
 Database Systems 18K5CSELCS1:A

 S.Ramya

SUBJECT : DATABASE SYSTEMS

SUBJECT CODE : 18K5CSELCS1:A

UNIT : III, IV,V

STAFF NAME : 1. S.RAMYA

2.J.SHANMUGHAPRIYA

 Database Systems 18K5CSELCS1:A

 S.Ramya

 Database Systems 18K5CSELCS1:A

 S.Ramya

UNIT III

Data Definition Language in SQL

SQL - Structured Query Language. It is termed as a ‘query language’, it defines

the schema of the database, it modifies the database and also it can be used to

specify special security constraints on the data in the database.

SQLs data definition language (DDL) defines not only a set of relations but also

information about each relation in a database.

They are as follows:

• The schema for each relation

• The types of values associated with each attribute.

• The integrity constraints.

• The set of indices to be maintained for each relation.

• The security and authorization information for each relation.

• The physical storage structure of each relation on disk.

SQL Data Types

The SQL standard supports a variety of built-in types, including:

 • char(n): A fixed-length character string with user-specified length n. The full

form, character, can be used instead.

• varchar(n): A variable-length character string with user-specified maximum

length n. The full form, character varying, is equivalent.

• int: An integer (a finite subset of the integers that is machine dependent). The full

form, integer, is equivalent. • smallint: A small integer (a machine-dependent

subset of the integer type).

• numeric(p, d): A fixed-point number with user-specified precision. The number

consists of p digits (plus a sign), and d of the p digits are to the right of the decimal

 Database Systems 18K5CSELCS1:A

 S.Ramya

point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither 444.5 or

0.32 can be stored exactly in a field of this type.

• real, double precision: Floating-point and double-precision floating-point

numbers with machine-dependent precision.

• float(n): A floating-point number, with precision of at least n digits.

SQL Schema Definition:

SQL DDL defines the schema of a relation using a command create table. The

general form of ‘create table’ command is as follow:

Create table r(A1 D1, 2 D2, ……An Dn, (integrity constraint1),

(integrity constraintn));

r is the name of the relation; Ai is the name of an attribute in relation r; Di is the

domain of the attribute. The create command is completed using a semicolon.

Example: create table department (dept name varchar (20),

building varchar (15), budget numeric (12,2),

primary key (dept name));

SQL data definition integrity constraints are logical condition applied to the

relation for maintaining the consistency of the data in the database.

 To load data into a relation insert command is used.

Example: insert into instructor values

(10211, ’Smith’, ’Biology’, 66000);

To delete any tuple or entity from a relation delete command is used, the general

form of delete command is:

delete from r where P;

Example: delete from student;

 Database Systems 18K5CSELCS1:A

 S.Ramya

To delete an entire relation, from the database then we can use drop table

command.

drop table r;

The alter table command adds an attribute to an already existing relation in a

database. Its general form is

Alter table r add A D;

//where A is an attribute name and D is its corresponding domain.

Similarly, we can delete an attribute from an already existing relation in a database

using alter drop command. The general form of alter drop command is:

Alter table r drop A;

// A is an attribute to be dropped from relation A

Basic Structure of SQL queries

The basic structure of an SQL query consists of three clauses: select, from, and

where.

• The select clause is used to list the attributes desired in the result of a query.

 • The from clause is a list of the relations to be accessed in the evaluation of the

query.

 • The where clause is a predicate involving attributes of the relation in the from

clause.

A typical SQL query has the form select A1, A2, . . . , An from r1, r2, . . . ,rm

where P; Each Ai represents an attribute, and each ri a relation. P is a predicate. If

the where clause is omitted, the predicate P is true.

Queries on single relation:

To “Find the department names of all instructors,” which can be written as:

 Database Systems 18K5CSELCS1:A

 S.Ramya

select dept _name from instructor;

To eliminate the duplication of department name:

select distinct dept _name from instructor;

SQL allows the use of the logical connectives and, or, and not in the where clause.

The operands of the logical connectives can be expressions involving the

comparison operators <=, >, >=, =, and <>

Queries on Multiple relations:

select name, instructor.dept_ name, building from instructor, department where

instructor.dept_ name= department.dept_ name;

The Natural Join

• The matching condition in the from clause most often requires all attributes

with matching names to be equated.

• This can be done easier in SQL with the help of natural join.

• In SQL information from one or two relations can be joined together along

with where clause.

• The natural join operation operates on two relations and produces a relation

as the result.

• It considers only those pairs of tuples with the same value on those attributes

that appear in the schemas of both relations.

Queries

For all instructors in the university who have taught some course, find their

names and the course ID of all courses can be written as:

Using from … where

 select name, course_id from instructor, teaches where instructor.ID=

teaches.ID;

Using natural join

 select name, course_id from instructor natural join teaches;

A from clause in an SQL query can have multiple relations combined using

natural join, as shown:

 Database Systems 18K5CSELCS1:A

 S.Ramya

Select A1,A2,…,An from r1 natural join r2 natural …natural join rm

where P;

from clause can be of the form :

 from E1, E2,…,En

 where Ei can be single relation or an expression involving natural

joins.

Additional Basic Operations:

select name, course_id from instructor, teaches where

instructor.ID=teaches.ID;

The result of this query is a relation with attributes :

name,course_id

Drawback of from:

• Two relations in the from clause may have attributes with the same name, in

which case an attribute name is duplicated in the result.

• If we used an arithmetic expression in the select clause, the resultant

attribute does not have a name.

