
Microprocessor Architecture

Subject code:18K5CS07

Faculty: 1. Mrs. R. Valarmathy.

2. Mrs. K. Sharmila.

MICROPROCESSOR ARCHITECTURE

MICROPROCESSOR ARCHITECTURE

UNIT III

Examples of Assembly Language Programs: Introduction – simple Examples-Addition of

two 8-bit Numbers; sum 8-bit -8 bit subtraction- Addition of two 8-bit Numbers; sum 16-

bit- Move a block of Memory from one section of memory to Another Section of

Memory.

UNIT IV

Intel 8086 and Intel’s other 16-bit microprocessor: Introduction-Intel 8086: pin

Description-Operating Modes of 8086-Pin Description for minimum and pin Description

for Maximum mode. Assembler Directives: Assembler directives of Intel 8086- Assembly

language Programs using Assembler.

UNIT V

Microcontroller: Introduction- Intel 8051 series of Microcontrollers(MCS-51)Registers-

Pins of Intel 8051- I/O Lines- The Intel 8051 Interrupts-Instruction set- Memory

Organisation of Intel 8051-Addressing Modes.

Text Book:” Fundamentals of Microprocessor and Microcontrollers” – B.Ram & Sanjay

Kumar

• A microprocessor executes instructions given by the user

• Instructions should be in a language known to the microprocessor

• Microprocessor understands the language of 0’s and 1’s only

• This language is called Machine Language

• For e.g.01001111

– Is a valid machine language instruction of 8085

– It copies the contents of one of the internal registers of 8085 to another.

Machine language program to add two numbers

Introduction

00111110

00000010

00000110

00000100

10000000

;Copy value 2H in register A

;Copy value 4H in register B

;A = A + B

• It uses English like words to convey the action/meaning

• For e.g.

– MOV

– ADD

– SUB

to indicate data transfer to add two

values

to subtract two values

Assembly language of 8085

SIMPLE EXAMPLES

Move the content of the memory location FC50 H to register C

The content is 08

Memory

address

Machine

codes

Mnemonics Operands Comments

FC00 21,50FC LXI H, FC50 Get the memory address

FC00 in H – L Pair

FC03 4E MOV C, M Move the content of the

memory location, whose

address is in the H – L pair,

to register C

FC04 76 HLT Halt

Memory

address

Machine

codes

Mnemonics Operands Comments

FC00 21,50,FC LXI H, FC50 Get the memory address

FC00 in H – L Pair

FC03 46 MOV B, M Move the content of the

memory locationTo register

B

FC04 23 INX H Increement HL pair by 1

FC05 4E MOV C,M Mov the content FC51 to C

FC04 76 HLT Halt

OUTPUT: FC50—11H

FC51—12H

Place the content FC50 in reg B and FC51 H in reg C

Memory

Address

Machine codes Mnemonics Operands commands

FCOO 3A,50,FC LDA FC50 Get the

content of

memory

location

FC50 H into

Accumulator

FC03 47 MOV B,A Move the

content of

register A to

register B

FCO4 76 HLT HALT

Load the content of memory location FC50 H directly to

accumulator,then transfer it to regB

Place 05 in reg B

Memory

address

Machine

codes

Mnemonics Operands Comments

FC00 06, 05 MVI B, 05 Get 05 in register B

FC02 76 HLT Stop

Addition of two 8-bit numbers .sum 8-bit

Memory
address

Machine
codes

Mnemonics Operands Comments

2000 21,01,25 LXI H, 2501 H Get address of 1st number H – L
pair

2003 7E MOV A, M 1st number in accumulative

2004 23 INX H Increment content of H L pair

2005 86 ADD M Add 1st and 2nd number

2006 32,03,25 STA 2503H Store sum in 2503 H

2009 76 HLT

Input data
2501-49H
2502—56H
Result=9F

Stop

Subtraction of two 8-bit numbers

Memory
address

Machine
codes

Mnemonics Operands Comments

2000 21,01,25 LXI H, 2501 H Get address of 1st number H –
L pair

2003 7E MOV A, M 1st number in accumulative

2004 23 INX H Increment content of H L pair

2005 96 SUB M SUB1st and 2nd number

2006 23 INX H Content of H-L pair becomes
2503H

2007 77 MOV M,A Store sum in 2503 H

2008 76 HLT Stop
Input Data
2501—49H
2502—32H
OUTPUT
2503—17H

Memory
address

Machine codes Labels Mnemonics Operands Comments

2000 2A,01,25 LHLD 2501 H 1st 16-bit
number in H-L
pair.

2003 EB XCHG Get 1st number
in D- pair.

2004 2A,03,25 LHLD 2503 H 2nd 16-bit
number in H-L
pair.

2007 0E,00 MVI C,00 MSBs of the
sum in register
C.
Initial value =00

2009 19 DAD D 1st number +2nd

number

200A D2,0E,20 JNC AHEAD Is carry? No ,go
to the label
AHEAD.

200D 0C INR C Yes , increment
C.

200DE 22,05,25 AHEAD SHLD 2505 H Store LSBs of
sum in 2025 and
2506 H.

2011 79 MOV A,C MSBs of sum in

Addition of two 16-bit number

Memory address Machine codes Labels Mnemonics Operands Comments

2000 21,01,25 LXI H,2501 H Address of 1st

number in H-L
pair.

2003 0E,00 MVI C,00 MSDs of sum in
register C.
Initial value =00.

2005 7E MOV A,M 1st number in
accumulator.

2006 23 INX H Address of 2nd

number 2502 in
H-L pair.

