even for an advanced programmer. 

Converting source code to machine language code 

The programmers write programs by using a source language, which can be either a high-level               
language or an assembly language; however a computer cannot understand both these types of              
programming languages. Therefore, programs written in these types of languages need to be first              
converted into the machine language code. To convert the source code of a program into               
machine language code, a language converter is required. 

HIGH LEVEL LANGUAGE TO MACHINE LANGUAGE CONVERSION 

Conversion of code from high-level language to machine language is done with the help of the                
following two language converters: 

 

 

 
 
 

https://techterms.com/definition/programming_language
https://techterms.com/definition/high-level_language
https://techterms.com/definition/developer
https://techterms.com/definition/assembly_language
https://techterms.com/definition/machine_language


 

Compiler: 

​Converts a complete program from a high-level language to machine language. If an error is                
caught by the compiler in the program during conversion, then the error is displayed to the user.                 
On the other hand, if the compiler does not find any error in the program, then the compiler                  
executes the  program.  

Interpreter : 

Converts the code written in a high-level language into machine language code, line by line. If                
the interpreter finds an error in the first line of code during conversion, it displays the error to the                   
user. On the other hand, if the interpreter does not find any error in the first line of code, then the                     
second line of the code is checked. The same process is followed for the remaining lines of the                  
code as well. 

Assembly language to Machine language conversion 

The conversion of assembly language code into machine language code is done through another              
language converter, called assembler.  

EXPLAINING PROGRAM DEVELOPMENT CYCLE 

The program development cycle is a series of tasks are activities that take place during the                
development of a program. 

The various stages of the program development cycle are as follows 

1 .Analyze the problem 

2. Developing a solution 

3. coding the solution 

4. testing the program 

ANALYZING THE PROBLEM 

Analyzing the problem involves determining what task the program needs to perform and what              
you need to do to enable that program to perform that task. Once we have clearly visualized the                  
problem, we can move on to design the solution of the problem while analyzing a problem , we                  
need to consider: 

·​         ​The input supplied 

·​         ​The process to obtain the and required output from the given input 
 
 
 



 

·​         ​The output desired 

In addition to determine the required output on the given input for your program, We also need                 
to determine the variables and their types to represent input and output. A variable acts as a                 
Placeholder parts during values used in a program. 

 Input 

As explained one or more inputs are needed to be taken by a program to perform a task and                   
return an output. For example, following inputs are required to display their registration             
information of the students of an educational Institute: 

·​         ​Course code 

·​         ​A character specifying whether or not more students need to be registered 

Let’s assume that The Institute offers three courses with course code A, B and C.               
With this assumption come on the following variables are used to store the data used               
in this program: 

·​         ​course _code for storing the value of course code 

· ​New_Regfor Storing a character specifying whether or not more students need to             
be registered. 

·​         ​No_stud_A for storing the number of students registered for course A 

·​         ​No_Stud_B for storing the number of students registered for course B. 

·​         ​No_Stud_C for storing the number of students registered for course C. 

Process  

To obtain the desired output from the given input, we need to process the data. the steps for                  
processing the data in this program are as follows: 

1. First, Check the course code for the first student. 

2. If it is A, the entry will be made to the respective course, that is, course A. In this                   
way, the course code for all the students is checked and the entries in the respective                
courses are made. 

3. Finally, the total number of entries for the three courses are made. 

 

 

 
 
 



 

Output 

 The output of the program includes: 

·​         ​Total number of students registered for course A 

·​         ​Total number of students registered for course B 

·​         ​Total number of students registered for course C 

DEVELOPING A SOLUTION 

 Once the problem has been analyzed, that is, the required output and the given input are                
determined, we an start developing a solution for the problem. The most important task in               
developing a solution is the development of logic that solves the problem. This requires creation               
of a step-by step procedure to solve the problem. This type of procedure is commonly termed as                 
an algorithm. Once we created an algorithm to solve a problem, we can convert it into either a                  
flowchart or pseudocode. A flowchart is a graphical representation of an algorithm. Pseudocode             
refers to short, readable, and formally-styled natural language code that is used to explain              
specific  tasks within a program’s algorithm. 

Algorithm 

 An algorithm, as stated earlier, is a series of instruction written in any language spoken               
by human being, such as English. An algorithm describes a way to perform a particular               
programming task. 

1. Initialize New_Reg to ‘Y’ 

2. Initialize No_Stud_A to 0 

3. Initialize No_Stud_B to 0 

4. Initialize No_Stud_C to 0 

5. Input Course_Code 

6. Check the Course_Code. If it is A, then add 1 to No_Stud_A; otherwise, move to 

step 7. 

7.  If Course_Code is B, then add 1 to No_Stud_B; otherwise, move to step8. 

8.  If Course_Code is B, then add 1 to No_Stud_C; 

9. Input New_Reg 

10.​  ​ If New_Reg is ‘Y’ , then repeat steps 5 to 9; otherwise, move to step 11. 
 
 
 



 

11. Print the total number of students registered in each course, that is, No_Stud_A,               
No_Stud_B and No_Stud_C. 

Pseudocode 

 Pseudocode is structured set of English phrases that are used to describe the algorithms. It               
focuses on the logic of the algorithm and does not have any programming language specific               
keywords. 

Initialize New_Reg to ‘Y’ 

Initialize No_Stud_A to 0 

Initialize No_Stud_B to 0 

Initialize No_Stud_C to 0 

While ( value of New_Reg is ‘Y’) 

{ 

Course_code = get the course code from the user 

 If Course_code= ‘A’ then 

      No_Stud_A=  No_Stud_A + 1 

 If Course_code= ‘B’ then 

      No_Stud_B=  No_Stud_B + 1 

 If Course_code= ‘C’ then 

     No_Stud_C=  No_Stud_C + 1 

New_Reg = Get the character from the user 

} 

Print No_Stud_A 

Print No_Stud_B 

Print No_Stud_C 

Flowchart 

 A flowchart is a graphical representation of the various steps involved in an algorithm. It               
makes the flow of the program easy to understand. A flowchart uses different symbols to               
indicate different operations. The various symbols used in a flowchart are shown in fig: 

  

 
 
 



 

  

 
 
 

Symbol Purpose Description 

 
Flow line Indicates the flow of logic by connecting       

symbols. 

 
Terminal(Stop/S
tart) 

Represents the start and the end of a        
flowchart. 

 
Input/Output Used for input and output operation. 

