DIGITAL DESIGN

Subject Code:18K5CS08

A.THIRUMALAI RAJ R.VALARMATHY

UNIT-I

Number System:Review of Decimal Number System –Binary Number System-Binary to Decimal Conversion-Decimal to Binary Conversion-Hexadecimal Number System-Hexadecimal to decimal Conversion-Decimal to Hexa Decimal

To Binary Conversion-Binary to Hexa Decimal Conversion-Octal Number System-Octal to Decimal Coversion-Decimal to Octal Conversion-Octal to Binary Conversion –Binary to octal Conversion.

UNIT-II

Binary Arithmetic: Binary Addtion-Binary Subtraction – Binary Multiplication-Binary Division-1's Complement and 2's Complements- Subtraction using Complements-Signed Binary Numbers-Binary Code. BCD Codes-8421 code -2421 and 4221 codes-Excess 3 Codes- Gray Codes-ASCII Code.

NUMBER SYSTEM

- A computer programm is process the binary data represented in binary system
- To used binary system in for a long time.
- The concept to binary system to decimal system later to hexadecimal system.
- Convert one number system to one number system to corresponding another number system.
- Decimal Number System:
- This is decimal number use ten digits namely 0,1,2,3,4,5,6,7,8,9,0
- This base are base or radix of ten.
- All the digits in decimal Number system expressed in 10^{0} , 10^{1} , 10^{2} , 10^{3}
- 10⁻¹,10⁻²,10⁻³ fractional Part
- The Quantities 10^{0} , 10^{1} , 10^{2} , 10^{3} and 10^{-1} , 10^{-2} , 10^{-3} are called weights.
- Ex:25=20+5 Ex : 438 = 400 + 30 + 8 Ex 46.25 = 40+6+0.2+0.05
- 2 x 10 + 5 x 1 4 x100 + 3 x10 + 8 x 1 =4 x10 +6x1+2x0.1+5x0.01
- $2 \times 10^{1} + 5 \times 10^{0}$ $4 \times 10^{2} + 3 \times 10^{1} + 8 \times 10^{0}$ = $4 \times 10^{1} + 6 \times 10^{1} + 2 \times 10^{1} + 5 \times 10^{-2}$

Binary Number System

- Binary number system used only two symbols or digits 0 and 1
- A 0 and 1 is called a bit
- The bits have a power of 2^{0} , 2^{1} , 2^{2} , 2^{3} and fractional part 2^{-1} , 2^{-2} , 2^{-3}
- A four bit binary number is called as a nibble
- A 8 bit binary called a byte
- A 16 bit word called as word
- 32 bit binary called as a double word
- Binary to Decimal Conversion
- i) $(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
- = 4 + 0 + 1
- =(5)₁₀
- $\text{Ii})(10011)_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^1 + 1 \times 2^0$
- = 16+0+0+2+1
- =(19)₁₀

Decimal to Binary Conversion

- A decimal number converted to binary dividing by 2
- And Collecting the remainders (Double dabble method)
- 2|<u>19</u> ↑ (LSB)
- <u>|9</u>
- <u>|4</u>
- <u>|2</u>
- <u>|1</u>
- 0 (MSB)
- Collecting the remainders in the reverse $(19)_{10} = (10011)_{10}$
- Decimal in fraction
- To multiplied by 2 successively and collecting the carries from top to bottom
- 0.625 X 2 =1.250 | (MSB)
- $0.250 \ge 2 = 0.500$
- 0.500 x 2 =1.000 \downarrow (LSB)
- Collecting Carries: $(0.625)_{10} = (0.101)_2$

Hexadecimal Number System

- The hexadecimal number system base is 16
- The base digits are 0,1,2,3,4,5,6,7,8,9,0,A,B,C,D,E,F
- The base of the hexadecimal number system is 16 and then binary number system is 2
- A hex digit represents the group of four bit binary sequence

