SEMESTER : V
 MAJOR BASED ELECTIVE : I

Inst Hour	$: 5$
Credit	$: 5$
Code	$: 18$ K5MELMIS

PROBABILITY AND STATISTICS

UNIT 1 :

Theory of Probability : Different definitions of Probability - Sample space - Probability of an event - Independence of events - Theorems of Probability - Conditional Probability Baye's Theorem.
(Chapter 4 : Sections 4.5 - 4.9)

UNIT 2 :

Random variables - Distribution functions - Discrete \& Continuous random variables Probability mass \& density functions - Joint probability distribution functions.
(Chapter 5 : Sections 5.1 - 5.5.5)

UNIT 3 :

Expectation - Variance - Covariance - Moment generating functions - Theorems on Moment generating functions - Moments - Various measures.
(Chapter 6: Sections 6.1 to 6.10 .3 \& Chapter 3 : Section 3.9)

UNIT 4 :
Correlation \& Regression : Properties of Correlation \& Regression coefficients - Numerical Problems for finding the correlation \& regression coefficients.
(Chapter 10 : Sections 10.1 to 10.7.4)

UNIT 5 :

Binomial, Poisson, Normal distributions - Moment generating functions of these distributions- additive properties of these distributions - Recurrence relations for the moments about origin and mean for the Binomial, Poisson and Normal distributions Properties of normal distributions.
(Chapter 7 :Sections 7.2 to 7.2.7, 7.2.10, 7.3 to 7.3.5, 7.3.8 and Chapter $8:$ Sections 8.2, 8.2.2)

Text Book :

[1]. Fundamental of Mathematical Statistics by Gupta. S.C \& Kapoor, V.K. Published by Sultan Chand \& Sons, New Delhi - 2000 Edition.

Book For Reference :-

1]. Practical Statistics - Thambidurai . P - Rainbow Publishers - CBE (1991)
2]. Probability and Statistics - A. Singaravelu - A.R. Publications -2002

Question Pattern

Section A: $10 \times 2=20$ Marks, 2 Questions from each Unit.
Section B : $5 \times 5=25$ Marks, EITHER OR (a or b) Pattern, One question from each unit.
Section C : $3 \times 10=30$ Marks, 3 out of 5, One Question from each Unit.

Theory of Probability:
Random Experiment: If in each trial of an experiment Conducted under identical Conditions, the out come is not unique, but may be any one of, the Possible OutComes, then Such an experiment is Called a random experiment.
Ex: random experiments are tossing a Coin, throwing a die, etc.,
Outcome: The result of a random experiment will be Called as outcome.
Trial and Event: Any Particular Performance of a random experiment is called a trial and out como or Combination of outcomes are termed as events.
Ex: Tossing of a Coin is a random experiment Or trial and getting of a head on tail is an event.
Exhaustive events: The total number of Possible out Comes of a random experiment is known as Exhaustive events.

- Ex: In tossing of a Coin these are two exebaustive events.

Favourable events: The number of Cases favourable to an event in a trial is the number of outcomes Which entail the happening of the event.
Ex: In throwing of two dice, the number of Cases favourable to getting the Sum 5 is

$$
(1,4),(4,1),(2,3),(3,2) \text { (ie) } 4
$$

Mutually exclusive events: Events are Said to be mutually exclusive if no two or more of them Cans Rappen Simultaneously is the Same trial.
Ex: In throwing a die al the 6 faces numbered. 1 to 6 are mutually exclusive.

In tossing a coin the eveots head and tail are mutually exclusive.
Equally Likely events: Outcomes of trial are said to be equally likely if taking into Consideration all the relevant evidences, These is no reason to expect one in Preference to the others.

Ex: In trowing an unbiased die, all the. Six faces are equally likely to Come.

- Independent Events: Several events are Said to be independent if the happening of as event is not affected by the Supplementary knowledge Concerning the occurrence of any number of the remaining events.
Ex: In tossing an unbiased Coin, the event of getting a head in the first toss is indepenelent of getting a head in the Second, third and Subsequent throws.
- When a die is thrown twice, the result of the first throw does not affect the result of the Second throw.

Probability of an event:
If a random experiment lesults is 'n'expaustiv mutually exclusive and equally likely events, out of which m are favourable to the oceurence on event E, then the Probability ' P ' of occurrence of E ' is denoted by $P(E)$ it is defined as

$$
P(E)=\frac{\text { Number of favourable events }}{\text { Total Dumber of exhaustive events }}=\frac{m}{n}
$$

Note:
(i) $0 \leq P(E) \leq 1$
(i) $P(E)+P(\bar{E})=1$
(iii) Probability ' P ' of the happening of an event is known as the Probability of success and the probability ' q ' of the Don-happesing of the event as the probability of failure. (ie) $p+q=1$.
(iv) If $P(E)=1, E$ is Called a Certain event If $P(E)=0, E$ is Called an impossible event
(v) The Probability Can be Computed Prior to obtaining any experimental data, it is also Called as 'a Prion' or mathematical. Probability:
(vi) The total Possible outcomes of a random experiment is called Sample Spare
(vii) Each Possible outcome is a Sample Space is Called Sample Point.
(vii) The Dumber of Sample Points in the Sample Spaces are denoted by $p(s)$.

- (viii) Every Don-empty Subset A of S, which is a disjoint union of single element Subsets of the Sample spares $\&$ of a random experiment is Called an event

Acceptable assignment of Probabilities:
Let $e_{1}, e_{2} \ldots e_{N}$ be mutually disjoint and exhaustive out Comes of a random experiment so that its Sample Space S is $\left\{e_{1}, e_{2}--e_{N}\right\}$

- To each elementary event l_{i} belonging to S, let us assign a real number Called the Probability of the elementary event e_{i} it is clenoted by $P\left(e_{i}\right)$ Sued that
(i) The Probability of each elementary event is non-segative real Dumber (ie) $P\left(e_{i}\right) \geqslant 0$ for i $1,1,2, N$
(ii) The Sum of the Probabilities assigned to all elementary events of the Sample space is 1. (ia) $\sum_{i=1}^{N} P\left(e_{i}^{i}\right)=1$
- Suet an assignment of real sosl. to the elementary events of the sample space is Called aceuptable assignment of Probabilities.