 
Processing Used for arithmetic operations and     

data-manipulations. 

 
Decision Used for decision making between two or       

more alternatives. 

 
On-page 
Connector 

Used to join different flowline 

 
Off-page 
Connector 

Used to connect the flowchart portion on a        
different page. 

 
Predefined 
Process/Function 

Represents a group of statements performing      
one processing task. 



 

  

CODING THE SOLUTION 

 The third stage is coding the solution or writing the program, based on the flowchart and                
pseudocode. Software used for programming may consist of one or more of the following tools. 

Code Editor: 

 A code editor is optimized for programming. For example, in a code editor, executable              
statements might appear in one color and comments in another color to make the program easy to                 
understand. 

Compiler (or interpreter): 

 Converts the code in each source code file into machine language code and alces it in a                 
file, known as object file. 

Linker: 

 Combines all the object files into an executable program that an run directly on the target                
computer. 

Debugger: 

 Helps us in finding errors in the programs. 

Writing and executing a program is accomplished by performing the following steps: 

1. Type the program 

2. Compile the program 

3. If there are any compile-time errors, correct them and again compile the program. 

4. Run the program to obtain the desired results. 

5. If there are any run- time errors, check the logic of the program and continue form step 2. 

Compilers can only detect syntax errors. The errors that are detected at run-time are known as                
run-time errors. It is important to know the difference between compile-time and run-time errors. 

· ​compile-time error: occurs if there is a mistake in the syntax of the program. A program will                  
not compile successfully if there are syntax errors. 

 
 
 



 

· ​Run-time error: Occurs if there is a mistake in the logic of the program. A program that was                   
compiled successfully may have run-time errors. Run- time errors occur when we run the              
program. 

TESTING THE PROGRAM 

 Testing is the last stage in the program development cycle. Once we have developed a               
program, we should test it to ensure that it is free of bugs and is capable of solving the given                    
problem. 

  

EXPLORING VISUAL STUDIO 2012 IDE 

Visual studio 2012 IDE is a comprehensive environment for the development and execution of              
.NET applications. It consists of a menu bar, toolbar, and several windows that assist to design                
the UI of .NET applications as well as execute the applications. 

Some of the important components of Visual Studio 2012 IDE are as follows: 

·​         ​Start page 

·​         ​Menu bar and Toolbar 

·​         ​Toolbox 

·​         ​Solution Explorer 

·​         ​Properties window 

·​         ​Designer and code editor 

·​         ​Server Explorer 

·​         ​Output window 

·​         ​Object Browser 

·​         ​Class View window 

Start Page 

 As the name suggests,  Start Page is the first page that appears whenever we open Visual 
Studio 2012.  

Menu Bar and Tool Bar: 
  
Various Menus in Visual Studio: A user can find a lot of menus on the top screen of Visual                   
Studio as shown below 

 
 
 



 

1.​      ​Create, Open and save projects commands are contained by File menu. 
2.​      ​Searching, Modifying, Refactoring code commands are contained by the Edit menu. 
3.​      ​View Menu is used to open the additional tool windows in Visual Studio. 
4.​      ​Project menu is used to add some files and dependencies in the project. 
5. ​To change the settings, add functionality to Visual Studio via extensions, and access              
various Visual Studio tools can be used by using Tools menu. 

· ​The below menu is known as the toolbar which provide the quick access to the most                 
frequently used commands. You can add and remove the commands by going to View →               
Customize 
 

Toolbox 

 Toolbox is a window that contains icons for various items and controls that we can add                
to a .NET application to design the UI of an application. The icons in Toolbox are logically                 
grouped under different tabs, such as Stand, Containers, and Menus & Toolbars 

.  

Solution Explorer: 

Visual Studio provides a Solution Explorer window that enables you to explore and manage your               
solutions and projects. To open the window select View > Solution Explorer. 

Solution Explorer displays the projects that form your solution, the files and folders in a project                
as they appear on the physical hard drive, and any assemblies, COM objects or files the project                 
references. The context menus within Solution Explorer provide a variety of commands that help              
you manage your projects. 

  

Properties Window 

Use this window to view and change the design-time properties and events of selected objects               
that are located in editors and designers. You can also use the Properties window to edit and                 
view file, project, and solution properties. You can find Properties Window on the View menu.               
You can also open it by pressing F4 or by typing Properties in the search box. 

The Properties window displays different types of editing fields, depending on the needs of a               
particular property. These edit fields include edit boxes, drop-down lists, and links to custom              
editor dialog boxes. Properties shown in gray are read-only. 

 

 
 
 



 

Designer and Code Editor 

The designer helps in designing the UI of application, while the code editor helps in adding the                 
code or functionality for the application. The available designers and code editors in Visual              
Studio 2012 depend on the type of application and the file that we are working with.  

Server Explorer 

As said, the Server Explorer provides quick access to the connected database servers. With the               

Server Explorer, you can set up queries for use in your program. A default instance of the Server                  

Explorer looks like the following: 

·​         ​Data Connections 
·​         ​Servers 

·​         ​SharePoint Connections 

Developing a Console Applicaion 

1.​      ​Open Visual Studio 2012. 

2.​      ​On the start window, choose Create a new project. 

3. ​On the Create a new project window, enter or type ​console in the search box. Next,                 
choose Visual Basic from the Language list, and then choose Windows from the Platform              
list. 

After you apply the language and platform filters, choose the Console App (.NET Core)              
template, and then choose Next. 

Then, in the Visual Studio Installer, choose the .NET Core cross-platform development             
workload. 

After that, choose the Modify button in the Visual Studio Installer. You might be              
prompted to save your work; if so, do so. Next, choose Continue to install the workload.                
Then, return to step 2 in this "​Create a project​" procedure. 

4. ​In the Configure your new project window, type or enter ​WhatIsYourName in the              
Project name box. Then, choose Create. 

 

 

 
 
 

https://docs.microsoft.com/en-us/visualstudio/ide/quickstart-visual-basic-console?view=vs-2019#create-a-project


 

Visual Studio opens your new project. 

Create the application 

After you select your Visual Basic project template and name your project, Visual Studio creates               
a simple "Hello World" application for you. It calls the ​WriteLine method to display the literal                
string "Hello World!" in the console window. 

If you click the HelloWorld button in the IDE, you can run the program in Debug mode. 

When you do this, the console window is visible for only a moment before it closes. This                 
happens because the ​Main method terminates after its single statement executes, and so the              
application ends. 