Hex	Dec	Hex	Dec
0	0	8	8
1	1	9	9
2	2	А	10
3	3	В	11
4	4	С	12
5	5	D	13
6	6	E	14
7	7	F	15

Decimal	Hexa	Binary 2 ³	
	decimal	$+2^{2}+2^{1}+2^{0}$	
		8+4+2+1	
0	0	0000	
1	1	0001	
2	2	0010	
3	3	0011	
4	4	0100	
5	5	0101	
6	6	0110	
7	7	0111	
8	8	1000	
9	9	1001	
10	A	1010	
11	В	1011	
12	С	1100	
13	D	1101	
14	E	1110	
15	F	1111	

The hexadecimal four bit binary equivalence decimal number 0 to 15

HEXADECIMAL TO DECIMAL CONVERSION

- The hex to decimal conversion in similar binary to decimal conversion
- The weights used for 16⁰,16¹,16²
- For the fractional part 16⁻¹,16⁻²,16⁻³
- Hexadecimal number system have a hexadecimal point
- Convert a hexadecimal number D5_H
- $(D5)_{16} = (13 \times 16^1 + 5 \times 16^0)$
- = $(13 \times 16 + 5 \times 1)_{10}$

$$= (208 + 5)_{10}$$

$$=(213)_{15}$$

• EX:

•

.

- (3FC.8)_H = 3 x 16²x 15x 16¹x12x16⁰+8x16⁻¹
- =3x256 +15x16+12x1+8x1/16
- = 768 +240+12+0.5
- =(1020.5)10
- $(E9)_{H} = 14x16^{1}+9x16^{0}$
- = 14 x 16 + 9x1
- = 224 + 9
- =(233)₁₀

Decimal to Hexadecimal Conversion

- Decimal number ton hex
- Divide the decimal Number by 16
- Collect the remainder to top to the bottom.
- Ex:
- 16 <u>|213</u>
- 13
- 0 13 =>D
- (213)₁₀=(D5)_H
- Convert the fractional part of decimal number multiply 16 repeatedly and collect carries
- $0.5 \ge 16 = 8.0$
- $(0.5)_{10} = (0.8)_{\rm H}$
- Convert to decimal to hex equivalents
- EX:65,534 EX:98.625
- 16<u>|16,534</u>
- 4095 14 => E (LSB)
- <u>|255</u> 15=>F
- <u>|15</u> 15=>F
- 0 15 =>F (MSB)

- The hex number 98.625 as separated as the integer part 98 and fractional part
- The integer 98 is converted into hex by repeated division by 16
- 16<u>|98</u>
- <u>|6</u>
- 0
- $(98)_{10} = (62_{)H}$
- The fraction 0.625 is converted in to hex multiplying 0.625 by 16 and collecting the carry
- 0.625 x 16
- 10.000
- The carry obtained is 10 to hex as 'A'
- Therefore,
- $(98.625)_{10} = (62.A)$

HEXADECIMAL TO BINARY CONVERSION

- Convert a decimal number to binary dividing given decimal number 2
- The hexadecimal number system is 16 is equal to 2^4 convert a hexadecimal number to binary .
- Replace each hex digit with is equivalent 4-bit binary.

He x	Dec	Binary $(2^3+2^2+2^1+2^0)$
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Hex	Dec	Binary $(2^3+2^2+2^1+2^{0})$
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

- Convert the hexadecimal numbers to binary
- $Ex:(3A.7)_{H}$
- Integer part taken 3A . 3 and A.
- Convert to binary equivalent
- $(3A)_{\rm H} = (0011\ 1010)_2$
- The fractional part $(.7)_{\rm H}$ converted to binary the four bit equivalent for 7
- $(.7)_{\rm H} = (.0111)_2$
- $(3A.7)_{\rm H} = (0011\ 1010\ 0111)_2$
- Ex:(CD:E8)_H
- $(CD)_{\rm H} = (1100\ 1101)_2$
- $(.E8)_{\rm H} = (.1110\ 1000)_2$
- $(CD.E8)_{\rm H} = (1100\ 1101\ 1110\ 1000)_2$

