
DATABASE SYSTEM
SUB.CODE:18K5CSELCS1:A

Mrs. S.Ramya M.Sc., M.Phil

Database System
Unit :I Chapter :1 Introduction

A database-management system (DBMS)

• It is a collection of interrelated data and a set of programs to access those data.

• The collection of data, usually referred to as the database, contains information
relevant to an enterprise.

• The primary goal of a DBMS is to provide a way to store and retrieve database
information that is both convenient and efficient.

Database systems are designed to manage large bodies of information.

• Mangagment of data involves both defining structures for storage of information
and providing mechanisms for the manipulation of information.

• In addition, the database system must ensure the safety of the information stored,
despite system crashes or attempts at unauthorized access.

• If data are to be shared among several users, the system must avoid possible
anomalous results.

• Information is so important in most organizations,

• computer scientists have developed a large body of concepts and techniques for
managing data.

1.1 Database-System Applications

• Databases are widely used. Here are some representative applications:

Enterprise Information

• Sales: For customer, product, and purchase information.

• Accounting: For payments, receipts, account balances, assets and other accounting
information.

• Human resources: For information about employees, salaries, payroll taxes, and benefits,
and for generation of paychecks.

• Manufacturing: For management of the supply chain and for tracking production of items in
factories, inventories of items in warehouses and stores, and orders for items.

• Online retailers: For sales data noted above plus online order tracking, generation of
recommendation lists, and maintenance of online product evaluations.

Banking and Finance

• Banking: For customer information, accounts, loans, and banking transactions.

• Credit card transactions: For purchases on credit cards and generation of monthly statements.

• Finance: For storing information about holdings, sales, and purchases of financial instruments such as
stocks and bonds; also for storing real-time market data to enable online trading by customers and
automated trading by the firm.

• Universities: For student information, course registrations, and grades (in addition to standard enterprise information such as
human resources and accounting).

• Airlines: For reservations and schedule information. Airlines were among the first to use databases in a geographically distributed
manner.

• Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances on prepaid calling cards, and
storing information about the communication networks.

• Databases form an essential part of every enterprise today, storing not only types of information that are common to most
enterprises.

• In the early days, very few people interacted directly with database systems, although without realizing it, they interacted with
databases indirectly— through printed reports

• such as

1. credit card statements or

2. Through agents such as bank tellers

3. Airline reservation agents

• Then auto- mated teller machines came along and let users interact directly with databases.

• Phone interfaces to computers (interactive voice-response systems) also allowed users to deal directly with databases— a caller
could dial a number, and press phone keys to enter information or to select alternative options, to find flight arrival The Internet
revolution of the late 1990s sharply increased direct user access to databases.

• Organizations converted many of their phone interfaces to databases into Web interfaces, and made a variety of services and
information available online.

• For instance, when you access an online bookstore and browse a book or music collection, you are accessing data stored in a
database al/departure times, for example, or to register for courses in a university.

• When you access a bank Web site and retrieve your bank balance and transaction information, the information is retrieved
from the bank’s database system

• The importance of database systems can be judged in another way— today, database system vendors like Oracle are
among the largest software companies in the world, and database systems form an important part of the product line of
Microsoft and IBM.

Purpose of Database Systems
• Database systems arose in response to early methods of computerized management of commercial data.

• As an example of such methods, typical of the 1960s, consider part of a university organization that, among other data,
keeps information about all instructors, students, departments, and course offerings.

• One way to keep the information on a computer is to store it in operating system files. To allow users to manipulate the
information, the system has a number of application programs that manipulate the files, including programs to:

1. Add new students, instructors, and courses

2. Register students for courses and generate class rosters

3. Assign grades to students, compute grade point averages (GPA), and generate transcripts

• System programmers wrote these application programs to meet the needs of the university.

• New application programs are added to the system as the need arises. For example, suppose that a university decides to
create a new major (say, computer science).

• As a result, the university creates a new department and creates new permanent files (or adds information to existing files)
to record information about all the instructors in the department, students in that major, course offerings, degree
requirements, etc.

• New application programs may also have to be written to handle new rules in the university. Thus, as time
goes by, the system acquires more files and more application programs.

• This typical file-processing system is supported by a conventional operating system.

• The system stores permanent records in various files, and it needs different application programs to
extract records from, and add records to, the appropriate files.

• Before database management systems (DBMSs) were introduced, organizations usually stored
information in such systems.

• Keeping organizational information in a file-processing system has a number of major disadvantages:

File-processing system has a number of major disadvantages:
1.Data redundancy and inconsistency:

• Since different programmers create the files and application programs over a long period, the various files
are likely to have different structures and the programs may be written in several programming
languages.