Add some code 

Let's add some code to pause the application and then ask for user input. 

1.​      ​Add the following code immediately after the call to the ​WriteLine​ method: 

Console.Write(​"Press any key to continue..." ​) 
Console.ReadKey(​true​) 

This pauses the program until you press a key. 

2.​      ​On the menu bar, select Build > Build Solution. 

This compiles your program into an intermediate language (IL) that's converted into            
binary code by a just-in-time (JIT) compiler. 

Run the application 

1.​      ​Click the HelloWorld button on the toolbar. 

2.​      ​Press any key to close the console window. 

  

 
 
 
 

 
 
 

https://docs.microsoft.com/en-us/dotnet/api/system.console.writeline
https://docs.microsoft.com/en-us/dotnet/api/system.console.writeline


 

UNIT - II 
 

New features of 2012  
Async and Await: 

● Async feature allows developers to write asynchronous code.  
● Async method is used to execute a time consuming thread without forcing the caller's 

thread to wait. 
● It helps them write the asynchronous code as easily as they write the synchronous code. 
●  It is a useful institution where the user interface is not responding or the server is not 

scalable. 
● Await expression to suspend the execution of a thread until the awaited thread completes 

its task. 
Iterators: 

● An operator returns an element of a collection by using the yield statement. 
● Whenever a yield statement is encountered the location in the code is retained. 
● Next time, the execution is started from this location the iteration function is called by 

using the For Each...Next statement. 
Call hierarchy 

● The cal hamachi feature allows a developer to view all the calls made to and from a 
particular method or property or constructor. 

● This feature provides a better understanding of how the code flows and Alice evaluation 
of the effects of modifications to code. 

Caller information 
● The caller information feature allows a developer to easily retrieve the information about 

the caller of a method by using the caller info attributes. 
● This information is useful for tracing debugging and creating diagnostic tools. 

 
Visual basic 2012 keywords 

 
● Every programming language uses a set of predefined words in coding. 
●   
● Keyword has a specific predefined meaning for the compiler. 
● Visual basic 2012 provides two types of keywords : 

●  Reserved  
● Unreserved  

● Reserved keywords for those keywords that cannot be used as names for programming 
elements such as variables methods and classes, while reserved keywords for those 
keywords that can be used as names for programming elements. 

 
 
 



 

 

 

 
 
 



 

 
 

Operators 
An operator is a symbol that is used to perform an operation on one or more expressions called 
operands. 
❖ Arithmetic operators  
❖ Assignment operators 
❖ Comparison operators 
❖ Concatenation operators 
❖ Logical and bitwise operators  
❖ Miscellaneous operators 

 
Arithmetic operators 
 The operators used to perform arithmetic operations such as subtraction multiplication and 
division are called arithmetic operators. 
 

 
 
 
 

Operators  Meaning  Example 

^ Raises one operand to the power of another x ^ y  

+ Adds two operands x + y 

– Subtracts second operand from the first x – y 

* Multiplies both operands x * y 

/ Divides one operand by another and returns a floating-point result x / y 

\ Divides one operand by another and returns an integer result x \ y 

MOD Modulus Operator and the remainder of a result after an integer division x MOD y 



 

Assignment Operators 
Assignment operators are used for assigning values to variables. 

 
Comparison Operators 
 

● Comparison operators are basically used to compare different values.  

● These operators normally return Boolean values either True or False depending upon the 

condition. 

 

 
 
 

Operators Example Equivalent to 

= x = 4 x = 4 

+= x += 4 x = x + 4 

-= x -= 4 x = x – 4 

*= x *= 4 x = x * 4 

/= x /= 4 x = x / 4 

\= x \= 4 x = x \ 4 

^= x ^= 4 x = x ^ 4 

<<= x << = 4 x = x << 4 

>>= x >> = 4 x = x >> 4 

&= x &= 4 x = x & 4 



 

 
Concatenation Operators 
The process of combining two text strings into one string is called string concatenation and 
operators used to perform string concatenation are called concatenation operators. 
 

 
 
 
 
 
 

Operators   Meaning  Example 

= Equality Check -Returns True if both values are 
the same 

x == y 

<> Non-Equality Returns True if both values are 
unequal 

x < > y 

>  Greater than Check-Returns true if  the first value 
specified is greater than the second 

x > y 

< Less than-Returns true if the first value specified 
is less than second 

x < y x 

>= Checks for two conditions, If the first 
 
 value is greater than or equal to the second value 
it returns true 

>= y 

<= Checks for two conditions, If the first value is less 
than or equal to the second value it returns true 

x <= y 

Is Compares two Object Variable for Reference, 
True If the same object reference 

 

IsNot Compares two Object Variable for Reference, 
False If the same object reference 

 

Like compares a string against a pattern.  

Operators Meaning 

& String Concatenation 

+ String Concatenation 



 

Logical and Bitwise Operators 
Logical operators can be defined as operators that are used with expressions and produce a 
Boolean value. 
 

  
 
 
 
 

 
 
 

Operators   Meaning   Example 

And Logical as well as bitwise AND operator. 
Returns True If both the operands are true 

x And y 

 Does not perform short-circuiting, i.e., it 
evaluates both the expressions 

 

Or Logical as well as bitwise OR operator. Returns 
True If any of the two operands is true. It does 
not perform short-circuiting. 

x Or y 

Not Logical as well as bitwise NOT operator. If 
True, then this operator will make it false. 

Not y 

Xor Logical as well as bitwise Logical Exclusive 
OR operator. Returns True if both expressions 
are the same; otherwise False. 

x Xor y 

AndAlso Logical AND operator. Works only on Boolean 
data. Performs short-circuiting. 

x AndAlso y 

OrElse Logical OR operator. Works only on Boolean 
data. Performs short-circuiting. 

x OrElse y 

IsFalse Determines whether an expression is False  

IsTrue Determines whether an expression is False 
 

 



 

Miscellaneous Operators 
 

 
Operator Precedence 

 
● When several operations occur in an expression, each part is evaluated and resolved in a 

predetermined order called ​operator precedence​. 
● The arithmetic and concatenation operators have an order of precedence that is described 

below, and all have higher precedence than the comparison and logical operators.  
● Comparison operators have higher precedence than the logical operators, but lower 

precedence than the arithmetic and concatenation operators. 
●  All comparison operators have equal precedence; that is, they are evaluated in the order, 

left to right, in which they appear.  
 
 
 
 
 
 
 
 
 

Operators Example Equivalent to 

AddressOf Returns the address of a 
procedure. 