BINARY TO HEXA DECIMAL CONVERSION

- To Convert a binary number to hex
- Arrange the bits into group of 4 bits starting from LSB
- If the final group has less than 4 bits, just inculde zeros to make it group of 4 bits.
- Integer part or fractional part must be represented by a group of 4 bits
- Integer 4-bits group are fromed starting from hexadecimal point and moving towards left
- Fractional part 4 bit groups are formed starting from the hexadecimal point moving toward right.
- Ex:
- $(1010.1101)_2 = (A.D)_H$
- $(110.101)_2 = (0110.0101)_2 = (6.A)_H$
- $(1110.11)_2 = (1110.1100)_2 = (E.C)_H$
- $(1110111.1)_2 = (111\ 0111.1000)_2$ = $(7\ 7\ .8)_H$
- =(77.8)_H

Octal number System

- The Octal number system base is 8
- The basic digits are used are 0,1,2,3,4,5,6,7
- Octal number system is 8 and base binary system is 2 since $2^3 = 8$

Decimal	octal	Binary(2 ² +2 ¹ +2 ⁰)
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

Octal to Decimal Conversion

- The octal to decimal conversion is similar to the binary conversion
- The weights used are integer part 8⁰,8¹,8² and fractional part 8-¹,8⁻²
- Octal point to spearte the integer and fractional parts.
- Ex: octal number to decimal
- $(75)_8 = (7x8^1 + 5x8^0)_{10}$
- = $(7x8 + 5x1)_{10}$
- =(56+5)₁₀
- =(61)₁₀
- EX: $(45.6)_8 = 4 \times 8^1 + 5 \times 8^0 + 6 \times 8^{-1}$
- =4x 8 + 5x1 +6x 1/8
- =32+5+0.75
- =(37.75)₁₀

Decimal to Octal Conversion

- Convert a decimal number to Octal
- Divide the decimal number 8 repeatedly and the collect remainders from top to bottom
- The remainders also must be taken in octal.
- Ex:

 $(68)_{10} = (104)_8$

To convert the fractional part decimal number multiply by 8 repeatedly and collect the carries

 $0.5 \ge 8 = 4.0$

 $(0.5)_{10} = (0.4)_8$

- The octal number 98.625 is separated as integer part 98 and fractional part.625
- The integer 98 is converted into octal by repeated division by 8
- Ex:98.625
- 8|<u>98</u> (LSB)
- <u>|12</u>
- 1
- 0 (MSB)
- The fraction 0.625 is conveterd into octal by multiplying 0.625 by 8 collecting the carry
- 0.625 x 8 = 5.000
- The carry obtained is 5
- $(98.625)_{10} = (142.5)_8$

Octal to Binary Conversion

- To convert a decimal number to binary to dividing the given decimal number 2.
- The base of octal number system is 8 which is equal to 2⁸ to covert the octal number to binary
- Each Octal digit with its equivalent 3-bit binary
- 3 bit binary combination the weights are required only 2^2 , 2^1 , 2^0
- Ex:

Octal	Binary	Decimal
27	010111	23
135	001 011 101	93
45.5	100 101 101	37.625

Binary to Octal Conversion

- To Convert to binary number to octal
- To arrange the bits into group of 3 bits starting from LSB
- Final group has less than 3 bits, just include zero to make it group 3 bits.
- Ex:(10101) into octal
- Arrange the bits as (10101)
- Include a zero for the first group at the front
- The binary combination now becomes(010 101)
- Replace each 3-bit binary group its equivalent to octal digit.
- i.e.010= 2 and 101=5
- Therefore $(10101)_2 = (010\ 101)_2 = (25)_8$
- Integer part or fractional part by a group of 3 bits. Groups are formed starting from the octal point and moving toward right.