2007 86 ADD M 1st number +2nd

number

2008 27 DAA Decimal adjust.

2009 D2,0D,20 JNC AHEAD Is carry? No ,go
to the label
AHEAD.

200C 0C INR C Yes , increment
C.

200D 32,03,25 AHEAD STA 2503 H LSDs of sum in
2503 H .

Decimal addition of two 8- bit number

Memory address Machine codes Mnemonics Operands Comments

2000 21,02,25 LXI H,2502 H Get address of 2nd

number in H-L pair .

2003 3E,99 MVI AA,99 Place 99 in
accumulator.

2005 96 SUB M 9’s complement of
2nd number.

2006 3C INR A 10’s complement of
2nd number.

2007 2B DCX H Get address of 1st
number .

2008 86 ADD M Add 1st number and
10’s complement of
2nd number.

2009 27 DAA Decimal adjustment.

200A 32,03,25 STA 2503 H Store result in 2502
H.

200D 76 HL,T Halt

8—bit decimal subtraction

Memory

address

Machine

codes

Mnemonics Operands Comments

2000 3A,01,25 LDA 2501 H Get data in

accumulator.

2003 2F CMA Take it 1’s

complement.

2004 32,02,25 STA 2502 H Store result in

2502 H.

2007 76 HLT Stop.

Find 1’s complement of 8-bit number
EXAMPLE: Find one’s complement of 96

96= 1001 0110
(9) (6)

1’s com= 0110 1001 =69
(6) (9)

Output
2501—96H
2502—69H

Memory
address

Machine
codes

Mnemonics Operands Comments

2000 3A,01,25 LDA 2501 H Get data in
accumulator.

2003 2F CMA Take it 1’s
complement.

2004 3C INR A Take it 2’s
complement.

2005 32,02,25 STA 2502 H Store result in
2502 H.

2008 76 HLT Stop.

EXAMPLE: Find two’s complement of 96
96= 1001 0110

(9) (6)
1’s com= 0110 1001 =69

(6) (9)
+0000 0001

2,s = 0110 1010=6A
(6) (A)

Output
2501—96H
2502—6AH

Memory

address

Machine

codes

Labels Mnemonics Operands Comments

2000 21,01,25 LXI H,2501 H Address of

1st number

in H-L pair.

2003 7E MOV A,M 1st number

in

accumulator

.

2004 23 INX H Address of

2nd number

in H-L pair.

2005 BE CMP M Compare

2nd number

with 1st

number. Is

the 2nd

number >1st

?

2006 D2,0A,20 JNC AHEAD No, larger

number is

TO FIND LARGER OF TO NUMBERS

Data

2501—98H

2502—87H

result is 98 H and it is stored in the memory location 2503H

2503—98H

The first number 98H is placed in the memory location 2501H

The second number 87H is placed in the memory location 2502H

Memory address Machine codes
Mnemonics

To find square

from Lookup

table

Operands Comments

2000 3A,00,25 LDA 2500 H Get data in
accumulator.

2003 6F MOV L,A Get data in
register L.

2004 26,26 MVI H,26 H Get 26 in register
H.

2006 7E MOV A,M Square of data in
accumulator.

2007 32,01,25 STA 2501 H Store square in
2501 H.

200A 76 HLT Stop
Data:
2500—07D
result:
2501—49D

Ex: find square of 07(decimal)using lookup table technique.

The no 07 D is in the memory location 2500H

The result is to be stored in the memory location 2501H`

The table of square is stored from 2600 to 2609.

Memory address Machine codes Mnemonics Operands Comments

2000 3A,01,25 LDA 2501H Get data in
accumulator.

2003 E6,0F ANI 0F Mask off the most
significant 4 bit.

2005 32,02,25 STA 2502 H Store result in 2502
H.

2008 76 HLT Stop.

Ex: num=A6=1010 0110
(A) (6)

RESULT=06=0000 0110
(0) (6)

Masking off MS4BITS OF AN 8-BIT NUMBER

Memory

address

Machine
codes

Mnemonics Operands Comments

2000 3A,01,25 LDA 2501H Get data in
accumulator.

2003 E6,0F ANI F0 Mask off the
LEAST
significant 4
bit.

2005 32,02,25 STA 2502 H Store result in
2502 H.

2008 76 HLT Stop.

Ex: num=A6=1010 0110
(A) (6)

RESULT=06=0000 0110
(A) (0)

Masking off LS4BITS OF AN 8-BIT NUMBER

Memory address Machine
codes

Mnemonics Operands Comments

2000 3A LDA 2501 H Get data in
accumulato
r.

2003 87 ADD A Shift it left
by one bit.

2004 32,02,25 STA 2502 H Store result
in 2502 H.

2007 79 HLT Halt.
output
2501—65H
2502—CA H

Shift an 8-bit num left by one bit

Memory address Machine
codes

Mnemonics Operands Comments

2000 3A LDA 2501 H Get data in
accumulato
r.

2003 87 ADD A Shift it left
by one bit.

2004 87 ADD A AGAIN
SHIFT BY
ONE BIT

2005 32,02,25 STA 2502 H Store result
in 2502 H.

2008 79 HLT Halt.

Shift an 8-bit num left by two bit

Memory address Machine
codes

Mnemonics Operands Comments

2000 2A,01,25 LHLD 2501 H Get data in
H-L pair.

2003 29 DAD H Shift it left
by one bit.

2004 29 DAD H AGAIN
SHIFT BY
ONE BIT

2005 22,03,25 SHLD 2503 H Store result
in 2503 and
2504H.