AddHandler Button1.Click, AddressOf 
Button1_Click 

Await It is applied to an operand in an 
asynchronous method or lambda 
expression to suspend execution 
of the method until the awaited 
task completes. 

Dim result As res = Await 
AsyncMethodThatReturnsResult() 
Await AsyncMethod() 

GetType It returns a Type object for the 
specified type. 

MsgBox(GetType(Integer).ToString()) 

Function 
Expression 

It declares the parameters and 
code that define a function 
lambda expression. 

Dim add5 = Function(num As Integer) 
num + 5 ‘prints 10 
Console.WriteLine(add5(5)) 

If It uses short-circuit evaluation to 
conditionally return one of two 
values. 

Dim num = 5 Console.WriteLine(If(num 
>= 0, “Positive”, “Negative”)) 



 

 
Arithmetic, concatenation and logical/bitwise Operators are evaluated in the following order of 
precedence: 

Arithmetic/Concatenation Operators 

Exponentiation (​^ ​) 
Negation (​–​) 
Multiplication and division (​* ​, ​/​) 
Integer division (​\​) 
Modulus arithmetic (​Mod ​) 
Addition and subtraction (​+​, ​–​), String concatenation (​+​) 
String concatenation (​&​) 
Comparison Operators 

Equality (​=​) 
Inequality (​<>​) 
Less than, greater than (​<​,​>​) 
Greater than or equal to (​>=​) 
Less than or equal to (​<=​) 
Like 

Is 

TypeOf...Is 

Logical/Bitwise Operators 

Negation (​Not ​) 
Conjunction (​And, AndAlso ​) 
Disjunction (​Or, OrElse, Xor​) 
 
 
 



 

Data types in Visual Basic 2012 
● Data types refer to an extensive system used for declaring variables or functions of              

different types.  
● The type of a variable determines how much space it occupies in storage and how the bit                 

pattern stored is interpreted. 

Data Types Available in VB.Net 

VB.Net provides a wide range of data types.  

The following table shows all the data types available − 

 
 
 

Data 
Type 

Storage Allocation Value Range 

Boolean Depends on 
implementing 
platform 

True or False 

Byte 1 byte 0 through 255 (unsigned) 

Char 2 bytes 0 through 65535 (unsigned) 

Date 8 bytes 0:00:00 (midnight) on January 1, 0001 through 11:59:59 
PM on December 31, 9999 

Decimal 16 bytes 0 through +/-79,228,162,514,264,337,593,543,950,335 
(+/-7.9...E+28) with no decimal point; 0 through 
+/-7.9228162514264337593543950335 with 28 places 
to the right of the decimal 

Double 8 bytes -1.79769313486231570E+308 through 
-4.94065645841246544E-324, for negative values 
4.94065645841246544E-324 through 
1.79769313486231570E+308, for positive values 

Integer 4 bytes -2,147,483,648 through 2,147,483,647 (signed) 

Long 8 bytes -9,223,372,036,854,775,808 through 
9,223,372,036,854,775,807(signed) 



 

  
The Type Conversion Functions in VB.Net 
 

 
 
 

Object 4 bytes on 32-bit 
platform 
8 bytes on 64-bit 
platform 

Any type can be stored in a variable of type Object 

SByte 1 byte -128 through 127 (signed) 

Short 2 bytes -32,768 through 32,767 (signed) 

Single 4 bytes -3.4028235E+38 through -1.401298E-45 for negative 
values; 
1.401298E-45 through 3.4028235E+38 for positive 
values 

String Depends on 
implementing 
platform 

0 to approximately 2 billion Unicode characters 

UInteger 4 bytes 0 through 4,294,967,295 (unsigned) 

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned) 

User-Defi
ned 

Depends on 
implementing 
platform 

Each member of the structure has a range determined by 
its data type and independent of the ranges of the other 
members 

UShort 2 bytes 0 through 65,535 (unsigned) 

S.No. Functions & Description 

1 CBool(expression) 
Converts the expression to Boolean data type. 

2 CByte(expression) 
Converts the expression to Byte data type. 

3 CChar(expression) 
Converts the expression to Char data type. 

4 CDate(expression) 
Converts the expression to Date data type 



 

  
 ​ Visual Basic Statements 

A statement is a complete instruction in Visual Basic programs.  

It may contain keywords, operators, variables, literal values, constants and expressions. 

 

 

 

 
 
 

5 CDbl(expression) 
Converts the expression to Double data type. 

6 CDec(expression) 
Converts the expression to Decimal data type. 

7 CInt(expression) 
Converts the expression to Integer data type. 

8 CLng(expression) 
Converts the expression to Long data type. 

9 CObj(expression) 
Converts the expression to Object type. 

10 CSByte(expression) 
Converts the expression to SByte data type. 

11 CShort(expression) 
Converts the expression to Short data type. 

12 CSng(expression) 
Converts the expression to Single data type. 

13 CStr(expression) 
Converts the expression to String data type. 

14 CUInt(expression) 
Converts the expression to UInt data type. 

15 CULng(expression) 
Converts the expression to ULng data type. 

16 CUShort(expression) 
Converts the expression to UShort data type. 



 

Statements could be categorized as − 

● Declaration statements − these are the statements where you name a variable, constant, or 
procedure, and can also specify a data type. 

● Executable statements − these are the statements, which initiate actions. These statements 
can call a method or function, loop or branch through blocks of code or assign values or 
expression to a variable or constant. In the last case, it is called an Assignment statement. 

Using the If...Else Statement: 

Syntax  

If boolean_expression Then 

// Statements to Execute if boolean expression is True 

Else  

// Statements to Execute if boolean expression is False 

End If 

The statements inside of ​If ​ condition will be executed only when the “​bool_expression ​” returns 
true​ otherwise the statements inside of ​Else​ condition will be executed. 
Example: 
Dim x As Integer = 20 

If x >= 10 Then 

    Console.WriteLine("x is Greater than or equals 10") 

Else 

    Console.WriteLine("x is less than or equals to 10")End If 

 

Using the Select...Case Statement: 
 ​Select...Case​ statement is useful to execute a single case statement from the group of multiple 
case statements based on the value of a defined expression. 
  
By using ​Select...Case​ statement in Visual Basic, we can replace the functionality of ​if…else if 
statement to provide better readability for the code. 