Probability function: $P(A)$ is the Probability function defined on a σ field B of events if the following Propaties or axioms bold.
(i) For each $A \in B P(A)$ is defined, is heal and $P(A) \geqslant 0$
(ii) $P(s)=1$
(iii) If $\left\{A_{n}\right\}$ is finite or infinite Sequence of disjoint events is B then

$$
P\left[\bigcup_{i=1}^{n} A_{i}\right]=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

Independent events: An event A is Said to be independent of another event B, if the Conditional Probability of A given B is equal to the unconditional Probabity of B. (ic) if $P[A / B]=P(A)$ Similarly $P[B / A]=P(B) ; P(A) \neq 0$
Note: If A and B are independent events Then $P[A \cap B]=P(A) \cdot P(B)$

Problems : Of ind the Probability of getting a Read (4) in tossing a coin.
(2) Find the Probability of getting os in thriving a
(3) Find the probability of getting a tail in tossing a die.
(4) Find the Probability of throwing (i) 4 (ii) an odd Coin.
number (iii) an even number with as ordinary die.
(5) Find the Probability of throwing 7 with two dice.
(6.) A bag Contains 6 red and 7 black balls. Find the Probability of drawing a red ball.
(7) Find the Probability that if a Card is drawn ot random from as ordinary Pack, it is a diamond
(8) From a Pack of to casals, one Case is drawn at random. Find the Probability of getting a
(9) Four Persons are chosen at random from a queen. group Containing 3 men, 2 women and 4 children.

- S.T the chance that expertly two of them will be children is nobel.

Total sol. \& Persons $=9$
Let 4 Persons are ctroosen at random.
(ic) $D(s)=9_{c_{4}}=\frac{9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4}=126$ wags
Let A be a favourable event with exactly two of them will be children.
(ii) $D(A)=4 c_{2} \times 5 c_{2}=60$

$$
\therefore P(A)=\frac{n(A)}{n(S)}=\frac{60}{126}=\frac{10}{21}
$$

(10) From a group of 3 Indians, 4 Pakistanis and 5 Americans, a Sub-Comnittee of four People is selected by lots. Find the Probability that the Sub-Committee will Consists of
(i) 2 Indians and 2 Pakistanis
(ii) I Indian, 1 Pakistani and 2 Americans
(iii) 4 Americans.

Ans: (i) $n(S)=12 c_{4} ; n(A)=3 c_{2} \times 4 C_{2} ; P(A)=18 / 495$
(ii) $n(s)=12 c_{4} ; n(B)=3 c_{1} \times 4 C_{1} \times 5 c_{2}=120$

$$
P(B)=\frac{120}{495}=\frac{24}{99}
$$

(iii) $n(s)={ }^{12} c_{4} ; \quad n(c)=5_{c_{4}} ; P(c)=\frac{5}{495}=\frac{1}{\varepsilon q}$.
(ii) A bag Contains 7 white, 6 ret and 5 black balls Two balls are drawn at random. Find the Probability that they will both be white.
Ans: $D(S)=18 C_{2} ; D(A)=7 c_{2} ; P(A)=\frac{21}{53}$
(12) What is the probability of Baring a king and a queen when two Cards are drawn from a pack of

Ans: $n(S)=52_{C_{2}} ; n(A)=4 c_{1} \cdot 4 c_{1} ; P(A)=8 / 663$ 52 Cards.
(B) What is the Probability frat of 6 Cards taken from a Pull Pack, 3 will be black and 3 will be red.
Ans: $D(S)=52_{c_{6}} ; D(A)=2 b_{c_{3}} \cdot 2 b_{c_{3}} ; P(A)=\frac{n(A)}{n(S)}$
(14) Find the Probability that a Band at bridge will Consist of 3 spades, 5 hearts, 2 diamonds and 3

Ans: $D(S)=5{ }^{2} C_{13} ; D(A)=13 C_{3} \cdot 13_{C_{5}} \cdot 1 C_{C_{2}} \cdot 13_{C_{3}}$. diver.
(15) What is the chance that a leap year selected at random. Will Contain 53 Sundays?
Ans: $P(A)=2 \%\left[\because \frac{366 \text { days }}{7}=52\right.$ weeks 2 days $]$

Theorems on Probability
(1) Probability of the impossible event is zero (lo) $P(\varphi)=0$
Pf) The Certain event ' S ' and the impossible event Q are mutually exclusive.

$$
\begin{aligned}
& \text { (iv) } S \cup \varphi=S \\
& P[S \cup \varphi]=P(S) \Rightarrow P(S)+P(\varphi)=P(S) \\
& \Rightarrow P(\phi)=0
\end{aligned}
$$

(2) Probability of the Complementary event \bar{A} of A is Given by $P(\bar{A})=1-P(A)$
\&\&1. W.K.T A and \bar{A} are disjoint
Since $A \cup \bar{A}=S$

$$
\begin{aligned}
& P(A \cup \bar{A})=P(S)=1 \\
& P(A)+P(\bar{A})=1 \Rightarrow P(\bar{A})=1-P(A) \text { }
\end{aligned}
$$

(3) For any two events A and B

$$
P(\bar{A} \cap B)=P(B)-P(A D B)
$$

PHI. We have $\bar{A} \cap B$ and $A \cap B$ are disjoint events..

$$
\begin{gathered}
(A \cap B) \cup(\bar{A} \cap B)=B \\
P[(A \cap B) \cup(\bar{A} \cap B)]=P(B) \\
P(A \cap B)+P(\bar{A} \cap B)=P(B) \\
\therefore P(\bar{A} \cap B)=P(B)-P(A \cap B)
\end{gathered}
$$

(4) If A and B are two events Sueb that $A C B$

$$
P \cdot T P\left(B D A^{\prime}\right)=P(B)-P(A)
$$

PDI Given $A C B$

$$
\begin{aligned}
& B=A U\left(B \cap A^{\prime}\right) \\
& P(B)=P(A)+P\left(B \cap A^{\prime}\right)\left[\begin{array}{l}
A \text { s } B \cap A^{\prime} \text { arer } \\
\text { exclusive }]
\end{array}\right.
\end{aligned}
$$

$$
\text { (ie) } P\left(B \cap A^{\prime}\right)=P(B)-P(A)
$$

(b) If $B C A$ P,T $P(A)>P(B)$

Pfi Gived $B C A$

$$
\begin{aligned}
\therefore & A=B \cup\left(A \cap B^{\prime}\right) \\
P(A) & =P(B)+P\left(A \cap B^{\prime}\right) \\
P(A) & -P(B)=P\left(A \cap B^{\prime}\right) \quad\left[\because P\left(A \cap B^{\prime}\right) \geqslant 0\right]
\end{aligned}
$$