Ex: $(110.101)_2 = (101 \ 011)_2 = (6.5)_8$ $(10111.1)_2 = (010 \ 111.100)_2$ $= (2 \ 7 \ 4)_8 = (27.4)_8$

Ex:

 $(11011011.1111)2 = (011\ 011\ 011\ 111\ 100)_2$ = $(3\ 3\ 3\ 7\ 4) = (333.74)_8$

UNIT-II

- Binary Addition
- Binary Subtraction
- Binary Multiplication
- Binary Division
- 1's and 2'Complement
- Subtraction using Complements
- Signed Binary Numbers

Binary Arthimetic

- The arithmetic of binary numbers means the operation of addition, subtraction, multiplication and division.
- **Binary arithmetic** operation starts from the least significant bit i.e. from the right most side.

- Binary Addition
- Rules
- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1
- 1 + 1 = 10 (Read as 0 with a Carry 1)
- 1+1+1=11(Read as 1 with a Carry 1)

- Example
- 10001001 and 10010101

- Binary Subtraction
- 0 0 = 0
- 0 1 = 11 (1 result 1 carry), borrow 1 from the next more significant bit
- 1 0 = 1
- 1 1 = 0

Binary Subtract

• Ex: 3-13 (1 Cannot be Subtracted from 0)

• A binary arithmetic example is given to understand the operation more clearly

- Binary Multiplication
- Rules
- 0x0=0
- 0x1=0
- 1x0=0
- 1x1=1

- 0×0=0
- 1×0=0
- 0×1=0
- 1×1=1 (there is no carry or borrow for this)

 $\begin{array}{r}
 1 \ 0 \ 0 \ 1 \\
 \underline{\times} \ 1 \ 0 \ 1 \\
 1 \ 0 \ 0 \ 1 \\
 0 \ 0 \ 0 \ 0 \\
 1 \ 0 \ 0 \ 1 \\
 1 \ 0 \ 1 \ 1 \ 0 \ 1 \\
 1 \ 0 \ 1 \ 1 \ 0 \ 1 \\
 \end{array}$

Binary Arithmetic

• Binary Division

Two rules 1) $0 \div 1 = 0$ 2) $1 \div 1 = 1$

Binary Subtraction:

0-0=0

0-1=11

1-0=1

1-1=0

Example 2.11 Divide 6 by 3. Solution:

30

Here, the dividend is 6 and the divisor is 3. After the division, the quotient is remainder is 0. Repeating this in binary,

0

$$\begin{array}{r}
10\\
11 \overline{)10}\\
11\\
\overline{)00}
\end{array}$$

Example 2.12

Divide 10 by 4.

Solution:

4	2		2.5
	8	and the second second	8
			20
			20

Here, the quotient is 2 and the remainder is also 2.

Including the fractional part, the quotient is 2.5. The same example is repeated in binary.

e

10 100 1010		1 100 1	0.1
100			100
10	M = 1 M.		100
• • • • •			100
			0

Here, the quotient is 10 (2) andIncluding the fractional part,the remainder is also 10 (2).the quotient is 10.1 (2.5).

The method explained can be extended for bigger numbers also.

• Binary Division

$$\begin{array}{c} 101 \\ 101 \\ \underline{101} \\ 110 \\ \underline{101} \\ 101 \\ 1 \end{array} \begin{pmatrix} 101 \rightarrow \text{Quotient} \\ 101 \\ \underline{101} \\ 1 \end{pmatrix} \\ \begin{array}{c} 1 \\ \text{Remainder} \\ \end{array}$$

1's and 2's Complements

- 1's Complement
- To used to Perform Subtraction using adder Circuit
- 1's Complement of 1 is 1-1=0
- 1's Complement of 0 is 1-0=1
- Remember (Binary number Changing)
- 1's Complement of 0 is 1
- 1's Complement of 1 is 0