 
 
 

https://www.tutlane.com/tutorial/visual-basic/vb-if-else-if-statement


 

Generally, the Select...Case statement is a collection of multiple case statements and it will 
execute only one single case statement based on the matching value of the defined expression. 
 ​Syntax 
 
Select Case variable/expresison 

Case value1 

// Statements to Execute 

Case value2 

//Statements to Execute 

.... 

.... 

Case Else 

// Statements to Execute if No Case Matches 

End Select 

Here, the ​Select​ statement will evaluate the ​expression​ / ​variable​ value by matching with ​Case 
statement values (value1, value2, etc.). If the variable​/expression​ value matches with any of the 
case​ statements, then the statements inside of the particular ​case​ will be executed. 
 In case, if none of the ​case​ statements are matched with the defined ​expression​ / ​variable​ value, 
then the statements inside of the Else block will be executed and it’s more like the Else block in 
if...else​ statement. 
Example 
 
Module Module1 

    Sub Main() 

        Dim x As Integer = 20 

        Select Case x 

            Case 10 

                Console.WriteLine("x value is 10") 

 
 
 

https://www.tutlane.com/tutorial/visual-basic/vb-if-else-statement


 

            Case 15 

                Console.WriteLine("x value is 15") 

            Case 20 

                Console.WriteLine("x value is 20") 

            Case Else 

                Console.WriteLine("Not Known") 

        End Select 

        Console.WriteLine("Press Enter Key to Exit..") 

        Console.ReadLine() 

    End Sub 

End Module 

  

 
 
Using the For...Next Statement: 
 
 ​For​ loop is useful to execute a statement or a group of statements repeatedly until the defined 
condition returns true. 
Generally, For loop is useful to iterate and execute a certain block of statements repeatedly until 
the specified number of times. 
 
Syntax 
For variable As [Data Type] = start To end 

// Statements to Execute 

Next 

 
 
 



 

Here, the ​variable​ parameter is required in the ​For ​ statement and it must be numeric.  
The ​Data Type ​ is optional and it is useful to define the data type for the ​variable​.  
The ​start ​ and ​end ​ parameters are required to define the initial and final value of a ​variable​. 
Example 
 
Module Module1 

    Sub Main() 

        For i As Integer = 1 To 4 

            Console.WriteLine("i value: {0}", i) 

        Next 

        Console.WriteLine("Press Enter Key to Exit..") 

        Console.ReadLine() 

    End Sub 

End Module 

 

 
 
Using For Each...Next Statement: 
Repeats a group of statements for each element in a collection. 

Syntax 
For Each element [ As datatype ] In group 
    [ statements ] 
    [ Continue For ] 
    [ statements ] 
    [ Exit For ] 
    [ statements ] 
Next [ element ] 
 
 
 

https://www.tutlane.com/tutorial/visual-basic/vb-variables
https://www.tutlane.com/tutorial/visual-basic/vb-variables
https://www.tutlane.com/tutorial/visual-basic/vb-variables


 

Example 
' Create a list of strings by using a 
' collection initializer. 
Dim lst As New List(Of String) _ 
    From {"abc", "def", "ghi"} 
 
' Iterate through the list. 
For Each item As String In lst 
    Debug.Write(item & " ") 
Next 
Debug.WriteLine("") 
 
'Output: abc def ghi 
 
Using the While… End While statement 
 
 ​While​ loop is useful to execute the block of statements as long as the specified condition is true. 
 
Syntax 
 
While boolean_expression 
// Statements to Execute 
End While 
 
Example 
 
Module Module1 

    Sub Main() 

        Dim i As Integer = 1 

        While i <= 4 

            Console.WriteLine("i value: {0}", i) 

 i += 1 

        End While 

 
 
 



 

        ​Console.WriteLine("Press Enter Key to Exit..") 

        Console.ReadLine() 

    End Sub 

End Module 

 
Using Do...Loop Statement 
Generally, in Visual Basic the do-while loop is the same as ​while loop​ but only the difference is 
while loop​ will execute the statements only when the defined condition returns true but the 
do-while loop will execute the statements at least once because first it will execute the block of 
statements and then it will checks the condition. 

Syntax 

Do 

// Statements to Execute 

Loop While boolean_expression 

Example 

Module Module1 

    Sub Main() 

        Dim i As Integer = 1 

        Do 

            Console.WriteLine("i value: {0}", i) 

 i += 1 

 
 
 

https://www.tutlane.com/tutorial/visual-basic/vb-while-loop
https://www.tutlane.com/tutorial/visual-basic/vb-while-loop


 

     ​   Loop While i <= 4 

        Console.WriteLine("Press Enter Key to Exit..") 

        Console.ReadLine() 

    End Sub 

End Module 

 

 ​Variables 

A variable is an identifier that denotes a storage area in the memory. 
Syntax 
  
Dim [Variable Name] As [Data Type] 

Dim [Variable Name] As [Data Type] = [Value] 

The variable name is to tell the compiler about the type of data the variable can hold. 
  

 
 
 
 

Item Description 

Dim It is useful to declare and allocate the storage space for one or more variables. 

[Variable 
Name] 

It’s the name of the variable to hold the values in our application. 

As The As clause in the declaration statement allows you to define the data type. 

[Data Type] It’s a type of data the variable can hold such as integer, string, decimal, etc. 

[Value] Assigning a required value to the variable. 



 

 
Constants 

 
● Generally, in visual basic the constant field values are set at compile-time and those 

values will never be changed. 
● In visual basic,  ​Const​ keyword is to declare the constant field, then that field value 

cannot be changed throughout the application.  
● It’s mandatory to initialize constant fields with required values during the declaration 

itself otherwise compile-time errors in visual basic application.  
Syntax 

  
Const field_name As data_type = "value" 

Arrays 
 

● In visual basic, ​Arrays ​ are useful to store multiple elements of the same ​data type​ at 
contiguous memory locations and arrays will allow us to store the fixed number of 
elements sequentially based on the predefined number of items. 

● In visual basic, ​Arrays ​ can be declared by specifying the type of elements followed by 
the brackets ​() ​ like as shown below. 

  
Dim array_name As [Data_Type]();  

Enumerations 
 

● In visual basic, ​Enum ​ is a keyword and it is useful to declare an enumeration. 
●  In visual basic, the enumeration is a type and that will contain a set of named ​constants 

as a list.  
● By using enumeration, we can group ​constants​ that are logically related to each other.  
● For example, the days of week can be grouped together by using enumeration in visual 

basic. 