• Even if an attribute name can be derived from the base relations as in the

preceding example, we may not change the name in the result.

• SQL provides a way of remaining the attributes of a result relation.

• It uses the as clause, taking the form:

 old_name as new_name

• Select name as instructor_name, course_id from instructor, teaches where

instructor.ID=teaches.ID;

• Rename query useful to make long relation name with short name.

• Select T.name,S.course.id from instructor as T, teaches as S where

T.ID=S.ID;

• To “find the names of all instructors whose salary is greater than at least one

instructor in the Biology department”.

 Database Systems 18K5CSELCS1:A

 S.Ramya

• It can be write as

• Select distinct T.name from instructor as T, instructor as S

where T.salary>S.salary and S.dept_name=‘Biology’;

String Operations

SQL specifies strings by enclosing them in single quotes, for example, ’Computer’.

A single quote character that is part of a string can be specified by using two single

quote characters.

for example, the string “It’s right” can be specified by “It”s right”.

• The SQL standard specifies that the equality operation on strings is case

sensitive; as a result the expression “’comp. sci.’ = ’Comp. Sci.’” evaluates

to false.

• However, some database systems, such as MySQL and SQL Server, do not

distinguish uppercase from lowercase when matching strings; as a result

“’comp. sci.’ = ’Comp. Sci.’” would evaluate to true on these databases.

• Concatenating using “|| ”

• extracting substrings

• finding the length of strings

• converting strings to uppercase using the function upper(s) where s is a

string

• converting strings to lowercase using the function lower(s)

• removing spaces at the end of the string using trim(s)

• Pattern matching can be performed on strings, using the operator like.

• Describe patterns by using two special characters:

 • Percent (%):

The % character matches any substring.

• Underscore (_):

The character matches any character

 Database Systems 18K5CSELCS1:A

 S.Ramya

• ’Intro%’ matches any string beginning with “Intro”.

• ’%Comp%’ matches any string containing “Comp” as a substring

• ’_ _ _ ’ matches any string of exactly three characters.

• ’_ _ _ %’ matches any string of at least three characters.

• SQL expresses patterns by using the like comparison operator.

 “Find the names of all departments whose building name includes the

substring ‘Watson’.”

 select dept name from department where building like ’%Watson%’;

• The escape character is used immediately before a special pattern character

to indicate that the special pattern character is to be treated like a normal

character.

• The escape character for a like comparison using the escape keyword.

• like ’ab\%cd%’ escape ’\’ matches all strings beginning with “ab%cd”.

• like ’ab\\cd%’ escape ’\’ matches all strings beginning with “ab\cd”.

• The asterisk symbol “ * ” can be used in the select clause to denote “all

attributes.”

select instructor.* from instructor, teaches where instructor.ID=

teaches.ID;

indicates that all attributes of instructor are to be selected.

• The order by clause causes the tuples in the result of a query to appear in

sorted order.

• To list in alphabetic order all instructors in the Physics department

 select name from instructor where dept name = ’Physics’ order by

name;

• By default, the order by clause lists items in ascending order.

• To specify the sort order, specify desc for descending order or asc for

ascending order.

 Database Systems 18K5CSELCS1:A

 S.Ramya

• list the entire instructor relation in descending order of salary but the

instructors have the same salary,

• Then sort them in ascending order by name.

 select * from instructor order by salary desc, name asc;

• SQL includes a between comparison operator to simplify where clauses.

The names of instructors with salary amounts between $90,000 and $100,000

select name from instructor where salary between 90000 and 100000;

instead of:

select name from instructor where salary <= 100000 and

salary >= 90000;

Set Operations

• The SQL operations union, intersect, and except operate on relations and

correspond to the mathematical set-theory operations ∪, ∩, and −.

• The set of all courses taught in the Fall 2009 semester:

• select course _id from section where semester = ’Fall’ and year=

2009;

• The set of all courses taught in the Spring 2010 semester:

select course _id from section where semester = ’Spring’ and year= 2010;

The Union Operation

• To find the set of all courses taught either in Fall 2009 or in Spring 2010, or

both,

• (select course_id from section where semester = ’Fall’ and year=

2009) union (select course_id from section where semester =’Spring’

and year= 2010);

• The union operation automatically eliminates duplicates, unlike the select

clause.

• If we want to retain all duplicates, we must write union all in place of union:

 Database Systems 18K5CSELCS1:A

 S.Ramya

 (select course_id from section where semester = ’Fall’ and

year= 2009) union all (select course_id from section where

semester = ’Spring’ and year= 2010);

The Intersection Operation

• To find the set of all courses taught in the Fall 2009 as well as in Spring

2010.

(select course id from section where semester = ’Fall’ and year= 2009)

intersect (select course id from section where semester = ’Spring’ and year=

2010);

• The intersect operation automatically eliminates duplicates.

• If we want to retain all duplicates, we must write intersect all in place of

intersect.

(select course id from section where semester = ’Fall’ and year= 2009)

intersect all (select course id from section where semester = ’Spring’ and

year= 2010);

The Except Operation

• To find all courses taught in the Fall 2009 semester but not in the Spring

2010 semester,

(select course id from section where semester = ’Fall’ and year= 2009) except

(select course id from section where semester = ’Spring’ and year= 2010);

• The except operation outputs all tuples from its first input that do not occur

in the second input; that is, it performs set difference.