2006 76 HLT Halt.

SHIFT 16-BIT NUMBER LEFT BY TWO BIT

Memory address Machine
codes

Mnemonics Operands Comments

2000 2A,01,25 LHLD 2501 H Get data in
H-L pair.

2003 29 DAD H Shift it left
by one bit.

2004 22,03,25 SHLD 2503H Store result
in 2503 and
2504H.

2007 76 HLT STOP

SHIFT 16-BIT NUMBER LEFT BY ONE BIT

Memory address Machine codes Mnemonics Operands Comments

2000 21,01,25 LXI H,2501 H Address of LSBs of the
number.

2003 7E MOV A,M 8 LSBs of the number
in accumulator.

2004 2F CMA Complement of 8
LSBs of result.

2005 32,03,25 STA 2503 H Store 8 LSBs of result.

2008 23 INX H Address of MSBs of
the number.

2009 7E MOV A,M 8 MSBs of the
number in

accumulator.

200A 2F CMA Complement of 8
MSBs of the result.

200B 32,04,25 STA 2504 Store 8 MSBs of the
result.

200E 76 HLT Halt
Output
2501—85H,LSB of the
number
2502—54H MSB of

Find 1’s complement of a 16-bit number

Memory address Machine codes Mnemonics

2,s
complement

of 16-bit
number

Operands Comments

2000 21,01,25 LXI H,2501 H Address of LSBs of the
number.

2003 06,00 MVI B,00 USE THE REGISTER B
to the carry.

2005 7E MOV A,M 8 LSBs IN
ACCUMULATOR.

2006 2F CMA 1’s complement of 8
lsb

2007 C6,01 ADI 01 2’S COMPLEMENT OF
8 LSB

2009 32,03,25 STA 2503 H STORE 8 LSB OF THE
RESULT

200C D2,10,20 JNC GO

200F 04 INR B STORE CARRY

2010 23 GO INX H ADDR OF 8 MSB

GFG

PROGREA
M

2400 21,00,20 LXI H,2000H Get memory
address of count

2403 4E MOV C,M Count in Register
C

2404

PROGREAM

2400 21,00,20 LXI H,2000H Get memory address
of count

2403 4E MOV C,M Count in Register C

2404 23 INX H Source address of data
in H-L pair

2405 11,01,22 LXI D,2201 Destiny address of
data in D-E pair

2408 7E LOOP MOV A,M Data from source
address to ACC

2409 EB XCHG Destiny address HL
pair

240A 77 MOV M,A Data to destiny
address

240B EB XCHG Source address in H-L
pair

240C 23 INX H Source address of next
data

240D 13 INX D Destiny address of
next data

MOVE A BLOCK OF DATA FROM ONE LOCATION TO ANOTHER

GFG

PROGREA
M

2400 21,00,20 LXI H,2000H Get memory
address of count

2403 4E MOV C,M Count in Register
C

2404

PROGREAM

2400 21,00,25 LXI H,2500H Get memory address
of count IN H-L pair

2403 4E MOV C,M Count in Register C

2404 23 INX H Address of 1st byte of
1st number

2405 11,01,26 LXI D,2601 Address of 1st byte of
2nd number

2408 B7 ORA A Clear carry

2409 1A LOOP LDAX D Get byte of 2nd number
in accumulator

240A 8E ADC M Add 2nd and 1st with
carry

240B 27 DAA Decimal adjust

240C 77 MOV M,A Store sum in H-L pair

240D 13 INX D Increment D-E pair

240E 23 INX H Increment H-L pair

240F OD DCR C Decrement count

2410 C2,09,24 JNZ LOOP Is count 00?, No, go to
loop

MULTIBYTE ADDTION

GFG

PROGREA
M

2400 21,00,20 LXI H,2000H Get memory
address of count

2403 4E MOV C,M Count in Register
C

2404

PROGREAM

2400 21,00,25 LXI H,2500H Get memory address
of count IN H-L pair

2403 4E MOV C,M Count in Register C

2404 23 INX H Address of 1st byte of
1st number

2405 11,01,26 LXI D,2601 Address of 1st byte of
2nd number

2408 B7 ORA A Clear carry

2409 1A LOOP LDAX D Get byte of 2nd number
in accumulator

240A 9E SBB M SUB 2nd and 1st with
BORROW

240B 77 MOV M,A Store sum in H-L pair

240C 23 INX D Increment D-E pair

240D 13 INX H Increment H-L pair

240E OD DCR C Decrement count

241F C2,09,24 JNZ LOOP Is count 00?, No, go to
loop

2412 76 HLT stop

MULTIBYTE SUBTRACTION

Memory address Machine codes Labels Mnemonics Operands Comments

2000 21,00,25 LXI H,2500 H Address of count
in H-L pair.

2003 4E MOV C,M Count in register
C

2004 23 INX H Addr of 1st num n
H-L pair

2005 7E MOV A,M 1st num in acc.

2006 0D DCR C Decrement C

2007 23 LOOP INX H Addr of next
number

2008 BE CMP M Icompare next
num with
previous is next
num> previous.

2009 D2,0D,20 JNC AHEAD No,larger
number is in
acc.Goto Ahead

200C 7E AHEAD MOV A,M Yes, get larger in
acc.

200D 0D DCR C Decr ement C

200E 32,07,20 JNZ LOOP .

To find the largest number in a data array

Memory address Machine codes Labels Mnemonics Operands Comments

2000 21,00,25 LXI H,2500 H Address of count
in H-L pair.