 Syntax 

Enum enum_name 

' enumeration list 

End Enum 

 
 
 

https://www.tutlane.com/tutorial/visual-basic/vb-data-types
https://www.tutlane.com/tutorial/visual-basic/vb-const-constant-keyword
https://www.tutlane.com/tutorial/visual-basic/vb-const-constant-keyword


 

  
 Example 
 
Enum Week 

Sunday 

Monday 

Tuesday 

Wednesday 

Thursday 

Friday 

Saturday 

End Enum 

 In visual basic, by default the first named constant in the enumerator has a value of ​0​, and the 
value of each successive item in the enumerator will be increased by ​1​. For example, in the 
above enumeration, Sunday value is ​0​, Monday is ​1​, Tuesday is ​2​, and so forth. 
 

 ​Properties of Form Class 
Let's start with creating a Window Forms Application by following the following steps in              
Microsoft Visual Studio - File → New Project → Windows Forms Applications 

Finally, select OK, Microsoft Visual Studio creates your project and displays the following             
window Form with the name Form1. 

 
 
 



 

 
 

● Visual Basic Form is the container for all the controls that make up the user interface.  
● Every window you see in a running visual basic application is a form, thus the terms                

form and window describe the same entity.  
● Visual Studio creates a default form for you when you create a Windows Forms              

Application. 
● Every form will have title bar on which the form's caption is displayed and there will be                 

buttons to close, maximize and minimize the form shown below − 

 
 
 



 

 

If you click the icon on the top left corner, it opens the control menu, which contains the various                   
commands to control the form like to move control from one place to another place, to                
maximize or minimize the form or to close the form. 

Form Properties 
Following table lists down various important properties related to a form. These properties can              
be set or read during application execution.  

 
 
 

S.No. Properties Description 

1 AcceptButton The button that's automatically activated when you press 
Enter, no matter which control has the focus at the time. 
Usually the OK button on a form is set as AcceptButton for a 
form. 

2 CancelButton The button that's automatically activated when you hit the Esc 
key. 
Usually, the Cancel button on a form is set as CancelButton 
for a form. 



 

 
 
 

3 AutoScale This Boolean property determines whether the controls you 
place on the form are automatically scaled to the height of the 
current font. The default value of this property is True. This is 
a property of the form, but it affects the controls on the form. 

4 AutoScroll This Boolean property indicates whether scroll bars will be 
automatically attached to the form if it is resized to a point that 
not all its controls are visible. 

5 AutoScrollMinSize This property lets you specify the minimum size of the form, 
before the scroll bars are attached. 

6 AutoScrollPosition The AutoScrollPosition is the number of pixels by which the 
two scroll bars were displaced from their initial locations. 

7 BackColor Sets the form background color. 

8 BorderStyle The BorderStyle property determines the style of the form's 
border and the appearance of the form − 

● None − Borderless window that can't be resized. 
● Sizable − This is default value and will be used for a 

resizable window that's used for displaying regular 
forms. 

● Fixed3D − Window with a visible border, "raised" 
relative to the main area. In this case, windows can't be 
resized. 

● FixedDialog − A fixed window, used to create dialog 
boxes. 

● FixedSingle − A fixed window with a single line 
border. 

● FixedToolWindow − A fixed window with a Close 
button only. It looks like the toolbar displayed by the 
drawing and imaging applications. 

● SizableToolWindow − Same as the FixedToolWindow 
but resizable. In addition, its caption font is smaller 
than the usual. 

9 ControlBox By default, this property is True and you can set it to False to 
hide the icon and disable the Control menu. 

10 Enabled If True, allows the form to respond to mouse and keyboard 
events; if False, disables form. 

11 Font This property specify font type, style, size 



 

 

 
 
 

12 HelpButton Determines whether a Help button should be displayed in the 
caption box of the form. 

13 Height This is the height of the Form in pixels. 

14 MinimizeBox By default, this property is True and you can set it to False to 
hide the Minimize button on the title bar. 

15 MaximizeBox By default, this property is True and you can set it to False to 
hide the Maximize button on the title bar. 

16 MinimumSize This specifies the minimum height and width of the window 
you can minimize. 

17 MaximumSize This specifies the maximum height and width of the window 
you maximize. 

18 Name This is the actual name of the form. 

19 StartPosition This property determines the initial position of the form when 
it's first displayed. It will have any of the following values − 

● CenterParent − The form is centered in the area of its 
parent form. 

● CenterScreen − The form is centered on the monitor. 
● Manual − The location and size of the form will 

determine its starting position. 
● WindowsDefaultBounds − The form is positioned at 

the default location and size determined by Windows. 
● WindowsDefaultLocation − The form is positioned at 

the Windows default location and has the dimensions 
you've set at design time. 

20 Text The text, which will appear at the title bar of the form. 

21 Top, Left These two properties set or return the coordinates of the form's 
top-left corner in pixels. 

22 TopMost This property is a True/False value that lets you specify 
whether the form will remain on top of all other forms in your 
application. Its default property is False. 

23 Width This is the width of the form in pixels. 



 

Form Methods 
The following are some of the commonly used methods of the Form class.  

 
 
 

S.No. Method Name & Description 

1 Activate 
Activates the form and gives it focus. 

2 ActivateMdiChild 
Activates the MDI child of a form. 

3 AddOwnedForm 
Adds an owned form to this form. 

4 BringToFront 
Brings the control to the front of the z-order. 

5 CenterToParent 
Centers the position of the form within the bounds of the parent form. 

6 CenterToScreen 
Centers the form on the current screen. 

7 Close 
Closes the form. 

8 Contains 
Retrieves a value indicating whether the specified control is a child of the control. 

9 Focus 
Sets input focus to the control. 

10 Hide 
Conceals the control from the user. 

11 Refresh 
Forces the control to invalidate its client area and immediately redraw itself and any 
child controls. 

12 Scale(SizeF) 
Scales the control and all child controls by the specified scaling factor. 

13 ScaleControl 
Scales the location, size, padding, and margin of a control. 



 

Form Events 

Following table lists down various important events related to a form.  