• If we want to retain duplicates, we must write except all in place of except

 (select course id from section where semester = ’Fall’ and year= 2009) except

all (select course id from section where semester = ’Spring’ and year= 2010);

Null Values

• Null values present special problems in relational operations, including

arithmetic operations, comparison operations, and set operations.

Aggregate Functions

 Database Systems 18K5CSELCS1:A

 S.Ramya

In database management, an aggregate function or aggregation function is

a function where the values of multiple rows are grouped together to form a

single summary value.

Common aggregate functions include:

• Average (i.e., arithmetic mean)

• Count

• Maximum

• Minimum

• Sum

Average:

select avg (salary) from instructor where dept name= ’Comp. Sci.’;

Count:

select count (distinct ID) from teaches where semester = ’Spring’ and year

= 2010;

The Having Clause:

select dept name, avg (salary) as avg salary from instructor group by dept

name having avg (salary) > 42000;

select course id, semester, year, sec id, avg (tot cred) from takes natural

join student where year = 2009 group by course id, semester, year, sec id

having count (ID) >= 2;

Aggregation by grouping

select dept name, avg (salary) as avg salary from instructor group by dept

name;

Nested Queries

The in connective tests for set membership, where the set is a collection of values

produced by a select clause. The not in connective tests for the absence of set

membership.

https://en.wikipedia.org/wiki/Database_management
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Summary_statistics
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Counting
https://en.wikipedia.org/wiki/Maximum
https://en.wikipedia.org/wiki/Minimum
https://en.wikipedia.org/wiki/Summation

 Database Systems 18K5CSELCS1:A

 S.Ramya

select distinct course id from section where semester = ’Fall’ and year= 2009

and course id in (select course id from section where semester = ’Spring’ and

year= 2010);

select distinct course id from section where semester = ’Fall’ and year= 2009

and course id not in (select course id from section where semester = ’Spring’

and year= 2010);

Set Comparision

select distinct T.name from instructor as T, instructor as S where T.salary >

S.salary and S.dept name = ’Biology’;

select name from instructor where salary > some (select salary from instructor

where dept name = ’Biology’);

The subquery: (select salary from instructor where dept name = ’Biology’)

SQL also allows < some, <= some, >= some, = some, and <> some comparisons.

select name from instructor where salary > all (select salary from instructor

where dept name = ’Biology’);

The With Clause

The with clause provides a way of defining a temporary relation whose definition

is available only to the query in which the with clause occurs.

with max budget (value) as (select max(budget) from department) select budget

from department, max budget where department.budget = max budget.value;

with dept total (dept name, value) as (select dept name, sum(salary) from instructor

group by dept name), dept total avg(value) as (select avg(value) from dept total)

select dept name from dept total, dept total avg where dept total.value >= dept total

avg.value;

Modification of the Database

Deletion:

 A delete request is expressed in much the same way as a query. It delete only

whole tuples and cannot delete values on only particular attributes. SQL expresses

a deletion by delete from r where P; where P represents a predicate and r represents

a relation. The delete statement first finds all tuples t in r for which P(t) is true, and

then deletes them from r.

 Database Systems 18K5CSELCS1:A

 S.Ramya

Insertion:

To insert data into a relation, a tuple can be inserted or write a query whose result

is a set of tuples to be inserted. Obviously, the attribute values for inserted tuples

must be members of the corresponding attribute’s domain. Similarly, tuples

inserted must have the correct number of attributes.

insert into course values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

In certain situations, we may wish to change a value in a tuple without changing all

values in the tuple. For this purpose, the update statement can be used.

Updates:

In certain situations, we may wish to change a value in a tuple without changing all

values in the tuple. For this purpose, the update statement can be used.

update instructor set salary= salary * 1.05;

SQL provides a case construct that we can use to perform both the updates with a

single update statement, avoiding the problem with the order of updates.

update instructor set salary = case

 when salary <= 100000

then salary * 1.05 else salary * 1.03

end

The general form of the case statement is as follows.

case

when pred1 then result1 when pred2 then result2 . . . when predn then

resultn else result0

 end

Join Expressions:

Different Types of SQL JOINs:

• (INNER) JOIN: Returns records that have matching values in both tables

• LEFT (OUTER) JOIN: Returns all records from the left table, and the

matched records from the right table

 Database Systems 18K5CSELCS1:A

 S.Ramya

• RIGHT (OUTER) JOIN: Returns all records from the right table, and the

matched records from the left table

• FULL (OUTER) JOIN: Returns all records when there is a match in either

left or right table

INNER JOIN: The INNER JOIN keyword selects all rows from both the tables as

long as the condition satisfies. This keyword will create the result-set by

combining all rows from both the tables where the condition satisfies i.e value of

the common field will be same.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

INNER JOIN table2

ON table1.matching_column = table2.matching_column;

LEFT JOIN: This join returns all the rows of the table on the left side of the join

and matching rows for the table on the right side of join. The rows for which there

is no matching row on right side, the result-set will contain null. LEFT JOIN is

also known as LEFT OUTER JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

LEFT JOIN table2

ON table1.matching_column = table2.matching_column;

RIGHT JOIN: RIGHT JOIN is similar to LEFT JOIN. This join returns all the

rows of the table on the right side of the join and matching rows for the table on

the left side of join. The rows for which there is no matching row on left side, the

result-set will contain null. RIGHT JOIN is also known as RIGHT OUTER JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

RIGHT JOIN table2

ON table1.matching_column = table2.matching_column;

FULL JOIN: FULL JOIN creates the result-set by combining result of both LEFT

JOIN and RIGHT JOIN. The result-set will contain all the rows from both the

 Database Systems 18K5CSELCS1:A

 S.Ramya

tables. The rows for which there is no matching, the result-set will

contain NULL values.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

FULL JOIN table2

ON table1.matching_column = table2.matching_column;

Views:

A View can be created from a single table or multiple tables.