(ie)

$$
\begin{aligned}
& P(A)-P(B) \geqslant 0 \\
\therefore & P(A) \geqslant P(B)
\end{aligned}
$$

(8) Multiplication Theorem on Probability
 $=P(B) \cdot P(A / B) P(B)>0$
Son Given: $A \cap B=Q$ Conditional Probability of occurs
Where $P(B / A)$ represents
 is the Conditional Probability of Rappersing A given that B has already happened.

 mat be one of the Sample Points of B,
 (ii) $P(A \varnothing B)=\frac{A(A D B)}{2}$
are 2 events $\cap(B)$ are not disjoint.

$$
\left[\begin{array}{l}
\because A \text { and } \\
\left.\Rightarrow P(A / B)=\frac{B(B P(A n)}{P P(B)} \Rightarrow(B \cap \bar{A})\right]
\end{array}\right.
$$

$111 y$

$$
\begin{aligned}
& \Rightarrow P(A / B)=\frac{P P(A D B \cup(B \cap \bar{A})]}{} \Rightarrow P(A \cup B)=P \cdot P(B / A \cap B \cap \bar{A})
\end{aligned}
$$

$$
\begin{aligned}
P(A \cup B) & =P(A \cap B(B / A) B \cap) \\
P(A D B) & =P(A)+P(A)
\end{aligned}
$$

Pain W. (A<compat>T<compat>B) If A and B are is del. Then $P(A / B)=P(A) ; P(B / A)=P(B)$ From (1) \& (2) $P(A \cap B)=P(A) \cdot P(B)$
Conversely $\begin{aligned} \frac{P(A \cap B)}{P(B)}=P(A) \Rightarrow P(A / B) & =P(A) ; \frac{P(A \cap B)}{P(A)}=P(B) \\ & \Rightarrow P(B / A)=P(B)\end{aligned}$
(9) If $P(A)=P(B)=P(A D B)$ Prove that

$$
P[A \cap \bar{B}+\bar{A} \cap B]=0
$$

Solo\% W.K.T

$$
\begin{aligned}
& W \cdot K \cdot T \\
& P[A \cup B]=P(A)+P(B)-P(A D B)
\end{aligned}
$$

From the fig, $A \cup B=A \bar{B}+A B+\bar{A} B$

$$
\begin{aligned}
& \text { rom the fig, } A \cup B= \\
& \therefore P(A \cup B)= \\
& \begin{aligned}
P(A \bar{B})+P(\bar{A} B) & =P(A \cup B)-P(A B)+P(\bar{A} B) \\
& =P(A)+P(B)-P(A B)-P(A B) \\
& =P(A B)+P(A B)-P(A B)-P(A B) \\
& =0
\end{aligned}
\end{aligned}
$$

$$
\therefore P(A \bar{B})+P(\bar{A} B)=0
$$

(10) If the events A and B are such that $P(A) \neq 0, P(B) \neq 0$ and A is indeperdery of B, then B is indel. of A.

PSI
Since A is indel. of B (ii) $P(A / B)=P(A) \Rightarrow \frac{P(A \cap B)}{P(B)}=P(A)$

$$
\begin{aligned}
& \Rightarrow P(A D B)=P(A) \cdot P(B) \\
& \Rightarrow \frac{P(B \cap A)}{P(A)}=P(B) \Rightarrow P[B / A]=P(B) \Rightarrow B \text { is indel. if } A,
\end{aligned}
$$

Problems:
(1) A Person is known to hit the target in 3 out of 4 Shots, Whereas another Person is known to. hit the target in 2 out of 3 shots. Find the Probability of the targets being hit at all when they both Parson try. Sob\%. The Prob. That the ${ }^{\text {st }}$ person Bit the forget
(ie) $P(A)=3 / 4$
The Prob. That the $2^{\text {rd }}$ Person $n n$
(ie) $P(B)=2 / 3$
The two events are not mutually exclusive

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P[A D B] \\
& =P(A)+P(B)-[P(A) \cdot P(B)]=\frac{17}{12}-\frac{6}{12}=\frac{11}{12}
\end{aligned}
$$

(2) If from a Pack of Cards a Single Card is drain What is the Probability that eimer a Spade or King.

Ans: $4 / 13$. [A and B are not mutually exclusive]
(3) If $P(A)=0.35, P(B)=0.73, P(A \cap B)=0.14$

- Find $P\left(A^{\prime} \cup B^{\prime}\right)$

Soln $P\left(A^{\prime} \cup B^{\prime}\right)=1-P(A D B)=1-0.14=0.86$
(A) If A and B are independent and $P(A)=1 / 3$.

$$
P(B)=1 / 4
$$

Sob Since A and B are independent

$$
P(A \cap B)=P(A) \cdot P(B)=\frac{1}{3} \cdot \frac{1}{4}=\frac{1}{12}
$$

(5) If $P(A)=0.65, P(B)=0.4$ and $P(A D B)=0.24$ C an A and B are dependent events.
Solo W.K.T If A and B are independent then

$$
\begin{aligned}
& P(A \cap B)=P(A) \cdot P(B)
\end{aligned} \begin{aligned}
& \Rightarrow 0.24=0.65 \times 0.4 \\
&
\end{aligned}
$$

$\therefore A$ and B are depcrclent events.
(6) If A and B are independent events P.T
(i) \bar{A} and B are independent
(ii) A and \bar{B} are independent
(iii) \bar{A} and \bar{B} are independent