 
 
 

14 ScaleCore 
Performs scaling of the form. 

15 Select 
Activates the control. 

16 SendToBack 
Sends the control to the back of the z-order. 

17 SetAutoScrollMargin 
Sets the size of the auto-scroll margins. 

18 SetDesktopBounds 
Sets the bounds of the form in desktop coordinates. 

19 SetDesktopLocation 
Sets the location of the form in desktop coordinates. 

20 SetDisplayRectLocation 
Positions the display window to the specified value. 

21 Show 
Displays the control to the user. 

22 ShowDialog 
Shows the form as a modal dialog box. 

S.No. Event Description 

1 Activated Occurs when the form is activated in code or by the user. 

2 Click Occurs when the form is clicked. 

3 Closed Occurs before the form is closed. 

4 Closing Occurs when the form is closing. 

5 DoubleClick Occurs when the form control is double-clicked. 

6 DragDrop Occurs when a drag-and-drop operation is completed. 



 

 
 
 

 
 
 

7 Enter Occurs when the form is entered. 

8 GotFocus Occurs when the form control receives focus. 

9 HelpButtonClicked Occurs when the Help button is clicked. 

10 KeyDown Occurs when a key is pressed while the form has focus. 

11 KeyPress Occurs when a key is pressed while the form has focus. 

12 KeyUp Occurs when a key is released while the form has focus. 

13 Load Occurs before a form is displayed for the first time. 

14 LostFocus Occurs when the form loses focus. 

15 MouseDown Occurs when the mouse pointer is over the form and a mouse 
button is pressed. 

16 MouseEnter Occurs when the mouse pointer enters the form. 

17 MouseHover Occurs when the mouse pointer rests on the form. 

18 MouseLeave Occurs when the mouse pointer leaves the form. 

19 MouseMove Occurs when the mouse pointer is moved over the form. 

20 MouseUp Occurs when the mouse pointer is over the form and a mouse 
button is released. 

21 MouseWheel Occurs when the mouse wheel moves while the control has 
focus. 

22 Move Occurs when the form is moved. 

23 Resize Occurs when the control is resized. 

24 Scroll Occurs when the user or code scrolls through the client area. 

25 Shown Occurs whenever the form is first displayed. 

26 VisibleChanged Occurs when the Visible property value changes. 



 

FormStartPosition Enumeration 
 

 
 
 

Adding Controls to a Form 
 

 

Each time you create a Windows application, Visual Studio will display a default blank form,               
onto which you can drag and drop controls from the Visual Studio Toolbox window. 

 
 
 

Member Name Description 

CenterParent The form is centered within the bounds of its parent form. 

CenterScreen The form is centered on the current display, and has the 
dimensions specified in the form's size. 

Manual The position of the form is determined by the ​Location​ property. 

WindowsDefaultBounds The form is positioned at the Windows default location and has 
the bounds determined by Windows default. 

WindowsDefaultLocation The form is positioned at the Windows default location and has 
the dimensions specified in the form's size. 

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.control.location?view=net-5.0#System_Windows_Forms_Control_Location


 

 
 

 
Setting TabOrder of Controls 

Add your controls on the and form and go to design view of the form and select ​View->Tab order  

  

 
 
 
 



 

Docking and Anchoring Controls 
 

● The Anchor and Dock properties of a form are two separate properties. Anchor refers to               
the position a control has relative to the edges of the form. 

● A text box, for example, that is anchored to the left edge of a form will stay in the same                     
position as the form is resized. Docking refers to how much space you want the control to                 
take up on the form. 

● If you dock a control to the left of the form, it will stretch itself to the height of the form,                      
but its width will stay the same. 

 
 
Docking is similar to Anchoring, but this time the control fills a certain area of the form. 
 

 
 
 

 
 
 



 

Adding Forms to Windows Form Application 

The first step is to start a new project and build a form.  

Open your Visual Studio and select ​File->NewProject​ and 

 select ​Visual Basic​ from the ​New project dialog box​ and  

select ​Windows Forms Application 

Enter your project name instead of WindowsApplication1 in the bottom of the dialog box and               
click the OK button. 

 The following picture shows how to create a new Form in Visual Studio. 

 

Select project type from New project dialog Box. 

 

 
 
 
 
 

 
 
 



 

 
 To work on multiple forms, create the new project and add a new form. 

 
Creating Message Boxes 

 

 

 
 
 
 

● A message box is a special dialog box used to display a piece of information to the user. 
●  As opposed to a regular form, the user cannot type anything in the dialog box.  
● To support message boxes, the Visual Basic language provides a function named ​MsgBox​.  
● To support message boxes, the .NET Framework provides a class named. 
● To display a simple message box, you can use the MsgBox() function with the following formula: 

Private Sub btnMessage_Click(ByVal sender As System.Object, _ 
                                 ByVal e As System.EventArgs) _ 
                                 Handles btnMessage.Click 
        MsgBox("Welcome to Microsoft Visual Basic") 
End Sub 

 



 

 
MessageBoxButtons Enumeration 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

To Display MsgBoxStyle Integral 
Value 

 OKOnly 0 

  OKCancel 1 

   AbortRetryIgnore 2 

   YesNoCancel 3 

  YesNo 4 

  RetryCancel 5 

AbortRetryIgn
ore 

The message box contains Abort ,Retry,and Ignore 
buttons 

OK  
The message box contains an OK button 

OkCancel The message box contains OK and Cancel buttons 

RetryCancel The message box contains Retry and Cancel buttons 

YesNo The message box contains Yes and No buttonx 

YesNoCancel The message box with Yes, No and Cancel buttons 



 

The Members of MessageBoxIcon Enumeraion 
 

 
The Members of MessageDefaultButton Enumeration 

 

 
 

 
 
 

Member Description 

Asterisk The message box contains a symbol consisting of a lowercase letter i in a circle. 

Error The message box contains a symbol consisting of white X in a circle with a red 
background. 

Exclamation The message box contains a symbol consisting of an exclamation point in a 
triangle with a yellow background 

Hand The message box contains a symbol consisting of a white X in a circle with a red 
background. 

Information The message box contains a symbol consisting of a lowercase letter i in a circle. 

None The message box contains no symbols 

Question The message box contains a symbol consisting of a question mark in a circle. The 
question mark message icon is no longer recommended because it does not clearly 
represent a specific type of message and because the phrasing of a message as a 
question could apply to any message type. In addition, users can confuse the 
question mark symbol with a help information symbol. Therefore, do not use this 
question mark symbol in your message boxes. The system continues to support its 
inclusion only for backward compatibility. 

Stop The message box contains a symbol consisting of white X in a circle with a red 
background. 

Warning The message box contains a symbol consisting of an exclamation point in a 
triangle with a yellow background 

Member Description 

Button1 The first button on the message box is the default button. 

Button2 The second button on the message box is the default button. 

Button3 The third button on the message box is the default button. 