Syntax:

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE condition;

In this example, we will create a view named StudentNames from the table

StudentDetails.

Query:

CREATE VIEW StudentNames AS

SELECT S_ID, NAME

FROM StudentDetails

ORDER BY NAME;

If we now query the view as,

SELECT * FROM StudentNames;

Creating view from multiple tables:

CREATE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails.ADDRESS,

StudentMarks.MARKS

FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

 Database Systems 18K5CSELCS1:A

 S.Ramya

To display data of View MarksView:

SELECT * FROM MarksView;

Updating Views:

There are certain conditions needed to be satisfied to update a view. If any one of

these conditions is not met, then we will not be allowed to update the view.

1. The SELECT statement which is used to create the view should not include

GROUP BY clause or ORDER BY clause.

2. The SELECT statement should not have the DISTINCT keyword.

3. The View should have all NOT NULL values.

4. The view should not be created using nested queries or complex queries.

5. The view should be created from a single table. If the view is created using

multiple tables then we will not be allowed to update the view.

• We can use the CREATE OR REPLACE VIEW statement to add or

remove fields from a view.

Syntax:

• CREATE OR REPLACE VIEW view_name AS

• SELECT column1,coulmn2,..

• FROM table_name

WHERE condition;

Transactions:

Transactions group a set of tasks into a single execution unit. Each transaction

begins with a specific task and ends when all the tasks in the group successfully

complete. If any of the tasks fail, the transaction fails. Therefore, a transaction has

only two results: success or failure.

Incomplete steps result in the failure of the transaction. A database transaction, by

definition, must be atomic, consistent, isolated and durable. These are popularly

known as

ACID properties.

 COMMIT:

If everything is in order with all statements within a single transaction, all changes

are recorded together in the database is called committed. The COMMIT command

saves all the transactions to the database since the last COMMIT or ROLLBACK

command.

 ROLLBACK:

If any error occurs with any of the SQL grouped statements, all changes need to be

aborted. The process of reversing changes is called rollback. This command can

https://en.wikipedia.org/wiki/ACID

 Database Systems 18K5CSELCS1:A

 S.Ramya

only be used to undo transactions since the last COMMIT or ROLLBACK command

was issued.

Integrity Constraints:

Constraints are the rules that we can apply on the type of data in a table. That is, we

can specify the limit on the type of data that can be stored in a particular column in a

table using constraints.The available constraints in SQL are:

• NOT NULL: This constraint tells that we cannot store a null value in a

column. That is, if a column is specified as NOT NULL then we will not be

able to store null in this particular column any more.

• UNIQUE: This constraint when specified with a column, tells that all the

values in the column must be unique. That is, the values in any row of a

column must not be repeated.

• PRIMARY KEY: A primary key is a field which can uniquely identify each

row in a table. And this constraint is used to specify a field in a table as

primary key.

• FOREIGN KEY: A Foreign key is a field which can uniquely identify each

row in a another table. And this constraint is used to specify a field as

Foreign key.

• CHECK: This constraint helps to validate the values of a column to meet a

particular condition. That is, it helps to ensure that the value stored in a

column meets a specific condition.

• DEFAULT: This constraint specifies a default value for the column when

no value is specified by the user.

SQL Data types and Schemas:SQL Date and Time Data Types

Datatype Description

DATE Stores date in the format YYYY-MM-DD

TIME Stores time in the format HH:MI:SS

DATETIME
Stores date and time information in the format YYYY-MM-DD

HH:MI:SS

TIMESTAMP
Stores number of seconds passed since the Unix epoch (‘1970-01-

01 00:00:00’ UTC)

 Database Systems 18K5CSELCS1:A

 S.Ramya

YEAR
Stores year in 2 digit or 4 digit format. Range 1901 to 2155 in 4-

digit format. Range 70 to 69, representing 1970 to 2069.

SQL Character and String Data Types

Datatype Description

CHAR Fixed length with maximum length of 8,000 characters

VARCHAR
Variable length storage with maximum length of 8,000

characters

VARCHAR(max)
Variable length storage with provided max characters, not

supported in MySQL

TEXT Variable length storage with maximum size of 2GB da

SQL Miscellaneous Data Types

Datatype Description

CLOB Character large objets that can hold up to 2GB

BLOB For binary large objects

XML for storing xml data

JSON for storing JSON data

Schemas, Catalogs and Environments:

Contemporary database systems provide a three-level hierarchy for naming

relations. The top level of the hierarchy consists of catalogs, each of which can

contain schemas. SQL objects such as relations and views are contained within a

 Database Systems 18K5CSELCS1:A

 S.Ramya

schema. (Some database implementations use the term “database” in place of the

term catalog.)

In order to perform any actions on a database, a user (or a program) must first

connect to the database. The user must provide the user name and usually, a

password for verifying the identity of the user. Each user has a default catalog and

schema, and the combination is unique to the user. When a user connects to a

database system, the default catalog and schema are set up for the connection; this

corresponds to the current directory being set to the user’s home directory when

the user logs into an operating system. To identify a relation uniquely, a three-part

name may be used,

for example,

catalog5.univ schema.course

The default catalog and schema are part of an SQL environment that is set

up for each connection. The environment additionally contains the user

identifier (also referred to as the authorization identifier). All the usual SQL

statements, including the DDL and DML statements, operate in the context

of a schema.