EXAMPLES

Binary Number

1's Complement

2'S Complement

- 2' complement of a binary number
- Adding 1 to the 1's Complement
- Ex 1010
- First Convert to 1's Complement
- Second Add 1
- 0101 +
- Add 1 1
- 2'Complement 0 1 1 0

SUBTRACTION USING COMPLEMENTS

- 1'S and 2's Complement representation of Binary numbers.
- To performing subtraction using the process of addition(adder circuit)

1's Complement Subtraction

- Steps Followed
- Take the minuend in Binary
- Take the 1's Complement of Subtrahend and
- Add it to the minuend
- If carry is produced ,add the carry to the sum
- Subtraction rule (Remember)

- 0-0=0
- 0-1=11
- 1-0=1
- 1-1=0
- Ex: Subtract 4 from 13 Apply the rules binary subtraction
- 1101 13
- 0100 4
- 1001 9

• Repeating the above process in 1' Complement Subtraction

1101 +	Addition	0 + 0 = 0 0 + 1 = 1
1011		1 + 0 = 1 1 + 1 = 10 (Read as 0 with a Carry 1) 1+1+1=11(Read as 1 with a Carry 1)
1000 +		
1		
1001		

- Add 4 Digit Binary Number
- Easy way: 1 + 1 + 1 + 1 (in base 10) = 4, which in binary is 100.
- Added in binary:
- 1 + 1 = 10
- 10 + 1 = 11
- 11 + 1 = 100

2's Complement Subtraction

- Take the minuend in binary .
- Take the 2's Complement of subtrahend and add it to the minuend.
- If a carry is produced. Ignore the Carry
- If carry is not produced. it indicates that the result is negative and the result is in 2's complement form

- Ex: subtract 4 from 13
- 1 1 0 1 13
- 0100 4
- 1001 9

Repeating the above process in 2's complement subtraction

1's Complement of subtrahend = 1011

2's Complement of Subtrahend = $1 \ 0 \ 1 \ 1$

$$+1$$

= 1 1 0 0

Signed Binary Numbers

- + Sign to denote Positive Numbers
- - Sign to denote the Negative Numbers
- 0 is used to represent (+) Positive Numbers
- 1 is used to represent (-) Negative Numbers
- The bit used to represent the sign of the number is
- Called the sign bit

- Ex: Sign Magnitude Bit
- +5 0 000 0101
- -5 1 000 0101
- +14 0 000 1110
- -14 1 000 1110
- Magnitude part is the same for both positive and negative numbers
- + 0 0 000 0000
- 0
 1 000
 0000
- The positive numbers are represented in their true binary form with 0 as sign bit in MSB position

- Sign 1's Complement representation
- 1. Write the positive binary from of the number, inculding sign bit
- 2 Invert each bit, including the sign bit
- Ex +12 ,-12
- 1's complement representation
- + 12 = 0 000 1100
- -12 = 1 111 0011

Sign 2' Complement representation

- 1.Write the postive binary form of the number, inculding the sign bit
- 2. Invert each bit, inculding sign bit

Ex

+ 12	=	0	000	1100
1's Complement	=	1	111	0011
Add 1				1
		1	111	0100

Binary Codes

Types of Binary Code

- 1. BCD Codes 8421
- 2. 2421 and 4221 codes
- 3. Excess-3 code
- 4. Gray code
- 5. ASCII code

- A group of bits which are used to represent decimal numbers 0 to 9 are called Binary coded Decimal codes.
- BCD Code is 8421
- Indicates the binary weights of the four bits2³,2²,2¹,2⁰
- 1001 9

BCD (8421) Addition

- 1.Add the two numbers, using the rules of binary addition
- 2.if the 4 bit sum is equal to or less then 9, it is a vaild BCD number
- 3.if the 4 bit sum is greater then 9 or if a carry out of a BCD group is generated the result is invalid BCD.
- EX:
- 5 0101
- 2 0010
- 7 0111