 

The Members of MessageBoxOptions Enumeration 
 

 
The Members of DialogResult Enumeration 

 

 
 
 
 
 

 
 
 

Member Description 

RightAllign The message box text is right-aligned. 

RtlReading Specifies that the message box text is displayed with right to left 

reading order. 

ServiceNotification The message box is displayed on the active desktop. The caller is a 

service notifying the user of an event. ​Show ​ displays a message box 

on the current active desktop, even if there is no user logged on to the 

computer 

DefaultDesktopOnly The message box is displayed on the active desktop. This constant is 

similar to ServiceNotification, except that the system displays the 

message box only on the default desktop of the interactive window 

station. The application that displayed the message box loses focus, 

and the message box is displayed without using visual styles 

Member Description 

Abort Returns Abort 

Cancel Returns Cancel 

Ignore Returns Ignore 

No Returns No 

None Returns nothing from the dialog box 

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.messagebox.show?view=net-5.0


 

The Members of DialogResult Enumeration 
 
 

 
Creating Input Boxes 

 
                    The ​Input Box ​. When an ​input box ​ displays, it presents a request to the user who can then 

provide a value. After using the ​input box ​, the user can change his or her mind and press Esc or 
click Cancel. If the user provided a value and want to acknowledge it, he or she can click OK or 
press Enter. 

 

 
 

Creating Dialog Boxes 
 

●  Dialog boxes are used to interact with the user and retrieve information.  
● In simple terms, a dialog box is a form with its ​FormBorderStyle​ enumeration property 

set to FixedDialog.  
● You can construct your own custom dialog boxes by using the Windows Forms Designer 

in Visual Studio.  
● Add controls such as Label, Textbox, and Button to customize dialog boxes to your 

specific needs. 
●  The .NET Framework also includes predefined dialog boxes, such as File Open and 

message boxes, which you can adapt for your own applications.  
 
 

 
 
 

Member Description 

Ok Return Ok 

Retry Return Retry 

Yes Return Yes 

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.formborderstyle


 

Handling Events 

VB.Net is an event-driven language. There are mainly two types of events − 

● Mouse events 
● Keyboard events 

Handling Mouse Events 

Mouse events occur with mouse movements in forms and controls. Following are the various              
mouse events related with a Control class − 

● MouseDown − it occurs when a mouse button is pressed 
● MouseEnter − it occurs when the mouse pointer enters the control 
● MouseHover − it occurs when the mouse pointer hovers over the control 
● MouseLeave − it occurs when the mouse pointer leaves the control 
● MouseMove − it occurs when the mouse pointer moves over the control 
● MouseUp − it occurs when the mouse pointer is over the control and the mouse button is 

released 
● MouseWheel − it occurs when the mouse wheel moves and the control has focus 

The event handlers of the mouse events get an argument of type MouseEventArgs. The              
MouseEventArgs object is used for handling mouse events. It has the following properties − 

● Buttons − indicates the mouse button pressed 
● Clicks − indicates the number of clicks 
● Delta − indicates the number of detents the mouse wheel rotated 
● X − indicates the x-coordinate of mouse click 
● Y − indicates the y-coordinate of mouse click 

Handling Keyboard Events 

Following are the various keyboard events related with a Control class − 

● KeyDown − occurs when a key is pressed down and the control has focus 
● KeyPress − occurs when a key is pressed and the control has focus 
● KeyUp − occurs when a key is released while the control has focus 

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs.               
This object has the following properties − 

● Alt − it indicates whether the ALT key is pressed 
● Control − it indicates whether the CTRL key is pressed 
● Handled − it indicates whether the event is handled 
● KeyCode − stores the keyboard code for the event 

 
 
 



 

● KeyData − stores the keyboard data for the event 
● KeyValue − stores the keyboard value for the event 
● Modifiers − it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed 
● Shift − it indicates if the Shift key is pressed 

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs.               
This object has the following properties − 

● Handled − indicates if the KeyPress event is handled 
● KeyChar − stores the character corresponding to the key pressed 

 
UNIT - III 

Windows Form Controls 
 

 All the windows Forms controls inherit the common properties, methods and events of the 
Control class. 

 
Properties of Control Class 
 
 

 

Text Box 

Text Box is used to accept textual input from the user. The user can add strings, numerical values 

and a combination of those, but Images and other multimedia content are not supported. 

 

 

 
 
 

Property Description 

Anchor Obtains or sets the edges of the parent control to which the child control 
is bound and determines how the control is resized with respect to the 
size of its parent control 

BackColor Obtains or sets the background color of the control 

BackgroundImage Obtains or sets the background  
 



 

Label 

It is used to show any text to the user, typically the text in a label does not change while the 

application is running. 

Button 

It is used as a standard Windows Button. In most cases, the Button Control is used to generate a 

click event, its name, size and appearance are not changed in the runtime. 

ListBox 

As the name suggests, this control works as a way to display a list of items on the application. 

Users can select any options from the list. 

Combo Box 

It is similar to the list but it works as a dropdown for the user. A user can enter both text in the 

box or he can click on the downwards aero on the right side and select any item. 

Radio Button 

Radio Button is one of the popular ways of limiting the user to pick just one option. The 

programmer can set any of the buttons as default if needed. These buttons are grouped together. 

Checkbox 

Checkboxes are similar to ​radio buttons​ in the way that they are also used in groups, however, a 

user can select more than one item in the group. 

 

 

 
 
 

https://www.educba.com/javafx-radio-button/


 

PictureBox 

This VB.Net control is used to show images and graphics inside a form. The image can be of any 

supported format and we can select the size of the object in the form too. 

Progress Bar 

This is used to show a Windows Progress bar, this bar can represent an ongoing process such as 

moving a file or exporting a document. 

Panel Control 

The ​Panel control​ is a container of other ​controls​. The ​Panel control​ is displayed by default 

without any borders at run time. Drag and drop ​Panel control​ from the toolbox on the window 

Form. 

Timer Control 

The ​timer control​ is a looping ​control​ used to repeat any task in a given time interval. Once the 

timer​ is enabled, it generates a tick event handler to perform any defined task in its time interval 

property. 

GroupBox Control 

A ​GroupBox control​ is a container ​control​ that is used to place Windows Forms child ​controls 

in a ​group ​. The purpose of a ​GroupBox​ is to define user interfaces where we can categories 

related ​controls​ in a ​group ​. 

 
 
 



 

 

 

 
 
 