Authorization:

 Authorizations on data include:

• Authorization to read data.

 • Authorization to insert new data.

• Authorization to update data.

 • Authorization to delete data.

Granting and Revoking of privileges:

The SQL standard includes the privileges select, insert, update and delete .

The privilege all privileges can be used as a short form for all the allowable

privileges. A user who creates a new relation is given all privileges on that relation

automatically.

The grant statement is used to confer authorization.

grant<privilege list>

 Database Systems 18K5CSELCS1:A

 S.Ramya

on <relation name or view name>

to <user/role list>;

Example:

grant select on department to Amit, Santhosh;

grant update(budget) on department to Amit, Santhosh;

To revoke an authorization:

 revoke<privilege list> on <relation name or view name> from <user/role

list>;

revoke select on department from Amit, Santhosh;

revoke update(budget) on department from Amit, Santhosh;

Roles:

A set of roles is created in the database. Each database user is granted a set of

roles. Roles can be created as

create role instructor;

Roles can then be granted privileges as:

grant select on takes to instructor;

Authorization on views:

create view geo_instructor as (select * from instructor where

dept_name=’Geology’);

Then it can answer for the query

select * from geo_instructor;

Authorizations on schema:

grant references(dept_name) on department to Mariano;

Transfer of Privileges:

 Database Systems 18K5CSELCS1:A

 S.Ramya

grant select on department to Amit with grant option;

Revoking of Privileges:

revoke select on department from Amit, Santhosh restrict;

revoke grant option for select on department from Amit;

UNIT-IV

DATABASE DESIGN AND THE E-R MODEL

OVERVIEW OF DESIGN PROCESS:

Creating a database involve

 DESIGN OF THE DATABASE SCHEMA

 DESIGN OF THE PROGRAMS THAT ACCESS,AND UPDATE THE

DATA

 DESIGN OF A SECURITY SCHEME TO CONTROL ACCESS TO

DATA

DESIGN PHASE

Requirements Analysis:

 Understand the requirements related to the relation, their attributes and

constraints on the relation

 Designer interact with domain experts and users to carry out this

characterization of data requirements.

Conceptual Design Phase:

 The designer chooses a data model and applying the concepts of the chosen

model and translates these requirements into conceptual schema.

 The schema developed at this conceptual design phase provides a detailed

overview of the enterprise.

 The Entity-Relationship model stated the conceptual design specifies the

entities in the database, the attributes of the entities, the relationships among

the entities and constraints on the entities and relationships

Conceptual Design Phase:

• The designer chooses a data model and applying the concepts of the chosen

model and translates these requirements into conceptual schema

• The schema developed at this conceptual design phase provides a detailed

overview of the enterprise.

• The Entity-Relationship model stated the conceptual design specifies the

entities in the database, the attributes of the entities, the relationships among

the entities and constraints on the entities and relationships.

Functional Requirements:

• A fully developed conceptual schema indicates the functional requirements

of the enterprise.

• In a Specification of functional requirement, users describe the kinds of

operations that will be performed on the data.

• Operations include modifying, updating data, searching for and retrieving

specific data a d deleting data

Design Alternatives:

Major pitfalls in designing database:

 Redundancy and Incompleteness

• Redundancy: A bad design may repeat information.

✓ Data redundancy occurs when the same piece of data is stored in two

or more separate places. May result in inconsistent database.For

example different offerings of a course may have same course

identifier, but may have different titles. It would then become unclear

what the correct title of the course is. Idealy, information should

appear in exactly one place.

✓ Incompleteness: Suppose we have a single relation where we repeat

all of the course information once for each section that the course is

offered. It would then be impossible to represent information about a

new course ,unless that course is offered. Such a model is unattractive

,but may be prevented by a primary key constraints

The Entity-Relation Model

 The E-R model is useful in mapping the meanings and interactions of real-

world enterprises onto a conceptual schema.

 Entity Set: An entity is ‘thing’ or ‘object’ .An entity had a set of

attributes. The values for some set of properties may uniquely identify the

entity.

 An entity set is a set of entities of same type that share the same properties,

or attributes.

 Entity set do not need to be disjoint. An entity is represented by a set of

attributes. Attributes are descriptive properties possessed by each member of

an entity set.

Each entity has a value for each of its attributes.

Relationship set: A relationship is an association among several entities.

 A relationship set is a ser of relationships of the same type. It is a

mathematical relation on n>=2 entity sets.

 If E1,E2,...En are entity sets, then a relationship set R is a subset of

(e1,e2,...en)|e1€ E1,E2,... €En, where (e1,e2..en) is a relationship.

 The association between entity sets is referred to as participation. The entity

sets E1,E2...En participate in relationship R.

 A relationship instance in an E-R schema represents an association between

the named entities in the real world enterprise that is being modeled.

 The function that an entity plays in a relationship is called that entity’s role.

 Same entity set participates in a relationship set more than once, in different

roles called a recursive relationship set.

 A relationship may also have attributes called descriptive attributes.

 A relationship instance in a given relationship set must be uniquely

identifiable from its participating entities, without using the descriptive

attributes.

Attributes: For each attribute, there is a set of permitted values, called the

Domain or value set of that attribute.

Attribute types in E-R Model:

✓ Simple Attributes: Attributes that have not been divided into subparts.