• Moreover, the same information may be duplicated in several places (files).

• For example, if a student has a double major (say, music and mathematics) the address and telephone
number of that student may appear in a file that consists of student records of students in the Music
department and in a file that consists of student records of students in the Mathematics department.

Difficulty in accessing data.

• Suppose that one of the university clerks needs to find out the names of all students who live within a particular postal-
code area.

• The clerk asks the data-processing department to generate such a list.

• Because the designers of the original system did not anticipate this request, there is no application program on hand to
meet it.

• There is, however, an application program to generate the list of all students.

• The university clerk has now two choices:

either obtain the list of all students and extract the needed information manually or ask a programmer to write
the necessary application program.

Both alternatives are obviously unsatisfactory. Suppose that such a program is written, and that,
several days later, the same clerk needs to trim that list to include only those students who have taken at least 60 credit
hours.

As expected, a program to generate such a list does not exist. Again, the clerk has the preceding two
options, neither of which is satisfactory.

• The point here is that conventional file-processing environments do not allow needed data to be retrieved in a
convenient and efficient manner. More responsive data-retrieval systems are required for general use.

1. Data isolation. Because data are scattered in various files, and files may be in different formats, writing new
application programs to retrieve the appropriate data is difficult.

2. Integrity problems. The data values stored in the database must satisfy certain types of consistency constraints.
Suppose the university maintains an account for each department, and records the balance amount in each ac- count.

Atomicity problems.

• A computer system, like any other device, is subject to failure.

• In many applications, it is crucial that, if a failure occurs, the data be restored to the consistent state that existed
prior to the failure.

• Consider a program to transfer $500 from the account balance of department A to the account balance of
department B.

• A($500) ----- B ($500)

• If a system failure occurs during the execution of the program, it is possible that the $500 was removed from the
balance of department A

• but was not credited to the balance of department B,

• A($0) ----- B ($0)

• resulting in an inconsistent database state.

• Clearly, it is essential to database consistency that either both the credit and debit occur, or that neither occur.

• That is, the funds transfer must be atomic — it must happen in its entirety or not at all.

• It is difficult to ensure atomicity in a conventional file-processing system.

Concurrent-access anomalies.

• For the sake of overall performance of the system and faster response, many systems allow
multiple users to update the data simultaneously.

• Indeed, today, the largest Internet retailers may have millions of accesses per day to their data
by shoppers.

• In such an environment, interaction of concurrent updates is possible and may result in
inconsistent data.

• Consider department A, with an account balance of $10,000.

• If two department clerks debit the account balance (by say $500 and $100, respectively) of
department A at almost exactly the same time

• , the result of the concurrent executions may leave the budget in an incorrect (or inconsistent)
state.

• Suppose that the programs executing on behalf of each withdrawal read the old balance, reduce
that value by the amount being withdrawn, and write the result back.

• If the two programs run concurrently, they may both read the value $10,000, and write back $9500
and $9900, respectively.

• Depending on which one writes the value last, the account balance of department A may contain
either $9500 or $9900, rather than the correct value of $9400

• . To guard against this possibility, the system must maintain some form of supervision. But
supervision is difficult to provide because data may be accessed by many different application
programs that have not been coordinated previously.

• Suppose that the programs executing on behalf of each withdrawal read the old balance, reduce that value by the
amount being withdrawn, and write the result back. If the two programs run concurrently, they may both read the
value $10,000, and write back $9500 and $9900, respectively.

• Depending on which one writes the value last, the account balance of department A may contain either $9500 or
$9900, rather than the correct value of $9400. To guard against this possibility, the system must maintain some
form of supervision. But supervision is difficult to provide because data may be accessed by many different
application programs that have not been coordinated previously.

Security problems.

• Not every user of the database system should be able to access all the data.

• For example, in a university, payroll personnel need to see only that part of the database that has financial
information.

• They do not need access to information about academic records.

• But, since application programs are added to the file-processing system in an ad hoc manner, enforcing such
security constraints is difficult.

• These difficulties, among others, prompted the development of database systems.

• In what follows, we shall see the concepts and algorithms that enable database systems to solve the problems with
file-processing systems.

• In most of this book, we use a university organization as a running example of a typical data-processing application.

1.4.1 Data-Manipulation Language

• A data-manipulation language (DML) is a language that enables users to access or manipulate data as
organized by the appropriate data model. The types of access are:

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information from the database

• Modification of information stored in the database

There are basically two types:

• Procedural DMLs require a user to specify what data are needed and how to get those
data.

• Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what
data are needed without specifying how to get those data.

• Declarative DMLs are usually easier to learn and use than are procedural DMLs. However, since a user
does not have to specify how to get the data, the database system has to figure out an efficient means of
accessing data.

• A query is a statement requesting the retrieval of information.

• The portion of a DML that involves information retrieval is called a query language.

• Although technically incorrect, it is common practice to use the terms query language and data-
manipulation language synonymously.

• There are a number of database query languages in use, either commercially or experimentally

• The levels of abstraction that we discussed in Section 1.3 apply not only to defining or structuring data,

• but also to manipulating data.

• At the physical level, we must define algorithms that allow efficient access to data.

• At higher levels of abstraction, we emphasize ease of use. The goal is to allow humans to interact efficiently
with the system.

1.4.2 Data-Definition Language

• We specify a database schema by a set of definitions expressed by a special language called a data-definition
language (DDL). The DDL is also used to specify additional properties of the data.

• We specify the storage structure and access methods used by the database system by a set of statements in a
special type of DDL called a data storage and definition language.

• These statements define the implementation details of the database schemas, which are usually hidden from
the users.

• The data values stored in the database must satisfy certain consistency constraints.

• For example, suppose the university requires that the account balance of a department must never be negative.

• The DDL provides facilities to specify such constraints. The database system checks these constraints every time
the database is updated.

• In general, a constraint can be an arbitrary predicate pertaining to the database.

• However, arbitrary predicates may be costly to test. Thus, database systems implement integrity constraints that
can be tested with minimal overhead:

1.Domain Constraints.

• A domain of possible values must be associated with every attribute

• (for example, integer types, character types, date/time types).

• Declaring an attribute to be of a particular domain acts as a constraint on the values that it can take.

• Domain constraints are the most elementary form of integrity constraint.

• They are tested easily by the system whenever a new data item is entered into the database.

2. Referential Integrity

• There are cases where we wish to ensure that a value that appears in one relation for a given set of attributes
also appears in a certain set of attributes in

• For example, the department listed for each course must be one that actually exists.

• More precisely, the dept name value in a course record must appear in the dept name attribute of some
record of the department relation.

• Database modifications can cause violations of referential integrity. When a referential-integrity constraint is
violated, the normal procedure is to reject the action that caused the violation.

3.Assertions.

• An assertion is any condition that the database must always satisfy.

• Domain constraints and referential-integrity constraints are special forms of assertions.

• However, there are many constraints that we cannot express by using only these special forms.

• For example, “Every department must have at least five courses offered every semester” must be expressed
as an assertion.

• When an assertion is created, the system tests it for validity. If the assertion is valid, then any future
modification to the database is allowed only if it does not cause that assertion to be violated.

4.Authorization.

• We may want to differentiate among the users as far as the type of access they are permitted
on various data values in the database.

• These differentiations are expressed in terms of authorization

• The most common being:

a. read authorization: which allows reading, but not modification, of data;

b. insert authorization: which allows insertion of new data, but not modification of existing data;

c. update authorization: which allows modification, but not deletion, of data;

d. delete authorization: which allows deletion of data. We may assign the user all, none, or a
combination of these types of authorization.

• The DDL, just like any other programming language, gets as input some instructions (statements)
and generates some output.

• The output of the DDL is placed in the data dictionary, which contains metadata— that is, data
about data. The data dictionary is considered to be a special type of table that can only be
accessed and updated by the database system itself (not a regular user).

• The database system consults the data dictionary before reading or modifying actual data.

1.5 Relational Databases

• A relational database is based on the relational model and uses a collection of tables to represent both
data and the relationships among those data.

• It also includes a DML and DDL. Most commercial relational database systems employ the SQL
language.

1.5.1 Tables

• Each table has multiple columns and each column has a unique name. Figure 1.2 presents a sample
relational database comprising two tables: one shows details of university instructors and the other
shows details of the various university departments.

• The first table, the instructor table, shows, for example, that an instructor named Einstein with ID 22222
is a member of the Physics department and has an annual salary of $95,000.

• The second table, department, shows, for example, that the Biology department is located in the
Watson building and has a budget of

• $90,000. Of course, a real-world university would have many more departments and instructors. We use
small tables in the text to illustrate concepts. A larger example for the same schema is available online.

dept name building budget

Comp. Sci. Taylor 100000

Biology Watson 90000

Elec. Eng. Taylor 85000

Music Packard 80000

Finance Painter 120000

History Painter 50000

Physics Watson 70000

ID name dept name salary

22222 Einstein Physics 95000

12121 Wu Finance 90000

32343 El Said History 60000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

76766 Crick Biology 72000

10101 Srinivasan Comp. Sci. 65000

58583 Califieri History 62000

83821 Brandt Comp. Sci. 92000

15151 Mozart Music 40000

33456 Gold Physics 87000

76543 Singh Finance 80000

Department Table
Instructor Table

• The relational model is an example of a record-based model.