Sold Since A and B are indefenclent then

$$
P(A \cap B)=P(A) \cdot P(B)
$$

(i) W.K.T $B=(A \cap B) \cup(\bar{A} \cap B)$ where $A \cap B$ and $\bar{A} \cap B$ are disjoint

$$
\begin{aligned}
P(B) & =P(A \cap B)+P(\bar{A} \cap B) \\
P(\bar{A} \cap B) & =-P(A B)+P(B)=P(B)-P(A) \cdot P(\bar{B}) \\
& =P(B)[1-P(A)]=P(B) \cdot P(\bar{A})
\end{aligned}
$$

$\therefore \bar{A}$ and B are independent,
(ii)

$$
\begin{aligned}
\text { W.K.T } A & =(A \cap B) \cup(A \cap \bar{B}) \\
P(A) & =P(A \cap B)+P(A \cap \bar{B}) \\
P(A \cap \bar{B}) & =P(A)-P(A \cap B) \\
& =P(A)-P(A) \cdot P(B) \\
& =P(A)(1-P(B))=P(A) \cdot P(\bar{B}) \\
& \text { doDondent. }
\end{aligned}
$$

$\therefore A$ and \bar{B} are independent.
(iii)

$$
\begin{aligned}
& W \cdot K \cdot T \overline{A \cup B}=\overline{A \cap} \bar{B} \\
& \begin{aligned}
P(\overline{A \cup B}) & =P(\bar{A} \cap \bar{B}) \\
P(\overline{A \cap} \bar{B}) & =1-P(A \cup B) \\
& =1-P(A)-P(B)+P(A \cap B) \\
& =1-P(A)-P(B)+P(A) \cdot P(B) \\
& =1-P(A)-P(B)[1-P(A)] \\
& =[1-P(A)][1-P(B)]=P(\bar{A}) \cdot P(\bar{B})
\end{aligned}
\end{aligned}
$$

$\therefore \bar{A}$ and \bar{B} are independent.
(7) The Probability that machine A will be Performing. an usual fraction in 5 years time is $1 / 4$ white the Protrablity that martins B will still be operating usefully at the end of the Same Period is $1 / 3$. Find the Probability that both machines will be Performing as. usual function.
Sob P (machine A operating use fully $)=1 / 4$
$P($ machine $B \quad, \quad, \quad=1 / 3$
$P(B$ on A and B will operate usefully $)=P(A) \cdot P(B)$

$$
\begin{aligned}
& \text { y) }=\frac{1}{4} \cdot \frac{1}{3}=\frac{1}{12} \\
& \hline
\end{aligned}
$$

(5) A bag Contains 8 white and 10 black balls. Two balls are drawn in Succession: What is the Probability that first is white and $2^{\text {nd }}$ is black..

Solon Total Dol. of balls $=18$

$$
\begin{aligned}
& \text { Solo 1 Total } \\
& \qquad P(A)=\frac{8}{18} ; P(B)=\frac{10}{18} \\
& P(\triangle \cap \cap B)=P(A) \cdot P(B)=\frac{8}{18} \cdot \frac{10}{18}
\end{aligned}
$$

 two Pats A and B. To the Process of mandaiatere of Pat $A_{9} 9$ out of 100 lively to be defedive. Similarly 6 oud of loo are likely to be defective is the manufatuese of Pod B. Calculate the Probability That the assembled article will not be detective.

Solo 1

$$
\begin{aligned}
& \text { In } \\
& P(\text { A coll be defective })=\frac{9}{100} \\
& P(\text { A will dot be delative })=1-\frac{9}{100}=\frac{91}{100}
\end{aligned}
$$

$$
P(B \text { coll be defective })=5 / 100
$$

$$
\begin{aligned}
& P(B \text { will be defective })=1100 \\
& P(B \text { will Dot be defective })=1-5 / 100=\frac{95}{100}
\end{aligned}
$$

P [assembled article will set be defective]

$$
\begin{aligned}
& \text { article will set be detective) } \\
& =P(A \text { will dot be defective }) \cdot P(B \text { coll set } \\
& \text { be dele. }) \\
& =\frac{91}{100} \times \frac{95}{100}=0.86 .
\end{aligned}
$$

(ii) From a bag Containing 4 white and 6 black balls two balls are Drawn at random. If the balls are Drawn one after the other without replacement, find the Probability that
(i) both balls are white
(ii) both balls are black
(iii) The first ball is white and $2^{n d}$ is black
(iv) One ball is white and other is black.

Solos.
(i) Total Dol. of balls $=10$

$$
P[\text { ist ball is white }]=\frac{4}{10}
$$

$P[$ and ball is white $]=3 / 9$
P [both balls are white $]=\frac{4}{10} \cdot \frac{3}{9}=\frac{2}{15}$
(ii) $P[$ ist ball is black $]=\frac{6}{10}$
$P[$ and ball is black $]=5 / 9$
P [born balls are black] $=\frac{6}{10} \cdot \frac{5}{9}=\frac{1}{3}$
(iii) $P[1$ st ball is wifite $]=\frac{4}{10}$
$P[2 r d b a l l$ is black $]=\frac{6}{9}$
P [list white and and black $]=\frac{4}{10} \cdot \frac{6}{9}=\frac{4}{15}$
(iv) $P[18 t$ ball is white and sod is black $]$

$$
=\frac{4}{10} \cdot \frac{6}{9}=\frac{24}{90}
$$

P [last ball is black and and ball is while $]$

$$
=\frac{6}{10} \times \frac{4}{9}=\frac{24}{90}
$$

Here bob events are mutually exelusive
$\therefore P$ [one ball is white and the other is black]

$$
=\frac{24}{90}+\frac{24}{90}=\frac{8}{15}
$$

(12) Find the Probability is each of the above Four lases, if the balls are drawn one after the other with-replacment.