2003 4E MOV C,M Count in register
C

2004 23 INX H Addr of 1st num n
H-L pair

2005 7E MOV A,M 1st num in acc.

2006 0D DCR C Decrement C

2007 23 LOOP INX H Addr of next
number

2008 BE CMP M Icompare next
num with
previous is next
num> previous.

2009 D2,0D,20 JC AHEAD No,larger
number is in
acc.Goto Ahead

200C 7E AHEAD MOV A,M Yes, get larger in
acc.

200D 0D DCR C Decr ement C

200E 32,07,20 JNZ LOOP .

To find the smallest number in a data array

Memory address Machine codes Labels Mnemonics Operands Comments

2400 21,01,25 LXI H,2500 H Address of 1st

number in H-L
pair.

2403 4E MOV C,M COUNT IN REG C

2404 3E,00 MVI A,00 Initial value of
sum =00

2406 23 INX H Addr of next
value inH-L pair

2407 86 ADD M Previous sum
+next number

2408 0D DCR C Decrement count

2409 C2,06,24 AHEAD JNZ LOOP Is count=0? No,
jump to loop

240C 32,50,24 STA 2450 Store sum in
2450H

240F 76 HLT stop

Sum of series

UNIT IV

Introduction

Intel ‘s 16-bit Microprocessor are 8086, 80186, 80286. These Microprocessors

have 16-bit Internal architecture and contain 16 data lines.

 The Intel 8086, 80186, 8088 and 80188 microprocessors have same basic set of

registers, instructions and addressing modes.

 Besides CPU, they also contain on-chip clock generator, programmable memory

and chip select logic, programmable interrupt controller, high speed DMA

channels, programmable 16-bit timer, local bus controller etc.,

INTEL 8086

 The 8086 is a 16 bit Microprocessor.

 It consumes less power. It requires +5V power supply.

 Its clock frequency for its different versions are 5, 8, 10 MHz it was introduced

in 1978. it contains an electronic circuitry of 29000 transistors.

 A 40 pin dual in line package(DIP).

 8086 has 20 address lines and 16 data lines. It can access up to 220 memory

locations (1MB).

 The 16-bit data word is divided into a low-order byte and a higher-order byte.

 The 20 address lines are time multiplexed. 16 low-order address lines are

multiplexed with data and 4 higher-order address lines are multiplexed with

status signal.

 It provides 16-bit registers.

 AD 0- AD15 are 16 low-order address lines . 8 LSB of data are transmitted

onAD0-AD7 and 8 MSB of data are transmitted on AD8-AD15.

 8086 is designed to operate in two modes, Minimum and Maximum.

Pin Diagram of 8086 Microprocessor

Pin Description of 8086

A0-A15: It’s a Bidirectional Address/data lines. These are lower-order address bus.

They are multiplexed with data. AD lines are used to transmit memory address the

symbol A is used instead of AD.

A10-A19: High order Address lines. These are multiplexed with status signal.

A16/S3, A17/S4: A16 and A17 are multiplexed with segment identifier signals s3

and s4.

A18/S5: A18 are multiplexed with interrupt status S5.

A19/S6: A19 is multiplexed with status signal S6.

BHE/S7:The bus high enable (BHE) signal is used to indicate the transfer of data

over the higher order data bus.

RD(Read) : This signal is used for read operation. It is an output signal. It is active

when LOW.

READY(Input): The addressed I/O or memory sends acknowledgment through

this pin when HIGH it indicates that the peripheral is ready to transfer data.

RESET (Input): System is reset when the signal is active HIGH.

CLK(Input): Clock 5,8,or 10 MHZ

INTR (Interrupt Request)

NMI (Input). Non-Maskable Interrupt Request.

TEST(Input). Wait for test control. When it is low the microprocessor continues

execution otherwise waits.

VCC. Power supply, +5V d.c

GND. Ground.

Operation Modes of 8086

There are two modes of Operation

1.Minimum mode.

2. Maximum mode.

When only one 8086 CPUis to be used in a microcomputer system the 8086

used minimum mode of operation. In this mode the COU issues the control signals

required by memory and I/O devices.

In a multiprocessor system it uses maximum mode.

Pin Description for Minimum Mode

The Minimum mode of operation the pin MN/MX is connected to 5 V d.c

supply. The description of the pins from 24 to 31 for the minimum mode is as

follows.

INTA(Output): Pin No.24. Interrupt Acknowledgement. On receiving Interrupt

signal the processor issues an acknowledge signal. It is active LOW .

ALE (Output). Pin No.25. Address Latch Enable. It goes High during T1. the

microprocessor sends this signal to latch the address into the Intel 8282/8283

latch.

DEN (Output). Pin No.26. Data enable. When Intel 8286/8287 octal bus

transceiver is used this signal acts as an output enable signal. It is active LOW.

DT/R (Output). Pin No 27. Data Transmit/Receive. When Intel 8286/8287 octal

bus transceiver is used this signal controls the direction of data flow through the

transceiver. When it is HIGH data are sent out. When it is LOW data are received.

M/IO(Output). Pin No.28. Memory or I/O access. When it is HIGH the CPU

wants to access memory. When it is LOW the CPU wants to access I/O device.

WR(Output). Pin No.29. Write. When it is LOW the CPU performs memory or

I/O Write operation.

HLDA(Output).Pin No.30. HOLD acknowledge. It is issued by the processor

when it receives HOLD signal. It is active HIGH signal. When HOLD request is

removed HLDA goes LOW.

HOLD(Input).Pin No.31. Hold. When another device in microprocessor system

wants to use the address data bus, it sends a HOLD request to CPU through this

pin. It is an active HIGH signal.