• Record-based models are so named because the database is structured in fixed-format records of
several types.

• Each table contains records of a particular type.

• Each record type defines a fixed number of fields, or attributes.

• The columns of the table correspond to the attributes of the record type.

• It is not hard to see how tables may be stored in files.

• For instance, a special character (such as a comma) may be used to delimit the different attributes of a
record,

• another special character (such as a new-line character) may be used to delimit records.

• The relational model hides such low-level implementation details from database developers and users.

• We also note that it is possible to create schemas in the relational model that have problems such as
unnecessarily duplicated information.

• For example, suppose we store the department budget as an attribute of the instructor record.

• Then, whenever the value of a particular budget (say that one for the Physics department) changes,
that change must to be reflected in the records of all instructors

1.5.3Data-Definition Language

• SQL provides a rich DDL that allows one to define tables, integrity constraints, assertions, etc.

• For instance, the following SQL DDL statement defines the department table:

• Execution of the above DDL statement creates the department table with three columns: dept name,
building, and budget, each of which has a specific data type associated with it

• The SQL query language is nonprocedural. A query takes as input several tables (possibly only one) and
always returns a single table. Here is an example of an SQL query that finds the names of all

• instructors in the History department:

• The query specifies that those rows from the table instructor where the dept name is History must be
retrieved, and the name attribute of these rows must be displayed labled name, and a set of rows,
each of which contains the name of an instructor whose dept name, is History. If the query is run on
the table in Figure 1.2, the result will consist of two rows, one with the name El Said and the other with
the name Califieri.

1.5.2 Data-Manipulation Language

• Queries may involve information from more than one table. For instance, the
following query finds the instructor ID and department name of all instructors
associated with a department with budget of greater than $95,000. If the above
query were run on the tables in Figure 1.2,

•

select instructor.ID, department.dept name
from instructor, department
where instructor.dept name= department.dept name and department.budget > 95000;

ID Depttname

45565 Comp.Sci

10101 Comp.Sci

83821 Comp.Sci

12121 Finance

• ,

•

select instructor. name, department.dept name
from instructor, department
where instructor.dept name= department.dept name and department.budget <50000;

name Depttname

katz Comp.Sci

Srinivasan Comp.Sci

Brandt Comp.Sci

Wu Finance

Crick Biology

Kim Electrical Eng

Mozart Music

Einstein Physics

Gold physics

• The system would find that there are two departments with budget of greater than $95,000 — Computer
Science and Finance; there are five instructors in these departments.

• Thus, the result will consist of a table with two columns (ID, dept name) and five rows:

• (12121, Finance), (45565, Computer Science), (10101, Computer Science), (83821, Computer Science),
and (76543, Finance).

1.5.4 Database Access from Application Programs

• SQL is not as powerful as a universal Turing machine;

• that is, there are some computations that are possible using a general-purpose programming language but are not possible using

SQL.

• SQL also does not support actions such as input from users,

• output to displays, or communication over the network. Such computations and actions must be written in a host language, such as

C, C++, or Java, with embedded SQL queries that access the data in the database.

• Application programs are programs that are used to interact with the database in this fashion.

• By providing an application program interface (set of procedures) that can be used to send DML and DDL statements to the

database and retrieve the results.

• The Open Database Connectivity (ODBC) standard for use with the C language is a commonly used application program interface

standard.

1.6 Database Design
• Database systems are designed to manage large bodies of information.

• These large bodies of information do not exist in isolation.

• They are part of the operation of some enterprise whose end product may be information from the database
or may be some device or service for which the database plays only a supporting role.

• Database design mainly involves the design of the database schema.

• The design of a complete database application environment that meets the needs of the enterprise being
modeled requires attention to a broader set of issues

• 1.6.1 Design Process

• A high-level data model provides the database designer with a conceptual framework in which to specify the
data requirements of the database users, and how the database will be structured to fulfill these
requirements.

• The initial phase of database design, then, is to characterize fully the data needs of the prospective database
users.

• The database designer needs to interact extensively with domain experts and users to carry out this task.

• The outcome of this phase is a specification of user requirements

• Next, the designer chooses a data model, and by applying the concepts of the chosen data model,

• translates these requirements into a conceptual schema of the database.