Solo
(i) P [both balls are white $]=\frac{4}{10}=\frac{4}{10}=\frac{4}{25}$
(ii) $P[$ both balls are black $]=\frac{6}{10} \cdot \frac{6}{10}=\frac{9}{25}$
(iii) $P\left[1^{\text {st }}\right.$ white $2^{\text {nd }}$ black $]=\frac{4}{10} \cdot \frac{6}{10}=\frac{6}{25}$
(ii) $P\left[1^{\text {st }}\right.$ ball is cohite and $2^{\text {Dd }}$ ball is black $]=\frac{4}{10} \cdot \frac{6}{10}=\frac{24}{100}$
$P\left[1^{\text {st }}\right.$ ball is black and 2^{2} is while $]=\frac{6}{10} \cdot \frac{4}{10}=\frac{24}{100}$,
P [One is white \& other is black $]=\frac{24}{1 m}+\frac{24}{1 m}=\frac{12}{25}$
(13) Four Cans are Arawn without replacement. What is the Probability that they are all Aces?
SOl

$$
\begin{aligned}
& P(A)=P[\text { getting } 1 \text { st } A C C]=\frac{4}{52} \\
& P(B)=P\left[\text { getting } 2^{\text {nd }} A C C\right]=\frac{3}{51} \\
& P(C)=P\left[\text { getting } 3^{x d} A C C\right]=\frac{2}{50} \\
& P(D)=P\left[\text { getting } 4^{\sqrt{5}} A C C\right]=\frac{1}{49}
\end{aligned}
$$

$\therefore P$ [ail four Cards are Aces]

$$
=P(A) \cdot P(B) \cdot P(C) \cdot P(D)=\frac{4}{52} \cdot \frac{3}{51} \cdot \frac{2}{50} \cdot \frac{1}{49}
$$

(14) If two dice are thrown what is the Probability that the Sum is (i) Greater than 8 (ii) neither 7 nor 11 .
Sol (i) $P[S=9]=4 / 36 ; P[S=10]=\frac{3}{36} ; P[S=11]=\frac{2}{36}$

$$
P[s=12]=\frac{1}{36} \quad \therefore P(s>8)=5 / 18
$$

(ii) $P[$ Deithei 7 nor in $]=P(\bar{A} \cap \bar{B})=1-P(A \cup B)$

$$
=1-\{P(A)+P(B)\}=1-\frac{1}{6}-\frac{1}{18}=7 / 9
$$

Theorem ' If A and B are indepondentevents, Then
(i) A and \bar{B} (ii) \bar{A} and B (iii) \bar{A} and \bar{B} cor avo independent
proof

$$
\begin{aligned}
& \text { prot } \\
& \text { Since } A \text { ont } B \text { ore inclependent, } \\
& P(A \cap B)=P(A) P(B) \\
& \text { (i) } \begin{aligned}
P(A \cap \bar{B}) & =P(A)-P(A \cap B)=P(A)-P(A) P(B) \\
& =P(A)[1-P(B)]=P(A) P(\bar{B})
\end{aligned}
\end{aligned}
$$

$\Rightarrow A$ and \bar{B} cure independent events.
(ii) $P(\bar{A} \cap B)=P(B)-P(A \cap B)=P(B)-P(A) P(B)$

$$
=P(B)[1-P(A)]=P(\bar{A}) P(B)
$$

$\Rightarrow \bar{A}$ and B arse independent events
(ii.)

$$
\begin{aligned}
P(\bar{A} \cap \bar{B}) & =P(\overline{A \cup B})=1-P(A \cup B) \\
& =1-\{P(A)+P(B)-P(A \cap B)] \\
& =1-P(A)-P(B)+P(A) P(B) \\
& =[1-P(B)]-P(A)[1-P(B)] \\
& =[1-P(A)][1-P(B)]=P(\bar{A}) P(\bar{B})
\end{aligned}
$$

$\therefore \bar{A}$ and \bar{B} are independent events.

Conditional probabieiry:
conditional Probability is the Probability of one event occwing some relationship to one or more events

$$
P(B / A)=P(A \text { and } B) \mid P(A)
$$

Also can be written as,

$$
P(B / A)=P(A \cap B) / P(A)
$$

p (defective bolt manufactured by machine A_{2} ?

$$
\begin{aligned}
& =P\left(A_{2} / B\right) \\
& =\frac{P\left(A_{2}\right) \cdot P\left(B / A_{2}\right)}{\sum P(A i) \cdot P(B / A i)} \\
& =\frac{0.014}{0.0345}
\end{aligned}
$$

$$
\begin{aligned}
P\left(\text { dofectur bolt manufactured } \begin{array}{rl}
\text { by machine } A 3
\end{array}\right. & =\frac{P(A 3) \cdot P(B / A 3)}{\sum P(A i) \cdot P(B / A i)} \\
& =\frac{0.008}{0.0345} \\
& =0.231 .
\end{aligned}
$$

Ex:2 The $1^{\text {st }}$ bag contains 3 white balls, 2 ned balls and 4 black balls. second bag contains 2 white, 3 red, 5 black balls and third bag contains 3 white, 4 red and 2 black balls. one bag is chosen at random from it 3 balls are drawn. Out of 3 balls 2 balls are white and one red. What are the probability that they were taken from $1^{\text {st }}$ bag, $2^{\text {nd }}$ bag, $3^{\text {rd }}$ bag. Soln: selection of bags are mutually exclusive events. Selection of 2 white and one red boll is an independent event. let $P($ selection $b a g)=P(A i)=1 / 3$.

$$
\begin{aligned}
& =\frac{0.0476}{0.0746} \\
& =0.6380 .
\end{aligned}
$$

Ex:3 let 5 men out of 100 and 25 women out of 1000 are colour blind. A colour blind person is chosen at random. What is the probability of his being made. (Assume that males and females are in equal proportion?.
SIn: Let M denotes a person is Male lat F denotes a person is pemale. let C denotes a person is colour blind. Given $P(M)=1 / 2, P(F)=1 / 2$.

$$
\begin{aligned}
P(C / M) & =5 / 100 \\
P(C / F) & =25 / 1000 \\
P(M \mid C) & =? \\
P(M \mid C) & =\frac{P(C / M) \cdot P(M)}{P(C / m) P(M)+P(C / F) \cdot P(F) .} \\
& =\frac{5 / 100 \times 1 / 2}{5 / 1001 / 2+\frac{25}{1000}} \cdot 1 / 2 \\
& =\frac{0.05}{0.05+0.025} \\
& =2 / 3
\end{aligned}
$$

Ex:4 An urn contains to $\mathrm{W}, 3 B$ balls while another urn contains $3 \omega, 5 \mathrm{~B}$ balls. Two balls are drawn from the ist or and put into the 2 nd ing Then a ball is drawn from the latter. What is the probability that it is a white ball.