✓ CompositeAttributes: Compostie Attributes are made of more than one

simple attributes. For,example name attribute can be divided into first-

name,last-name ,middle-name.

✓ Single-valued and multivalued Attribute: Attributes which have single

value for each entity.(Student-ID). There may be instances where an

attribute has set of values for specific entity called multivalued arrtibutes.

✓ Derived Attribute: The value for this entity can be derived from the values

of other related attributes or entities. Example , Instructor entity set has an

entity age and date- of-birth entity, From date-of-birth we can derive his

age.

Constraints:

• Mapping Cardinality: Cardinalities defines the number of entities in one

entity set , which can be associated with the number of entities of other set

via relationship set.

Mapping Cardinalities

Cardinality defines the number of entities in one entity set, which can be associated
with the number of entities of other set via relationship set.

• One-to-one − One entity from entity set A can be associated with at most one
entity of entity set B and vice versa.

• One-to-many − One entity from entity set A can be associated with more than
one entities of entity set B however an entity from entity set B, can be associated
with at most one entity.

• Many-to-one − More than one entities from entity set A can be associated with at
most one entity of entity set B, however an entity from entity set B can be
associated with more than one entity from entity set A.

• Many-to-many − One entity from A can be associated with more than one entity
from B and vice versa.

Participation Constraints:

Participation Constraints

• Total Participation − Each entity is involved in the relationship. Total participation
is represented by double lines.

• Partial participation − Not all entities are involved in the relationship. Partial
participation is represented by single lines.

Keys:

• Key for an entity is a set of attributes that suffice to distinguish entities

from each other. Keys uniquely identify the entity.

• Primary key of an entity set allows us to distinguish among the various

entities of the set.

• Let R be a relationship set involving entity sets E1,E2,...En.Let

Primarykey(Ei) denote the set of attributes that forms the primary ket for

entity set Ei.

Removing Redundant Attributes in Entity Set:

 A good entity-relationshop design does not contain reduntant attributes.

• Once the entities and the corresponding attributes are chosen, the

relationship sets among the various entities are formed.

• These relationship sets may result in a situation where attributes in the

various entity sets are redundant and need to be removed from the original

entity sets.

Entity –Relationship Diagrams

 It is the logical structure of a database.g Entity

Entities are represented by means of rectangles. Rectangles are named with the entity
set they represent.

Attributes

Attributes are the properties of entities. Attributes are represented by means of ellipses.
Every ellipse represents one attribute and is directly connected to its entity (rectangle).

If the attributes are composite, they are further divided in a tree like structure. Every
node is then connected to its attribute. That is, composite attributes are represented by
ellipses that are connected with an ellipse.

Multivalued attributes are depicted by double ellipse.

Derived attributes are depicted by dashed ellipse.

Complex attributes:

 The attributes that are formed by arbitrarily nesting the composite and
multivalued attributes are called complex attributes.

Roles:

 Role indicaed by labeling the lines that connect diamonds to rectangle

Non binary relationships:

Weak Entity Set

✓ A weak entity always has a total participation constraint with respect to its

identifying relationship because it cannot be identified independently of its

owner identity. A weak entity may have a partial key, which is a list of

attributes that identify weak entities related to the same owner entity.

✓ The entity sets which do not have sufficient attributes to form a primary key

are known as weak entity sets and the entity sets which have a primary key

are known as strong entity sets.

✓ Weak entity is depend on strong entity to ensure the existence of weak entity.

Like strong entity weak entity does not have any primary key, It has partial

discriminator key.

✓ Weak entity is represented by double rectangle. The relation between one

strong and one weak entity is represented by double diamond. Partial Key

attributes are represented with dotted lines.

✓ As the weak entities do not have any primary key, they cannot be identified on

their own, so they depend on some other entity (known as owner entity).

✓ The weak entities have total participation constraint (existence dependency)

in its identifying relationship with owner identity.

✓ Weak entity types have partial keys. Partial Keys are set of attributes with the

help of which the tuples of the weak entities can be distinguished and

identified.

RELATIONAL DATABASE DESIGN

Database Design Objective

• Eliminate Data Redundancy: the same piece of data shall not be stored in

more than one place. This is because duplicate data not only waste storage

spaces but also easily lead to inconsistencies.

• Ensure Data Integrity and Accuracy: is the maintenance of, and the

assurance of the accuracy and consistency of, data over its entire life-cycle,

and is a critical aspect to the design, implementation, and usage of any

system which stores, processes, or retrieves data.

• A relation schema might contain certain dependencies in whihcase t should

decomposed(normalized) into multiple smaller relation schemas.

• This normalization process is based on functional dependencies multivalued

dependencies.

Features of Good Relational Designs:

Design Alternatives in Larger Schema:

Design Alternatives in Smaller Schema:

✓ Suppose we had started with inst_deptp and decompose) it into instructor

and department

✓ Write a rule “if there were a schema (dept_name, building, budget),

then dept_name would be a candidate key”

 Denote as a functional dependency:

building, budget→dept_name

✓ In inst_dept, because dept_name is not a candidate key, the building and

budget of a department may have to be repeated. This indicates the need

to decompose inst_dept . This indicates the need to decompose inst_dept

, Not all decompositions are good.

Suppose we decompose employee(ID, name, street, city, salary) into

 employee1 (ID, name)

 employee2 (name, street, city, salary)

we cannot reconstruct the original employee relation -- and so, this is a lossy

decomposition.