• The schema developed at this conceptual-design phase provides a detailed overview of the enterprise.

• The designer reviews the schema to confirm that all data requirements are indeed satisfied and are not
in conflict with one another. The designer can also examine the design to remove any redundant
features.

• The focus at this point is on describing the data and their relationships, rather than on specifying
physical storage details.

• In terms of the relational model, the conceptual-design process involves decisions on what attributes
we want to capture in the database

and how to group these attributes to form the various tables.

• The “what” part is basically a business decision,

• The “how” part is mainly a computer-science problem. There are principally two ways to tackle the
problem.

• The process of moving from an abstract data model to the implementation of the database proceeds in
two final design phases.

• In the logical-design phase, the designer maps the high-level conceptual schema onto the
implementation data model of the database system that will be used.

• The designer uses the resulting system-specific database schema in the subsequent physical-design
phase, in which the physical features of the database are specified.

1.6.2 Database Design for a University Organization

• To illustrate the design process, let us examine how a
database for a university could be designed.

• The initial specification of user requirements may be
based on interviews with the database users, and on
the designer’s own analysis of the organization.

• The description that arises from this design phase
serves as the basis for specifying the conceptual
structure of the database.

• Here are the major characteristics of the university.

• The university is organized into departments.

• Each department is identified by a unique name (dept
name), is located in a particular building, and has a
budget

dept name building budget

Comp. Sci. Taylor 10000
0

Biology Watson 90000

Elec. Eng. Taylor 85000

Music Packard 80000

Finance Painter 12000
0

History Painter 50000

Physics Watson 70000

• The university maintains a list of all classes (sections) taught. Each section is identified by a course id, sec
id, year, and semester, and has associated with it a semester, year, building, room number, and time slot
id (the time slot when the class meets.

• The department has a list of teaching assignments specifying, for each instructor, the sections the
instructor is teaching.

• The university has a list of all student course registrations, specifying, for each student, the courses and
the associated sections that the student has taken (registered for).

1.6.3The Entity-Relationship Model
• The entity-relationship (E-R) data model uses a collection of basic objects, called entities, and

relationships among these objects.

• An entity is a “thing” or “object” in the real world that is distinguishable from other objects.

• For example, each person is an entity, and bank accounts can be considered as entities

• Entities are described in a database by a set of attributes. For example, the attributes dept name,
building, and budget may describe one particular department in a university, and they form attributes of
the department entity set. Similarly, attributes ID, name, and salary may describe an instructor entity

• The overall logical structure (schema) of a database can be expressed graphically by an entity-
relationship (E-R) diagram. There are several ways in which to draw these diagrams. One of the most
popular is to use the Unified Modeling Language (UML). In the notation we use, which is based on UML,
an E-R diagram is represented as follows:

1.6.4 Normalization

• Another method for designing a relational database is to use a process commonly known as normalization.

• The goal is to generate a set of relation schemas that allows us to store information without unnecessary redundancy,

• yet also allows us to retrieve information easily. The approach is to design schemas that are in an appropriate normal
form.

• To determine whether a relation schema is in one of the desirable normal forms, we need additional information about
the real-world enterprise that we are modeling with the database.

1.7 Data Storage and Querying

• A database system is partitioned into modules that deal with each of the responsibilities of the overall system.

• The functional components of a database system can be broadly divided into the

 storage manager and

 The query processor components.

• The storage manager is important because databases typically require a large amount of storage space. Corporate
databases range in size from hundreds of gigabytes to, for the largest databases,

• Terabytes of data.

• A gigabyte is approximately 1000 megabytes (actually 1024) (1 billion bytes),

• and a terabyte is 1 million megabytes (1 trillion bytes).

• Since the main memory of computers cannot store this much information, the information is stored on disks.

• Data are moved between disk storage and main memory as needed.

• Since the movement of data to and from disk is slow relative to the speed of the central processing unit,

• it is imperative that the database system structure the data so as to minimize the need to move data between disk
and main memory.

• The query processor is important because it helps the database system to simplify and facilitate access to data.

• The query processor allows database users to obtain good performance while being able to work at the view level
and not be burdened with understanding the physical-level.

• It is the job of the database system to translate updates and queries written in a nonprocedural language, at the
logical level,

• into an efficient sequence of operations at the physical level.

1.7.1 Storage Manager
• The storage manager is the component of a database system that provides the interface between

The low-level data stored in the database

And the application programs and queries submitted to the system.

• The storage manager is responsible for the interaction with the file manager.