Soon:-
The 2 balls drawn from the $1^{\text {st }}$ urn may be
(i) both white (event Ai)
(ii) Both black (event $A 2$)
(iii) $|W, I B|$ event A_{3})

$$
\begin{aligned}
\therefore P\left(A_{1}\right) & =\frac{10 c_{2}}{13 C_{2}}=15 / 26 . \\
P\left(A_{2}\right) & =\frac{3 C_{2}}{13 c_{2}}=1 / 26 \\
P(A 3) & =\frac{10 c_{1} \times 3 C_{1}}{13 C 2_{2}}=10 / 26 .
\end{aligned}
$$

After the balls are transformed from $1^{\text {st }}$ win to $2^{\text {nd }}$ urn will contain.
(i) $5 w, 5 \mathrm{~B}$
((ii) $3 \mathrm{~W}, 7 \mathrm{~B}$
(iii) $4 w, b B$
let B be the event of drawing a white ball from the $2^{\text {nd }}$ urn:

$$
\begin{aligned}
& \text { Now } P(B / A 1)=\frac{5 c_{1}}{10 c_{1}}=5 / 10 \\
& P(B / A 2)=\frac{3 c_{1}}{10 c_{1}}=3110 \\
& P(B / A 3)=\frac{4 c_{1}}{10 c_{1}}=4110
\end{aligned}
$$

$$
\begin{aligned}
\therefore P(B) & =\sum_{i=1}^{3} P(B / A i) \cdot P(A ;) \\
& =59 / 130
\end{aligned}
$$

unit - 2
Random variables
A real variable ' x ' whose value is determined by the outcome of a random experiment is called Random variables.
Ex:1 consider random experiment of throwing a dice Then ' x ' the number of points on the die is a random variable - x^{\prime} 'take the values $1,0,3,4,5,6$.
Son. Here the random variable ' x ' takes the Values $1,2,3,4,5,6$ each with the probability $\frac{1}{6}$ Note that twice the number of points on a dice "which takes the values $2,4,6,8,10$, 12 is also O a random variables.

The square of number of points on a die" which takes the values $1,4,9,16,25,36$ is also a random variable. UNIT 2

Ex:2
consider a random experiment of throwing a coin twice. we have the following result $H H-2, H^{-1}, T H-1, T T=0$. The number of heads" Which takes the value $2,1,1,0$ is a random variable.

Discrete Random Variable:-
If the random variable takes the values only on the set $\{0,1,2, \ldots \ldots n\}$ is called a discrete random variable.

The number of printing mistakes in each page of a book. The number of telephone calls received by the telephones operator are examples of discrete random variables.

Clearly the above examples (1) \& (2) are the examples of discrete random variables. continous Random Variables :

If a random variable takes on all values with is a curtain interval, then the random Variable is called continuous Random variable.

The height, age, wright of indivuals, the amount of rainfall on a ring day are clear examples of Continuous random roouables.

Thus to each outcome ti' of a random experiment There corresponds a real number $x(w)$ which is deter for each point of the Sample s.

Ex:1 If a coin is tossed, then sample is,

$$
S=\{H, T\}
$$

(ie)

$$
S=\left\{\omega_{1}, \omega_{2}\right\}, \omega_{1}=H, \omega_{2}=T
$$

$$
S=\left\{\omega, \omega(\omega)= \begin{cases}1, & \text { if } \omega=H \\ 0, & \text { if } \omega=T\end{cases}\right.
$$

Here $x(\omega)$ is a random variables which takes only two values.
some Important theorems on Random Variables:
Thm-1: If x_{1} and x_{2} are random variables and k is constant then $k x_{1}, x_{1}+x_{2}, x_{1} x_{2}, k_{1} x_{1}+k_{2} x_{2}$, $x_{1}-x_{2}$ are also 0 random variables.
Thm-2 : If ' x ' is a random variables and $f(\cdot)$ is a continuous function then $f(x)$ is a random variable.
Distribution Function of the random variable x.
The distribution function of a random variable x deft in $(-\infty, \infty)$ is given by

$$
F(x)=P(x \leqslant x)
$$

Note: let the random variable x take values $x_{1} x_{2}$. Mn with probabilities $P_{1}, p_{2} \ldots p_{n}$ and let $x_{1}<x_{2}<x_{5}, \cdots \ll$

$$
=p(x=a)+p(b)-F(a)
$$

[using property $\pi)$].

$$
\text { propety-3:p(a<x<b)} \begin{aligned}
& =p(a<x \leqslant b)-p(x=b) . \\
\text { proof: } p(a<x<b) & =p(a<x \leqslant b)-p(x=b) \\
& =F(b)-F(a)-p(x=b)
\end{aligned}
$$

I Using property (1)]

$$
\begin{aligned}
p(a \leq x<b) & =p(a<x<b)+p(x=a) \\
& =F(b)-F(a)-p(x=b)+p(x=a) .
\end{aligned}
$$

Note-1 : If $F(x)$ is the distribution function of one dimensional random variable, then
(i) $0 \leqslant F(x) \leqslant 1$
(ii) If $x<y$, then $F(x) \leq F(y)$
(iii) $F(-\infty)=0, F(\infty)=1$
probability Mass function :-
let ' x ' be a one - dimensional discrete random variable which takes the values $x_{1} x_{2}, x_{3} \cdots$ let each possible outcome ' x_{1} ' we can associate a number $p_{i}[p(x=x i)]=p(x i)=p_{i}$. The numbers $p\left(x_{i}\right) i=1,2,3 \ldots$ statisfies the following conditions.
(i) $P(x i) \geq 0$,
(ii) $\sum_{i=1}^{\infty} p(x i)=1$.