Pin Description for Maximum Mode

The Maximum mode of operation the pin MN/MX is made LOW. It is

grounded. The description of the pins from 24 to 31.

QS1, QS0 (Output) Pin No.24,25. Instruction Queue Status. Logic are given

below.

QS1 QS0

0 0 No Operation

0 1 1st byte of the opcode from

queue

1 0 Empty the queue

1 1 Subsequent byte from the

queue.

S2 , S1, S0 (Output). Pin No. 26,27,28 Status lines: These are the status lines are
connected to the bus controller. The bus controller generates memory and I/O
access control signals.
These status lines logic are as follows

S2 S1 S0 Function

0 0 0 Interrupt Acknowledge

0 0 1 Read I/O port

0 1 0 Write I/O port

0 1 1 Halt

1 0 0 Code Access

1 0 1 Read memory

1 1 0 Write memory

1 1 1 Passive (In active)

LOCK : Pin No.29. When it active LOW signal. All interrupts are masked and no

HOLD request are granted.

RQ / GT1 and RQ / GT 0(Bidirectional)Pin No 30,31. request/Grant: The
request/grant pins are used by other local bus masters to force the processor to
release the local bus at the end of the processors current bus cycle. These lines
are bi- directional and are used to both request and grant a DMA operation. RQ /
GT 0 is having higher priority than RQ / GT1

Assembler Directives:

 An Assembler directive is a statement to give direction to the assembler

to perform the task of assembly Process.

The assembler Directives control organization of the program and provide

necessary information to the assembler to understand assembly language

program to generate machine codes.

An Assembly language program consists of two types of statements:

Instructions and Directives.

The instructions are translated to machine code by the assembler whereas

the directives are not translated to machine code.

Symbols, Variables and Constants:

 The symbols whose values can be varied while running a program, is called

variable.

The name of the variable should be meaningful to increase readability and to

make program maintenance easy.

E x: Upper case and Lower case Letter A to Z; a to z

Digits ; 0 to 9

Special characters: $, ?, @, _(underscore)

A variable can use of the following:

A to Z : a to z; 0 to 9; @ and _(underscore)

Digits cannot be used as a first character of an assembler variable.

$ and ? Are not used in a variable because they are used for other

purposes in an assembly language .

The variable must begin with an alphabet or an underscore. No

difference between upper case and lower case.

The length of the assembler variable depends on the particular

assembler.

A numeric constant may be a binary, decimal, or hexadecimal number.

To differentiate them, symbols B,D,H are used at the end of the binary,

decimal, and hexadecimal number. A number without any identification

symbol is taken as decimal number.

The decimal and hexadecimal numbers are converted to their binary

equivalent for processing.

A hexadecimal number with its first digit between A to F, must begun with 0;

otherwise it will be taken as a symbol. A hexadecimal number AFB6 must be

written as 0A5B6H.

To assign Names to Variables, Constants and Addresses:

 ALP contains three general types of data: Variables, Constants and

addresses.

 If names are assigned to variables, constants and addresses, The assembler

uses these names to get the corresponding data items or address when the

programmer refers to them in instructions.

Assembler directives are used to assign names to variables and constants.

Label are used to give names to addresses.

The directives DB, DW, DD, DQ, and DT are used to assign names to the

variable and specify their types. The Directive EQU is used to give names

constants.

Assembler Directives for Intel 8086 Microprocessor:

ASSUME
DB - Defined Byte.
DD - Defined Double Word
DQ - Defined Quad Word
DT - Define Ten Bytes
DW - Define Word
ASSUME Directive: The ASSUME directive is used to inform the assembler that

the name of the logical segment should be assigned for a different segment used
in as assembly language program.
The 8086 works directly with only 4 physical segments: a Code segment, a data

segment, a stack segment, and an extra segment.
Example:
ASSUME CS: CODE: This tells the assembler that the logical segment named
CODE contains the instruction statements for the program and should be treated
as a code segment.
ASUME DS:DATA ;This tells the assembler that for any instruction which refers to
a data in the data segment, data will found in the logical segment DATA.

DB: (Define byte). DB directive is used to declare a byte- type variable or to store
a byte in memory location.

Example:

WEIGHT DB 85 ; This directive informs the assembler to reserve one byte of
memory space for the variable named WEIGHT and initialize the value 85.

ARRAY DB 32,42,59,67,83 ;This directive informs the assembler to reserve five
Bytes of consecutive memory space for the variable named ARRAY. The memory
location are to be initialized with the values 32, 42, 59, 67 and 83.

TEMP DB 100 DUP(?) ;Set 100 bytes of storage in memory and give it
the name as TEMP, but leave the 100 bytes uninitialized. Program instructions will
load values into these locations.

DW: (Define Word) The DW directive is used to define a word type variable(ie
variable which occupies two-bytes of memory space)

Example:
MULTIPLIER DW 437Ah ; this declares a variable of type word and
named it as MULTIPLIER. This variable is initialized with the value 437Ah when it is
loaded into memory to run.

EXP1 DW 1234h, 3456h, 5678h ; this declares an array of 3 words and initialized
with specified values.

STOR1 DW 100 DUP(0); Reserve an array of 100 words of memory and
initialize all words with 0000.Array is named as STOR1.

END(End of the Program): END directive is placed after the last statement of a
program to tell the assembler that this is the end of the program module. The
assembler will ignore any statement after an END directive. Carriage return is
required after the END directive.