Atomic Domains and First Normal Forms:

A domain is the original sets of atomic values used to model data. By atomic

value, we mean that each value in the domain is indivisible as far as the

relational model is concerned.

For example:

The domain of Marital Status has a set of possibilities: Married, Single,

Divorced.

The domain of Shift has the set of all possible days: {Mon, Tue, Wed…}.

The domain of Salary is the set of all floating-point numbers greater than 0 and

less than 200,000.

The domain of First Name is the set of character strings that represents names

of people.

✓ A relational schema R is in first normal form if the domains of all

attributes of R are atomic

✓ Non-atomic values complicate storage and encourage redundant

(repeated) storage of data Atomicity is actually a property of how the

elements of the domain are used.

Example:

• Strings would normally be considered indivisible

o Suppose that students are given roll numbers which are strings of the

form CS0012 or EE1127

o If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic.

Decomposition Using Functional Dependencies:

o When a set of attributes is a Super key – denoted by “K”.A super key

pertains a specific relation schema, “ K is a super key of r(R)”

o Relations are denoted as “r”

o A relation has a particular value at any given time, called as the “instance of

r”

Keys and Functional Dependency:

Let R be a relation schema  Rand  R.

The functional dependency  →  holds on R if and only if for any legal

relations r(R), whenever any , they also agree  two tuples t1 and t2 of r agree on

the attributes  . That is, t1 [] = t2 []=>t1 [] = t2 []

Let R be a relation schema   R and  R

✓ The functional dependency → holds on R if and only if for any legal

relations r(R), whenever any , two tuples t1 and t2 of r agree on the attributes

 they also agree on the attributes . That is,

t1 [] = t2 []t1 []=t2 []

✓ Functional dependencies allow us to express constraints that cannot be

expressed using superkeys. Consider the schema:

 inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold: building→dept_name , building

and ID but would not expect the following to hold: salary→dept_name

✓ A functional dependency is trivial if it is satisfied by all instances of a

relation

 Example: ID→ID, name

 name→name

In general,    is trivial if  → 

✓ Given a set F of functional dependencies, there are certain other functional

dependencies that are logically implied by F,

For example:If A->B and B->C, then we can infer that A->C

✓ The set of all functional dependencies logically implied by F is the closure

of F. We denote the closure of F by F+ . F+ is a superset of F.

Boyce–Codd normal form

It is a normal form used in database normalization. It is a slightly stronger version

of the third normal form (3NF).

If a relational schema is in BCNF then all redundancy based on functional

dependency has been removed, although other types of redundancy may still exist

 A relational schema R is in Boyce–Codd normal form if and only if for every one

of its dependencies X → Y, at least one of the following conditions hold:

• X → Y is a trivial functional dependency (Y ⊆ X),

• X is a super key for schema R.

BCNF and Dependency Preservation:

✓

If a relation is in BCNF it is in 3NF . Constraints, including functional

dependencies, are costly to check in practice unless they pertain to only one

relation .Because it is not always possible to achieve both BCNF and

dependency preservation, we usually consider normally third normal form.

It is always possible to decompose a relation into a set of relations that are in 3NF

such that:

o the decomposition is lossless

o the dependencies are preserved

It is always possible to decompose a relation into a set of relations that are in

BCNF such that:

o the decomposition is lossless

o it may not be possible to preserve dependencies

Third Normal Form:

✓ Third normal form (3NF) is a database schema design approach for

relational databases which uses normalizing principles to reduce the

duplication of data, avoid data anomalies, ensure referential integrity, and

simplify data management.

Codd's definition states that a table is in 3NF if and only if both of the following

conditions hold:

• The relation R (table) is in second normal form (2NF).

• Every non-prime attribute of R is non-transitively dependent on every key of R.

UNIT V

The Cooperative Approach

• Oracle is an object-relational database.

• A relational database is an extremely simple way of thinking about and managing the

data used in a business.

• It is nothing more than a collection of tables of data.

• These are all tables, with column headings and rows of information simply presented.

• An object-relational database supports all of the features of a relational database while

• A common language is needed to make this cooperative work.

The familiar Language of Oracle

The information stored in Oracle is kept in tables.

The major characteristics of most tables are columns, rows and a name.

Codes, Abbreviations and Naming Standards

The problem of old programming habits is most pronounced in codes, abbreviations and

naming standards, which are almost completely ignored when the needs of end users are

considered. When these three issues are thought about at all, usually only the needs and

conventions of the systems groups are considered. Each event or transactionnnnn was written

down, line by line, in English.

This problem has been most pronounced in large, conventional mainframe systems

development.

Normalizing Names

• Building a logical map between the common English words and the hard to

remember, non-English column names, table names and codes.

• The mapping takes careful thought, but once completed, it makes the user’s

interaction with the application easy.

• For performance reasons, it may be that some of an application’s data must still be

stored in a coded fashion within the computer’s database.

• These codes should not be exposed to users, either during data entry or retrieval and

oracle allows them to be easily hidden.

• The instant that data entry requires codes, key-entry errors increase.

• When reports contain codes instead of English, errors of interpretation begin.

• And when users need to create new or ad hoc reports, their ability to do so quickly

and accurately is severly impaired both by codes and by not being able to remember

strange column and table names.

Understanding the Data

In conjunction with the decomposition and description of the tasks, the resources required at

each step are described in the task document, especially in terms of the data required.

This is done on a task-by-task basis, and the data requirements are then included in the data

document.

By requiring that the definition of the data needed come from the task rather than from any

existing forms or screens.