• The raw data are stored on the disk using the file system provided by the operating system.

• The storage manager translates the various DML statements into low-level file-system commands.

• Thus, the storage manager is responsible for

storing,

 retrieving, and

updating data in the database.

• The storage manager components include:

• Authorization and integrity manager, which tests for the satisfaction of integrity constraints and
checks the authority of users to access data.

• Transaction manager, which ensures that the database remains in a consistent (correct) state
despite system failures, and that concurrent transaction executions proceed without conflicting.

• File manager, which manages the allocation of space on disk storage and the data structures used to
represent information stored on disk.

• The storage manager implements several data structures as part of the physical system implementation:

• Data files, which store the database itself.

• Data dictionary, which stores metadata about the structure of the database, in particular the
schema of the database.

• Indices, which can provide fast access to data items.

Like the index in this textbook, a database index provides pointers to those data
items that hold a particular value.

For example, we could use an index to find the instructor record with a particular ID, or all
instructor records with a particular name. Hashing is an alternative to indexing that is faster in
some but not all cases.

• 1.7.2 The Query Processor

• The query processor components include:

• DDL interpreter, which interprets DDL statements and records the definitions in the data
dictionary.

• DML compiler, which translates DML statements in a query language into an evaluation plan
consisting of low-level instructions that the query evaluation engine understands.

• A query can usually be translated into any of a number of alternative evaluation plans that all give the same
result. The DML compiler also performs query optimization; that is, it picks the lowest cost evaluation plan
from among the alternatives.

• Query evaluation engine, which executes low-level instructions generated by the DML compiler.

1.8 Transaction Management
Often, several operations on the database form a single logical unit of work. An example is a funds transfer, as in
Section 1.2, in which one department account (say A) is debited and another department account (say B) is credited.

• Clearly, it is essential that either both the credit and debit occur, or that neither occur. That is, the funds transfer
must happen in its entirety or not at all.

• This all-or-none requirement is called atomicity. In addition, it is essential that the execution of the funds transfer
preserve the consistency of the database.

• That is, the value of the sum of the balances of A and B must be preserved. This correctness requirement is called
consistency.

• Finally, after the successful execution of a funds transfer, the new values of the balances of accounts A and B must
persist, despite the possibility of system failure. This persistence requirement is called durability.

• A transaction is a collection of operations that performs a single logical function in a database application.

• Each transaction is a unit of both atomicity and consistency. Thus, we require that transactions do not violate any
database- consistency constraints.

• That is, if the database was consistent when a transaction started, the database must be consistent when the
transaction successfully terminates.

• However, during the execution of a transaction, it may be necessary temporarily to allow inconsistency, since
either the debit of A or the credit of B must be done before the other.

• This temporary inconsistency, although necessary, may lead to difficulty if a failure occurs.

• It is the programmer’s responsibility to define properly the various transactions, so that each preserves the
consistency of the database.

• For example, the transaction to transfer funds from the account of department A to the account of department B
could be defined to be composed of two separate programs: one that debits account A, and another that credits
account B.

• The execution of these two programs one after the other will indeed preserve consistency.

• However, each program by itself does not transform the database from a consistent state to a new consistent state.
Thus, those programs are not transactions.

• Ensuring the atomicity and durability properties is the responsibility of the database system itself— specifically, of the
recovery manager. In the absence of failures, all transactions complete successfully, and atomicity is achieved easily.

• However, because of various types of failure, a transaction may not always complete its execution successfully.

• If we are to ensure the atomicity property, a failed transaction must have no effect on the state of the database. Thus,
the database must be restored to the state in which it was before the transaction in question started executing.

• The database system must therefore perform failure recovery, that is, detect system failures and restore the database
to the state that existed prior to the occurrence of the failure.

• Finally, when several transactions update the database concurrently, the consistency of data may no longer be
preserved, even though each individual transaction is correct.

• It is the responsibility of the concurrency-control manager to control the interaction among the concurrent
transactions, to ensure the consistency of the database. The transaction manager consists of the concurrency-control
manager and the recovery manager.

1.9 Database Architecture
• We are now in a position to provide a single picture (Figure 1.5) of the various components of a database

system and the connections among them.

• The architecture of a database system is greatly influenced by the underlying computer system on which the
database system runs.

• Database systems can be centralized, or client-server, where one server machine executes work on behalf of
multiple client machines.

• Database systems can also be designed to exploit parallel computer architectures. Distributed databases
span multiple geographically separated machines.

• The issues include how to store data, how to ensure atomicity of transactions that execute at multiple sites,
how to perform concurrency control, and how to provide high availability in the presence of failures.
Distributed query processing and directory systems are also described in this chapter.