This function ' P ' statisfying the above two conditions is called the probability mass function or probability function of the random
variables x and the $\operatorname{set}\left\{x_{i}, p\left(x_{i}\right)\right\}$ is called probability distribution of the random variable x.
Ex:1 A random variable x be the following probability function

values of X, x	0	1	2	3	4	5	b	7
8								
probability $P(x)$	a	$3 a$	$5 a$	$7 a$	$9 a$	$11 a$	139	$15 a$
$17 a$								

(i) Determine the value of ' a '.
(ii) Find $P(x<3), P(x \geq 3), P(0<x<5)$.
(iii) Find the distribution function of x

Goln: (i) we know that if $p(x)$ is the probability mass function, then $\sum_{i=1}^{\infty} p\left(x_{i}\right)=1$. [Hence i 'varies from otis]

$$
\text { (ie) } a+3 a+5 a+7 a+9 a+11 a+13 a+15=1
$$

$$
\begin{aligned}
& 81 a=1 \\
& a=1 / 81
\end{aligned}
$$

(il)

$$
\begin{aligned}
P(x<3) & =p(0)+p(1)+P(2) \\
& =9+39+5 a \\
& =\frac{1}{81}+\frac{3}{81}+\frac{5}{81} \\
& =9 / 81
\end{aligned}
$$

$$
=1 / 9
$$

$$
\begin{aligned}
p(x \geqslant 3) & =p(3)+p(4)+p(5)+p(6)+p(7)+p(8) \\
& =1-[p(0)+p(1)+p(0)] \\
& =1-1 / 9 \\
& =8 / 9 .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& p(0<x<5) \\
&=p(1)+p(2)+p(3)+p(4) \\
&=3 a+5 a+7 a+9 a \\
&=24 / 81
\end{aligned}
$$

(iv) To find the distribution function $F(x)$.

$E x: 2$ suppose that the random variable ' x ' assumes three values $0,1,2$ with probability $\frac{1}{3}, 1 / 6,1 / 2$ respecturly. obtain the distribution function of x.

Sols;

x	0	1	2
$P(x)$	$1 / 3$	$1 / 6$	$1 / 2$

x	$F(x)=p(x \leq x)$	
0	$1 / 3$	
1	$1 / 3+1 / 6=1 / 2$	$\therefore p(x \leqslant 1)=p(0)+p(1)$
2	$1 / 2+1 / 2=1$	$\therefore p(x \leq 2)=p(0)+p(1)+p(2)=1$

continuous Random variable.
A random variable ' x ' which takes all possible
Values in a given interval is called continuous random variable.

Ex: Age, height, weight, etc...are continuous random variables.
probability density function :-
The probability density function for the continuous random variable ' x ' in the intaval $(a, b$) is given by

$$
f(x)=\left\{\begin{array}{cl}
0, & x<a \\
\phi(x) & a \leqslant x \leqslant b \\
0 & x>b
\end{array}\right.
$$

Note:

$$
\begin{aligned}
& \text { 1. } f(x) \geq 0,-\infty<x<\infty \\
& \text { 2. } \int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

3. The probability $P(E)$ is given by $P(E)=\int_{E} f(x) d x$

If $f(x)=P(x \leq x)=\int_{-0}^{\prod} f(x) d x$ then $F(x)$ deft as the comulative distribution function for) distribution function of the continuous random variable x.

Note: (i) $F^{\prime}(x)=f(x) \geqslant 0$
(ii) $F(-\infty)=0$
(iii) $F(\infty)=1$.
(iv)

$$
\begin{aligned}
& F(\infty)=1 \\
& F(a \leq x \leq b)=\int_{a}^{b} f(x) d x \\
&=\int_{-\infty}^{b} f(x) d x-\int_{-\infty}^{a} f(x) d x
\end{aligned}
$$

$$
=F(b)-F(a) \text {. }
$$

Ex:1
(i) Is the function defined as follows a density function?

$$
\begin{aligned}
f(x) & =e^{-x}, & & x \geqslant 0 \\
& =0, & & x<0 .
\end{aligned}
$$

(ii) If so detamine the probability that the variate having this density will fall in the
(iii) Also find the cumulation probability interval $(1,2$) function $F(2)=$?
Sown: In the interval $(1,2) e^{-x}$ is alsuays the. (iii) $f(x) \geqslant 0$ in $(1,2)$.

$$
\begin{aligned}
& f(x) \geqslant 0 \text { in }(1,2) \\
& \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} f(x) d x+\int_{0}^{\infty} f(x) d x .
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{0} 0 d x+\int_{0} e^{-x} d x . \\
& =\left[-e^{-x}\right]_{0}^{\infty} \\
& =-e^{-\infty}+1 \\
& =1
\end{aligned}
$$

Hence $f(x)$ statisfies the condition of the density function.
(ii)

$$
\begin{aligned}
P(1 \leq x \leq 2) & =\int_{2}^{2} f(x) d x \\
& =\int_{1}^{1} e^{-x} d x \\
& =\left[-e^{-x}\right]_{1}^{2} \\
& =-e^{-2}+e^{-1} \\
& =0.368-0.135 \\
& =0.233 .
\end{aligned}
$$

(iii) cummulative probability function

$$
\begin{aligned}
F(2) & =\int_{-\infty}^{2} f(x) d x \\
& =\int_{-\infty}^{0} f(x) d x+\int_{0}^{2} f(x) d x \\
& =\int_{-\infty}^{0} D d x+\int_{0}^{2} e^{-x} d x \\
& =\left[-e^{-x}\right]_{0}^{2} \\
& =e^{-2}+1
\end{aligned}
$$

$$
\begin{aligned}
& =1-0.135 \\
& =0.865 .
\end{aligned}
$$

Ex:2 A continuous random variable y, has a p.d. $f f(x)=3 x^{2}, 0 \leq x \leq 1$. Find ' a ' and ' b ' such that (2)
(i) $p(x \leq a)=p(x>a)$ and
(ii) $p(x>b)=0.05$

Soln: Gwen $P(x \leqslant a)=P(x>a)$.
Since total probability is 1 , we have

$$
P(x \leq a)=1 / 2 \text { and } P(x>a)=1 / 2
$$

When

$$
\begin{aligned}
p(x \leq a)=1 / 2 & \Rightarrow \int_{0}^{a} f(x) d x=1 / 2 \\
& \Rightarrow \int_{0}^{a} 3 x^{2} d x=1 / 2 \\
& \Rightarrow 3\left(\operatorname{ro}^{3} / 3\right)_{0}^{a}=1 / 2 \\
& \Rightarrow a 3=1 / 2 \\
& \Rightarrow a=(1 / 2)^{\frac{1}{3}}
\end{aligned}
$$