Once the current data elements have been identified, they must be carefully scrutinized.

Numeric and letter codes are always suspect.

They disguise real information behind counterintuitive , meaningless symbols.

There are times and tasks for which codes are handy , easily remembered, or made necessary

by sheer volume.

But, in your final design these cases should be rate and obvious.

In the scrutiny of existing data elements, codes should be set aside for special attention.

In each case ask yourself whether the element should be a code.

Its compelling reasons for perpetuating the viewed suspiciously.

There must be good arguments and compelling reason for perpetuating the disguise.

The process for converting codes back into English is fairly simple, does are first listed, but is

a joint effort.

These are them examined by users and designers and short English version of the meaning

are proposed, discussed and tentatively approved.

In same discussion designer and end users should decide on names for the data elements.

These will become column names in the database and will be regularly used in English

queries, so the names should be descriptive and singular.

To intimate relationship between the column name and the data ir contains the two should be

specified simultaneously.

Data element that are not codes also must be rigorously examined.

By the point you have good reason to believe that all of the data elements you have identified

are necessary to the business tasks, but they are not necessarily well-organized.

Appears to be one data element in the existing task may in fact be several elements mixed

together that require separation.

First and last name were mixed together.

 For example, in the AUTHOR table. The authorname column held both first and last names

even though the tables were in Third Normal Form.

Extremely burdensome way to actually implements an application in spite of the fact that the

normalization rules were technically met.

The application practical and prepare it for English queries the AuthorName column needs to

be decomposed into at least two new columns, LastName and FirstName.

The degree of decomposition depends on how the particular data elements are like to be used.

It is possible to much too far and decompose categories though made up of separable pieces,

provide no additional value in their new state.

Decomposition is dependent on an element-by-element basis.

These new elements which will become columns, need to thoughtfully named, and the data

they will contain needs to be scrutinized.

Text data that will fall into a definable number of values should be reviewed for naming.

Style

First some comments on style. SQLPLUS doesn’t care whether the SQL commands you type

are in uppercase or lowercase. This command

 SELECT feature, section, PAGE FROM newspaper;

Will produce exactly the same result as this one:

 select Feature, Section, page form NEWSPAPER;

Case matters only when SQLPLUS or oracle is checking an alphanumeric value for equality.

Oracle to find a row where Section=’f’ and Section is really equal to ‘F’,Oracle won’t find it.

Aside form this use, case is completely irrelevant, the letter ‘F’ as used here, is called a

literal, meaning that you want Section to be tested literally against letter ‘F’ not a column

named F.

The single quote marks enclosing the letter tell Oracle that this is literal and not a column

name.

▪ Select, from, where, order by, having and group by will always be lowercase and

boldface.

▪ SQLPLUS commands also will be lowercase and boldface: column, set, save, ttitle,

and so on.

▪ IN, BETWEEN, UPPER and other SQL operation and function will be uppercase

and boldface.

▪ Column names will be mixed uppercase and lowercase without boldface: Feature,

EastWest, Longitude, and so on.

▪ Tables names will be uppercase without boldface: NEWSPAPER, WEATHER,

LOCATION, and so on.

You may want to follow similar convention to creating your own queries, or you company

already may have standards, it would like to use, or you may choose to invent your own.

The goal of any such standards should always to be make your work simple to read and

understand.

Logic and Value

Just as the order by clause can have several parts,so can the where clause, but with a

significantly greater degree or sophistication.

To control the extend to which you use where through the careful use of logical instruction to

oracle on what you expect it to return to you.

These instruction are expressed using mathematical symbols called logical operators.

Se are explained shortly and also are listed in the Alphabetical Reference.

The values in the page column are tested to see if any equals 6.

Every row where this is true is returned to you. Any row in which page is not equal to 6 is

skipped.

 select Features, Section, Page

 from NEWSPAPER

 where Page = 6;

FEATURES S PAGE

Obituaries F 6

Doctor Is In F 6

The equal sign is called a logical operator, it operates by making a logical test that campares

the values on either side of it—in this case, the value of page and the value 6—to see if they

are equal.

For example no quotes are place around the value being checked, because the column the

value is compared is defined as a NUMBER datatype.

Number values do not require quotes around them during comparies.

Combining Logic

Both AND and OR follow the commonsense meaning of the words. They can be combined

in a virtually unlimited number of ways, but you must use care, because AND and OR get

convoluted very easily

You want to find the features in the page that the editors tend to bury, those that are placed

somewhere past page 2 of section A or B.

 select Feature, Section, Page

 from NEWSPAPER

 where Section = ‘A’

 or Section = ‘B’

 and Page = 2;

FEATURE S PAGE

National News A 1

Editorials A 12

Television B 7

Movies B 4

The result you got back from Oracle is not what you wanted.

Although both AND and OR are logical connection, AND is stronger.

It binds the logical expression on either side of it more strongly than OR does which means

this where clause.

 where Section = ‘A’

 or Section = ‘B’

 and Page = 2;

interpreted to read, “where Section = ‘A’ or where Section = ‘B’ and Page >2”.

 If you look at each of the failed examples just given, you will this interpretation affected the

result. The AND is always acted on first.

Break the bonding by using parentheses that enclose those expression you want to be

interpreted together. Parentheses override the normal precedence.

 select Feature, Section, Page

 from NEWSPAPER

 where Page = 2

 and (Section = ‘A’ or Section = ‘B’);

FEATURE S PAGE

Editorials A 12

Television B 7

Movies B 4