• Most users of a database system today are not present at the site of the database system, but connect to it
through a network.

• We can therefore differentiate between client machines, on which remote database users work, and server
machines, on which the database system runs.

naive users
(tellers, agents,

web users)

application
programmers

sophisticated
users

(analysts)

database
administrators

use write use use

application
interfaces

application
programs

query
tools

administration
tools

disk storage
data dictionary

storage manager

query processor

DML compiler
and organizer

application
program

object code

DDL interpreterDML queriescompiler and
linker

statistical datadata

indices

file managerbuffer manager transaction
manager

authorization
and integrity

manager

query evaluation
engine

user

network

database system

application

user

network

database system

application server

application client

client

server

Three tier ArchitectureTwo tier Architecture

• Database applications are usually partitioned into two or three parts, In a two-tier architecture,
the application resides at the client machine, where it invokes database system functionality at
the server machine through query language statements. Application program interface
standards like ODBC

• and JDBC are used for interaction between the client and the server.

user

network

database system

application

• In contrast, in a three-tier architecture, the client machine acts
as merely a front end and does not contain any direct database
calls.

• Instead, the client end communicates with an application server,
usually through a forms interface.

• The application server in turn communicates with a database
system to access data.

• The business logic of the application, which says what actions to
carry out under what conditions, is embedded in the application
server, instead of being distributed across multiple clients.

• Three-tier applications are more appropriate for large
applications, and for applications that run on the World Wide
Web

user

network

database system

application server

application client

1.10 Data Mining and Information Retrieval
• The term data mining refers loosely to the process of semi automatically analyzing large databases to find useful patterns.

• Like knowledge discovery in artificial intelligence (also called machine learning) or statistical analysis, data mining attempts to
discover rules and patterns from data.

• However, data mining differs from machine learning and statistics in that it deals with large volumes of data, stored primarily on
disk.

• That is, data mining deals with “knowledge discovery in database.

• Some types of knowledge discovered from a database can be represented by a set of rules.

• The following is an example of a rule, stated informally: “Young women with annual incomes greater than $50,000 are the most
likely people to buy small sports cars.”

• Of course such rules are not universally true, but rather have degrees of “support” and “confidence.” Other types of knowledge
are represented by equations relating different variables to each other, or by other mechanisms for predicting outcomes when
the values of some variables are known.

• There are a variety of possible types of patterns that may be useful, and different techniques are used to find different types of
patterns.

• Usually there is a manual component to data mining, consisting of

• preprocessing data to a form acceptable to the algorithms,

• post processing of discovered patterns to find novel ones that could be useful.

• There may also be more than one type of pattern that can be discovered from a given database, and manual interaction may be
needed to pick useful types of patterns.

• For this reason, data mining is really a semiautomatic process in real life. However, in our description we concentrate on the
automatic aspect of mining.

UNIT II

Structure of Relational Databases

• A relational database is nothing but a collection of tables, in
which each table assigned with a unique name.

•For example, instructor, course, department

• consider the instructor_table, which holds the
information about instructors.

• Instructor table has four attributes namely ID, name,
dept_name, and salary.

• Each row of this table stores information about an
instructor, such as instructor’s ID, name, dept_name,
and salary.

• Similarly, the course table stores information about
courses, such as course_id, title, dept name, and
credits, for each course.

• A tuple is known as a sequence or list of values stored in
a relation.

• A relationship between n values is represented by an n-
tuple of values,

• i.e., a tuple with n values, which means a row in a table
which is shown below.

• Thus, in the relational model the term relation is used
to refer to a table.

• The term tuple is used to refer to a row.

• Similarly, the term attribute is used to refer to a
column of a table.

• The term relation instance is used to refer to a
specific instance of a relation,

• i.e., containing a specific set of rows.

• For each attribute of a relation, there is a set of
permitted values, called the domain of that attribute.

• A domain is referred to as atomic only if the elements
of the domain are indivisible units.

• The null value is a special value that signifies when
the value is unknown or does not exist.

Database Schema
• The database schema, is nothing but the logical design of the

database.

• The database instance, is nothing but a snapshot of the data in the
database at a given instant in time.

• Let, A1, A2, …, An are referred as attributes then

• Relation schema is referred as R = (A1, A2, …, An)

For example:

department(dept_name, building, budget)

• r(R) denotes a relation r on the relation schema R.

• The concept of a relation instance corresponds to the
programming-language notion of a value of a variable.

• The value of a given variable may change with time.