- To get the correct BCD result add 6 (i.e 0110)
- To the first group and take the carry next group.
- 7 + 0111
- 6 0110
- 13 1101 (Invalid BCD its exceeds 9)
- 0110
- 1 0011 valid BCD number(0001 0011)

2421 and 4221 CODES

- This code are called as Self Complementing Codes
- Two such codes are 2421 and 4221 binary combination of decimal digits

• 2421

- eg: Binary code for 2 = 0010
- 4221
- Eg: Binary code for 4= 0001

Decimal	2421	4221
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0110
5	1011	1001
6	1100	1100
7	1101	1101
8	1110	1110
9	1111	1111

1's Complement of Codes

- 2421
- Binary code 2 = 0010
- 1's Complement 1101 and this code represents 7 ,which is 9 complement of 2
- Eg:4
- Binary Code for 4 = 0100
- I's Complement = 1011 represents 5, which 9 complement of 4

- 4221
- Binary code for 1 =0001
- 1's Complments = 1110
- and this code represents 8 ,which is 9's complement of 1

Excess -3 code

- Another BCD Code
- Decimal digit adding 0011(3) to the 8421 BCD
- Code
- The six invalid codes are 0000,0001,0010
- 1110,and 1111

dec	8421	Execss
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Decimal	Excess	
26	0101 1001	
97	1100 1010	
853	1011 1000 0110	

- Excess -3 Addition
- Sum Less than 9 an Excess -6 number result
- To return to excess-3 from to subract 3
- 2+ 0101
- 3 0110
- 5 1011
- 0011
 - 1000

- A carry is produced
- Excess-3 code exceeds 9, there will be carry from one group into the next.
- The group that produced the carry will be in 8421 from and the next group will be in Excess -3 code

• 29	0101	1100
• 49	0111	1100
• 78	1101	1000
•	0011	0011
•	1010	1011

- First group in excess-6 and second group in 8421 subract 3 from the first group and add3
- To the second correct result in excess-3

Gray Code

- To used for sequence counting
- To count advanced by one , to reduce error
- Binary to Gray conversion
- 1.the MSB of the Gray code is the same as the MSB of the binary
- 2.Coding from left to right, add each adjancent pair of bits to get the next bit of the gray code
- Omit the carries if occurs

- Convert the binary to Gray
- Step 1:
- The left most bit(MSB) in Gray code is the same as the MSB of the binary
- 1 0 1 1 (Binary)
- 1
- Step 2
- Add the left most bit to the adjacent one
- 1+0 1 1
- 1 1

- Step 3
- Add the next adjacent pair
- 1 0 + 1 1
- 1 1 1
- Step 4
- Add the next adjacent pair and omit the carry
- 1 0 1 + 1
- 1 1 1 0
- $(1011)_2 = (1110)_G$

Gray to Binary Conversion

- 1.The MSB of the Binary is the same as the MSB of the gray
- 2.Coding from left to right, add the binary digit generated to the adjacent Gray bit to get the next bit of the binary
- Omit the Carries if Occurs
- Step1: The left most bit in binary is the same as the MSB of the Gray
- 1 1 1 0 (Gray)
-]
- Step2
- Add the binary digit generated to the adjacent bit of the gray code
- 1 1 1 0
- 1 0

Step 3

Add the binary digit generated to the adjacent bit of the gray code

 $\begin{array}{cccccccc} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{array}$

Step 4.

Add the binary digit generated to the adjacent bit of the Gray code

The conversion $(1110)_{G} = (1011)_{2}$

ASCII CODE

- American code for information Interchange
- The 7 bit code to represent decimal digits
- 0 to 9,
- Alphabets A to Z
- Both lower case and upper case and special characters

ASCII	Decimal	HEX	7-Binary
0	48	30	011 0000
1	49	31	011 0001
2	50	32	0110010
9	57	39	0111001
:	58	3A	011 1010