ENDP(End procedure): ENDP directive is used along with the name of the
procedure to indicate the end of a procedure to the assembler

Example:

SQUARE_NUM PROCE ; It start the procedure
: ;Some steps to find the square root of a number

SQUARE_NUM ENDP ;Hear it is the End for the procedure

ENDS(Ends the segment) This ENDS directive is used with name of the segment
to indicate the end of that logic segment.

Example:
CODE SEGMENT ;Hear it Start the logic

: ;segment containing code
; Some instructions statements to perform the logical
;operation

CODE ENDS ;End of segment named as
;CODE

EQU (Equate) This EQU directive is used to give a name to some value or to a
symbol. Each time the assembler finds the name in the program, it will replace the
name with the value or symbol you given to that name.

Example:
FACTOR EQU 03H ; you has to write this statement at the starting of your program
and later in the program you can use this as follows
ADD AL, FACTOR ; When it codes this instruction the assembler will code
it as ADD AL, 03H

EVEN: This EVEN directive instructs the assembler to increment the location of
the counter to the next even address if it is not already in the even address.

GROUP: The GROUP directive is used to group the logical segments named after
the directive into one logical group segment.

INCLUDE: This INCLUDE directive is used to insert a block of source code from the
named file into the current source module.

PROC(procedure). The PROC directive is used to identify the start of a procedure. The
term near or far is used to specify the type of the procedure.

TYPE:TYPE operator instructs the assembler to determine the type of a variable and
determines the number of bytes specified to that variable.

Assembly Language Program using assembler :
Addition of two 16-bit numbers

SSEG SEGMENT `STACK` :Stack segments starts.
DB 100 DUP (`STACK----) :100 Bytes allocated for stack.

SSEG ENDS :End of the stack segment.
OP1 DW 1234H ;op1 type word
OP2 DW 2356H ;OP2 type2
RESULT DW 0000,0000 ;MEMORY ALLOCATION FOR RESULT
DSEG ENDS ;End of the data segment
CSEG SEGMENT ‘CODE’ ;Code segment starts.
ASSUME CS:CSEG, DS:DSEG, SS:SSEG ;directive for segment register.
MAIN PROC ;starts of the procedure named MAIN
;statements for startup codes for proper return in OS environment

PUSH DS ;Save present value of DS in stack.
MOV AX, 00 ;initialize AX=00 for return.
PUSH AX ;save AX in stack.

;statements for initialization of data segment register
MOV AX,DSEG ;AX be loaded with segment register
MOV DS,AX ; load data segment register with

segment address.

; start of the addition program
MOV AX,OP1 ;mov operand 1 to AX
MOV BX,OP2 ;mov operand 2 to BX
ADD AX,BX ;add AX to BX,result in BX
MOV RESULT,AX ;save result in memory
EXIT ; insert exit code for return from

the procedure
RET

MAIN ENDP ; end of the procedure main
CSEG ENDS ;end of the code segment

END MAIN ; End of the program.

UNIT-V Microcontrollers

Introduction:

A microcomputer built on a single semiconductor chip is called single-chip

microcomputer.

It is used for dedicated application such as automatic control of equipment,

machines, and process of industry, instrumentation, commercial and control

application.

Microprocessor are generally used in control applications , they are called

microcontrollers. Microcontroller are embedded in the system which they control

and they are called embedded controllers.

Microcomputer contains the component such as CPU, RAM, ROM/EPROM,I

/O lines etc., A program for microcontroller is developed in a laboratory and

tested then it is stored in ROM/EPROM of the microcontroller.

The ROM/EPROM of the microcontroller is known as program memory. Data and

intermediate results are stored in RAM, it is called data memory.

The ROM/EPROM of the microcontroller is known as program memory. Data and

intermediate results are stored in RAM, it is called data memory.

 The first microcontroller TMS1000 was introduced by Texas Instruments in the

year 1974.

 Later the Intel company produced its first Microcontroller 8048 with a CPU

and 1K bytes of EPROM, 64 Bytes of RAM an 8-Bit Timer and 27 I/O pins in 1976.

 the most popular controller 8051 in the year 1980 with 4K bytes of ROM,128

Bytes of RAM , a serial port, two 16-bit Timers , and 32 I/O pins.

 The 8051 family has many additions and improvements over the years .

 INTEL introduced a 16 bit microcontroller 8096 in the year 1982 .

 The 32-bit microcontrollers have been developed by IBM and Motorola.

INTEL 8051 MICRCONTROLLER :

The 8051 microcontroller is a very popular 8-bit microcontroller introduced by Intel in

the year 1981 and it has become almost the academic standard now a days. The 8051 is

based on an 8-bit CISC core with Harvard architecture. Its 8-bit architecture is optimized for

control applications with extensive Boolean processing. It is available as a 40-pin DIP chip

and works at +5 Volts DC. The salient features of 8051 controller are given below.

SALIENT FEATURES : The salient features of 8051 Microcontroller are

i.4 KB on chip program memory (ROM or EPROM)).

ii.128 bytes on chip data memory(RAM).

iii.8-bit data bus

iv.16-bit address bus

v.32 general purpose registers each of 8 bits

vi.Two -16 bit timers T0 and T1

vii.Five Interrupts (3 internal and 2 external).Four Parallel ports each of 8-bits (PORT0,

PORT1,PORT2,PORT3) with a total of 32 I/O lines.

ix.One 16-bit program counter and One 16-bit DPTR (data pointer)

x.One 8-bit stack pointer

xi.One Microsecond instruction cycle with 12 MHz Crystal.

xii.One full duplex serial communication port.