• Similarly when the contents of a relation instance may
change with time, the relation is updated.

• But the schema of a relation does not generally
change.

• The schema for the relation department

(ref: 1st chap) is
• department(dept _name, building, budget)

• It is to be noted that the attribute dept_name
appears in both the instructor schema and the
department schema.

• This duplication is not a coincidence.

• Rather, using common attributes in relation schemas
is one way of relating tuples of distinct relations.

Keys

• Primary Key – A primary key is a column or set of columns in a table
that uniquely identifies tuples or rows in that table.

• Super Key – A super key is a set of one of more columns or attributes
to uniquely identify rows in a table.

• Candidate Key – A super key with no redundant(repitition) attribute
is known as candidate key.

• Alternate key – Out of all candidate keys, only one
gets selected as primary key, all other keys are known
as alternate or secondary keys.

• Composite key – A key that consists of more than one
attribute to uniquely identify rows in a table is called
composite key.

• Foreign key – Foreign keys are the columns of a table
that points to the primary key of another table.

• They act as a cross-reference between tables.

• suppose K R

• K is a superkey of R if values for K are sufficient to
identify a unique tuple of each possible relation r(R)
• by “possible r ” it mean a relation r that could exist in the

enterprise.

• Example: {staff_name, department} and

{staff_name}

are both superkeys of department, if no two staff of

department can possibly have the same name.

• In real life, an attribute such as staff_id would be used instead of

staff_name to uniquely identify customers.

• K is a candidate key if K is minimal

Example: {staff_name} is a candidate key for

department, since it is a superkey and no subset of it

is a superkey.

• Primary key: a candidate key chosen as the principal

means of identifying tuples within a relation should

choose an attribute whose value never, or very rarely,

changes.

• E.g. email address is unique, but may change

Schema Diagrams

• A database schema, along with primary key and
foreign key dependencies, can be depicted by schema
diagrams.

• Each relation are drawn as a box, with the relation
name at the top in blue, and the attributes are listed
inside the box.

• Primary key attributes are shown underlined. Foreign
key dependencies are noted with arrows from the
foreign key attributes of the referencing relation to
the primary key of the referenced relation.

Schema of the university database
• classroom(building, room_number, capacity)

• department(dept_name, building, budget)

• course(course_id, title, dept_name, credits)

• instructor(ID, name, dept_name, salary)

• section(course_id, sec_id, semester, year, building,
room number, time slot_id)

• teaches(ID, course_id, sec_id, semester, year)

• student(ID, name, dept_name, tot_cred)
• takes(ID, course_id, sec_id, semester, year, grade)

• advisor(s ID, i_ID)

• time slot(time slot_id, day, start_time, end_ time)
• prereq(course_id, prereq_id)

Relational Query Language

• A query language is a language in which a user needs some information
from the database.

• These query languages are usually higher than the standard programming
language.

• Query languages can be categorized as either procedural language or
nonprocedural language.

• In a procedural language, the user insists the system to perform a sequence
of operations on the database to compute the desired result.

• In a nonprocedural language, the user describes the desired information
without giving a specific procedure for getting that information.

• Language in which user requests information from the
database.

• Categories of languages are as follows
• Procedural

• Non-procedural, or declarative

• “Pure” languages:
• Relational algebra

• Tuple relational calculus

• Domain relational calculus

• Pure languages form underlying basis of query
languages that people use.

Relational Operations
• All procedural relational query languages provide a

set of operations that can be applied to either a single
relation or a pair of relations.

• This property allows one to combine several relational
operations in a modular way.

• Since the result of a relational query will also be a
relation, relational operations can be applied to the
results of queries as well as to the given set of
relations.

• Another frequent operation is to select certain
attributes ie., columns from a relation.

• The result is a new relation having only those
selected attributes.

• The relational operations include join operation,
natural join and so on…

• Not only those but also finding Cartesian products,
set operations such as union, intersection, set
difference.

• The join operation combines any two relations by
merging pairs of tuples, one from each relation into a
single tuple.

• In general, the natural join operation on two relations
which matches tuples and those values are the same
on all attribute names that should be common to
both relations.

• The Cartesian product operation combines
tuples from two relations, but unlike the
join operation, its result contains all pairs
of tuples from the two relations, regardless
of whether their attribute values match.

• The union operation performs a set union
of two similarly structured tables.

• Other set operations are union,
intersection and set difference.

Relational Algebra

• There are six basic operators they are
• select:

• project:

• union:

• set difference: –

• Cartesian product: x

• rename:

• The operators take one or two relations as inputs and produce a new
relation as a result.