BLOCK DIAGRAM OF INTEL 8051

 It consists of an 8-bit ALU, one 8- bit PSW(Program Status Register), A

and B registers , one 16-bit Program counter , one 16-bit Data pointer

register(DPTR),128 bytes of RAM and 4kB of ROM and four parallel I/O

ports each of 8-bit width.

8051 has 8-bit ALU which can perform all the 8-bit arithmetic and logical

operations in one machine cycle. The ALU is associated with two registers A &

B

A and B Registers : The A and B registers are special function registers which hold

the results of many arithmetic and logical operations of 8051.

The A register is also called the Accumulator and as it’s name suggests, is used as a

general register to accumulate the results of a large number of instructions. By

default it is used for all mathematical operations and also data transfer operations

between CPU and any external memory.

The B register is mainly used for multiplication and division operations along with A

register.

MUL AB : DIV AB.

It has no other function other than as a location where data may be stored.

Program Counter(PC) : 8051 has a 16-bit program counter .The program counter

always points to the address of the next instruction to be executed. After execution of

one instruction the program counter is incremented to point to the address of the next

instruction to be executed.

Stack Pointer Register (SP) : It is an 8-bit register which stores the address of the stack

top. i.e the Stack Pointer is used to indicate where the next value to be removed from

the stack should be taken from.

Data Pointer Register(DPTR) : It is a 16-bit register which is the only user-

accessible. DPTR, as the name suggests, is used to point to data. It is used by a number

of commands which allow the 8051 to access external memory.

Program Status Register (PSW) : The 8051 has a 8-bit PSW register which is

alsoknown as Flag register.In the 8-bit register only 6-bits are used by 8051.The two

unused bits are user definable bits.In the 6-bits four of them are conditional flags .They

are Carry –CY,Auxiliary Carry-AC, Parity-P,and Overflow-OV .These flag bits

indicate some conditions that resulted after an instruction was executed.

Program status word register

CY PSW.7 Carry Flag

AC PSW.6 Auxiliary Carry Flag

FO PSW.5 Flag 0 available for general

purpose .

RS1 PSW.4 Register Bank select bit 1

RS0 PSW.3 Register bank select bit 0

OV PSW.2 Overflow flag

--- PSW.1 User difinable flag

P PSW.0 Parity flag .set/cleared by
hardware.

PIN Diagram of 8051 Microcontroller : The 8051 microcontroller is available as

a 40 pin DIP chip and it works at +5 volts DC. Among the 40 pins , a total of 32

pins are allotted for the four parallel ports P0,P1,P2 and P3 i.e each port occupies

8-pins .The remaining pins are VCC, GND, XTAL1, XTAL2, RST, EA ,PSEN.

XTAL1,XTAL2: These two pins are connected to Quartz crystal oscillator which

runs the on- chip oscillator. The quartz crystal oscillator is connected to the two

pins along with a capacitor of 30pF as shown in the circuit. If we use a source other

than the crystal oscillator, it will be connected to XTAL1 and XTAL2 is left

unconnected.

VSS:It is Circuit ground. All the voltages are specified with respect to it.

VCC: It is for power supply.

Pin diagram of Intel 8051 Microcontroller

RST: The RESET pin is an input pin and it is an active high pin. When a high pulse is

applied to this pin the microcontroller will reset and terminate all activities.

EA(External Access): This pin is an active low pin.

PSEN(Program Store Enable) : This is an output pin which is active low. ALE

(Address latch enable): This is an output pin, which is active high. When connected to

external memory , port 0 provides both address and data.

P0.0- P0.7(AD0-AD7) : The port 0 pins multiplexed with Address/data pins .If the

microcontroller is accessing external memory these pins will act as address/data pins

otherwise they are used for Port 0 pins.

P2.0- P2.7(A8-A15) : The port2 pins are multiplexed with the higher order address pins

.When the microcontroller is accessing external memory these pins provide the higher

order address byte otherwise they act as Port 2 pins.

P1.0- P1.7 :These 8-pins are dedicated for Port1 to perform input or output port

operations.

P3.0- P3.7 :These 8-pins are meant for Port3 operations and also for some control

operations like Read,Write,Timer0,Timer1 ,INT0,INT1 ,RxD and TxD

I/O Lines:

 8051 Microcontrollers contain four ports: P0,P1,P2,P3.

There are 32 I/O lines. All ports in 8051 are bi-directional and they are also

multifunctional lines.

Alternate function of port pins are:

P1.0:T2(Timer/Counter 2 external input).

P1.1: T2EX(Timer/Counter2 capture/reload trigger)

P3.0: RXD(Serial Input port)

P3.1: TXD(Serial output port)

P3.2:INT0(External Interrupt)

P3.3:INT1(External Interrup

P3.4:T0(Timer/Counter 0 external input)

P3.5:T1(Timer/Counter 1 external input)

P3.6:WR(External data memory write strobe)

P3.7:RD(External data memory Read strobe)

8051 Interrupts:

• Interrupt- Facility provided in microprocessor using which attention of
microprocessor may be drawn for some specific purpose.

• Microprocessor suspends its current job- saves the status.

• Microprocessor attends to the device/system/event causing
interrupt- ISR is executed.

• Microprocessor goes back to suspended job and starts executing
from the point where it was suspended.

Other issues in Interrupts

 Hardware/Software Interrupts

 Interrupt Priority

 Enabling / Disabling of Interrupts.

 Masking of Interrupts.

 Edge/Level Triggered Hardware Interrupts

• 8051 has five interrupt sources.

• Each interrupt can be programmed to two priority levels.

INT0 – External Request from P3. 2pin

Timer 0 – Overflow from Timer 0 activates interrupt request flag TF0.

INT1 – External Request from P3.3

Timer1- Overflow from Timer1 activates interrupt request flag TF1

Serial Port – completion of transmission or reception of a serial frame activates
the flags TI or RI.

The complete interrupt system may be disabled or enabled by storing 0 or 1 in
EA bit of IE SFR

- IE.7.

SETB

CLR

IE.7, - Enable Interrupts IE.7,

- Disable Interrupts

• When Interrupt system is enabled i.e. IE.7=1, then each of the five interrupts
can be enabled/disabled individually by making a specified bit in IE register as 1
or 0.

- Interrupt masking

bit = 0 – Interrupt is disabled i.e. masked bit = 1 – Interrupt is

enabled

IE Register – Interrupt Enable Register

7 6 5 4 3 2 1 0

 EX0- Enable/Disable – External Interrupt 0

 ET0- Enable/Disable – Timer 0 overflow

 EX1- Enable/Disable – External Interrupt 1

 ET1- Enable/Disable – Timer 1 overflow Interrupt

 ES -Enable/Disable – Serial port Interrupt

 EA - Enable/Disable – All interrupts

EA X X ES ET1 EX1 ET0 EX0

• There are two priority levels for interrupts in 8051- High and Low.

• Each interrupt can be programmed to a low or high priority level, by making bits

of IP(Interrupt Priority) SFR as 0 or 1.

bit = 0 – Interrupt at Low priority level.

bit = 1 – Interrupt at high priority level.

Interrupt Priority Register

7 6 5 4 3 2 1 0

PX0 – Priority – External Interrupt 0

PT0 – Priority – Timer 0 overflow

PX1 – Priority – External Interrupt 1

PT1 – Priority – Timer 1 overflow

PS - Priority – Serial port Interrupt

X X X PS PT1 PX1 PT0 PX0IP -

• A low priority interrupt can’t interrupt a high priority interrupt but a high
priority interrupt can interrupt low priority interrupt.

Source

- External Interrupt 0 Highest

- Timer 0 Overflow

- External Interrupt 1

- Timer 1 Overflow

- Serial Port Lowest

• When two or more interrupt requests come at the same time and all the
interrupts at the same priority level the 8051 will select an interrupt for
servicing based on above.

• All the interrupts are separately scanned during each machine cycle.

• An interrupt request will be serviced i.e. corresponding ISR
will be executed unless .An interrupt of equal or higher level
is already in progress. Current m/c cycle is not the final m/c
cycle in the execution of instruction in progress i.e. no
interrupt request will be responded to until the instruction
in progress in completed.

Instruction Set

The 8052 has 111 instructions: 49 single-byte,42 double-byte and 17 three-byte

instruction.

It is provided with multiplication and division instruction.

It takes 1 microsecond for addition and four microsecond for multiplication or

division.

The instruction set of 8051 includes binary and BCD arithmetic operations, bit

set/reset functions and logical functions.

Memory Organization of Intel 8051

The 8051 microcontroller has 128 bytes of Internal RAM and 4kB of on chip

ROM .The RAM is also known as Data memory and the ROM is known as

program memory. The program memory is also known as Code memory .In 8051

this memory is limited to 64K .Code memory may be found on-chip, as ROM or

EPROM. It may also be stored completely off-chip in an external ROM or, more

commonly, an external EPROM. The 8051 has only 128 bytes of Internal RAM but

it supports 64kB of external RAM.

Internal RAM OF 8051 :

This Internal RAM is found on-chip on the 8051 .So it is the fastest RAM available,

and it is also the most flexible in terms of reading, writing, and modifying it’s

contents. Internal RAM is volatile, so when the 8051 is reset this memory is

cleared.

Internal ROM (On –chip ROM): The 8051 microcontroller has 4kB of on

chip ROM but it can be extended up to 64kB.This ROM is also called program

memory or code memory. The CODE segment is accessed using the program

counter (PC) for opcode fetches and by DPTR for data.

ADDRESSING MODES OF 8051 :

There are various methods of denoting the data operands in the instruction. The

8051 microcontroller supports mainly 5 addressing modes. They are

1.Immediate addressing mode

2.Direct Addressing mode

3.Register addressing mode

4. Register Indirect addressing mode

5.Indexed addressing mode

Immediate addressing mode : The addressing mode in which the data operand is a

constant and it is a part of the instruction itself is known as Immediate addressing

mode.

Ex: MOV A , # 27 H: The data (constant) 27 is moved to the accumulator register

Direct addressing mode: The addressing mode in which the data operand is in the RAM

location (00 -7FH) and the address of the data operand is given in the instruction is

known as Direct addressing mode.

MOV R1, 42H : Move the contents of RAM location 42 into R1 register

Register addressing mode :The addressing mode in which the data operand to be

manipulated lies in one of the registers is known as register addressing mode.

MOV A,R0 : Move the contents of the register R0 to the accumulator .

Register Indirect addressing mode :The addressing mode in which a register is used as

a pointer to the data memory block is known as Register indirect addressing mode.

MOV A,@ R0 :Move the contents of RAM location whose address is in R0 into A

Indexed addressing mode : This addressing mode is used in accessing the data elements

of lookup table entries located in program ROM space of 8051.

Ex : MOVC A,@ A+DPTR

The 16-bit register DPTR and register A are used to form the address of the data element

stored in on-chip ROM. Here C denotes code .In this instruction the contents of A are

added to the 16-bit DPTR register to form the 16-bit address of the data operand.