When $P(x>b)=0.05$

$$
\begin{aligned}
\Rightarrow \int_{b}^{1} f(x) d x & =0.05 \\
\Rightarrow \int_{b}^{1} 3 x^{2} d x & =0.05 \\
\Rightarrow 3\left(x^{3} / 3\right)^{1} b & =0.05 \\
\Rightarrow 1-b^{3} & =1 / 20 \\
\Rightarrow b^{3} & =1-\frac{1}{20}=19 / 20 \\
b & =(19 / 20)^{1 / 3}
\end{aligned}
$$

Ex:3 The diameter of an electric cable say x is assumed to be a continuous random variable wite p.d.f $f(x)=b x(1-x) \quad 0 \leq x \leq 1$.
(i) check that above is a p.d.d.
(ii) Determine a number ' b ' such that

$$
p(x<b)=p(x>b)
$$

Soln: (i) the interval $0 \leq x \leq 1, f(x)$ is always the (ie) in $0 \leq x \leq 1, f(x)>0$

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\int_{0}^{1} 6 x(1-x) d x \\
& =6 \int_{0}^{1}\left(x-x^{2}\right) d x \\
& =6\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =6\left[\frac{1}{2}-\frac{1}{3}\right] \\
& =1
\end{aligned}
$$

$\therefore f(x)$ is a p.d.f of a random variable x.
(ii) Given $P(x<b)=P(x>b)$.

$$
\begin{aligned}
\text { (i) } & \int_{0}^{b} f(x) d x=\int_{b}^{1} f(x) d x . \\
& b \int_{0}^{b}\left(x-x^{2}\right) d x=b \int_{b}\left(x-x^{2}\right) d x .
\end{aligned}
$$

$$
\begin{aligned}
& 6\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{b}=6\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right] \\
& b\left[\frac{b^{2}}{2}-\frac{b^{3}}{3}\right]=\left(\frac{1}{2}-1 / 3\right)-\left(\frac{b^{2}}{2}-\frac{b^{3}}{3}\right) \\
\Rightarrow & 3 b^{2}-2 b^{3}=1-3 b^{2}+2 b^{3} \\
\Rightarrow & 4 b^{3}-6 b^{2}+1=0 \\
\Rightarrow & (2 b-1)\left(2 b^{2}-2 b-1\right)=0 \\
\Rightarrow & 2 b-1=0 \quad \text { or } 2 b^{2}-2 b-1=0 \\
\Rightarrow & b=1 / 2 ; \quad b=\frac{2 \pm \sqrt{4-8}}{4} \\
& =\frac{2 \pm i 2}{4} \\
& =\frac{1 \pm i}{2} .
\end{aligned}
$$

Here $b=1 / 2$ is the real value and $b=\frac{1 \pm 1}{2}$ is imaginary!,
$\therefore b=1 / 2$ which lies in $(0,1)$
Note: If $f(x)$ is a p.d.f of a random variable ' x ' which is defined in the interval (a, b) then
(i) Arithmetic mean $=\int_{a b}^{b} x(f(x)) d x$
(ii) Harmonic mean $=\int_{a}^{u b} t / x f(x) d x$
(iii) Geometric mean G_{F} is given by

$$
\therefore \log G=\int_{a}^{b} \log f(x) d x .
$$

(iv) Moments about origin i b

$$
\mu_{r}^{\prime}=\int_{a}^{b} x^{2} f(x) d x \text {. }
$$

(v) Moment about any point A

$$
\mu r^{\prime}=\int_{a}^{b}(x-A)^{r} f(x) d x
$$

(vi) Moment about mean

$$
M r=\int_{a}^{b}(x \text {-mean })^{r} f(x) d x
$$

($y_{i i}$) Mean derivation about the mean is

$$
M \cdot D=\int_{a}^{b} \mid \dot{x} \text {-mean } \mid f(x) d x
$$

Ex:1 A probability curve $y=f(x)$ has a range from 0 to ∞. If $f(x)=e^{-x}$ find the mean and variance and the third moment about mean. Soln:

$$
\begin{aligned}
\text { Mean } & =\int_{0}^{\infty} x f(x) d x \quad\left[\text { using mean }=\int_{a}^{b} x f(x) d x\right] \\
& =\int_{0}^{\infty} x e^{-x} d x=\left[x\left(-e^{-x}\right)-\left(e^{-x}\right)\right]_{0}^{\infty} \\
& =1
\end{aligned}
$$

variance

$$
\begin{aligned}
\mu_{2} & =\int_{0}^{\infty}(x-\text { mean })^{2} f(x) d x \\
& =\int_{0}^{\infty}(x-1)^{2} e^{-x} d x \\
& =\left[(x-1)^{2}\left(-e^{-x}\right)-2(x-1)\left(e^{-x}\right)+2\left(-e^{-x}\right]_{0}^{\infty}\right.
\end{aligned}
$$

DRy. Using Integration by port

$$
\begin{aligned}
& =1-2+2 \\
& =1
\end{aligned}
$$

Third moment about mean.

$$
\begin{aligned}
& =\int_{0}^{\infty}(x-1)^{3} e^{-x} d x\left[\text { using } H_{r}=\int_{a}^{b}(x-\text { mean }) f(x) d x\right. \\
& =\left\{(x-1)^{3}\left(-e^{-x}\right)-3(x-1)^{2}\left(e^{-x}\right)+b(x-1)\left(-e^{-x}\right)-b\left(e^{-x}\right)\right.
\end{aligned}
$$

[By using bernoulis the for integration]

$$
\begin{aligned}
& =-1+3-6+6 \\
& =2
\end{aligned}
$$

Ex:2 The length of time (in min) that certain lady speaker on. The telephone is found to be random phenomenon, with a probability function specified by the probability density fr $f(x)$ as

$$
\begin{aligned}
& \text { The } \begin{aligned}
f(x) & =A e^{-x / 3}, \text { for } x \geq 0 . \\
& =0, \text { otherwise }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =A e^{-x}, \text { otherwise } \\
& =0, \text { makes }
\end{aligned}
$$

Find the value of A that makes $f(x)$ a $p \cdot d \cdot f$. Soln: (a) If $f(x)$ is p.d.f then

$$
\left.\begin{array}{l}
\int_{0}^{\infty} f(x) d x=1 \\
\int_{0}^{\infty} A e^{-x / 5} d x=1 \\
A\left[\frac{e^{-x / 5}}{-1 / 5}\right]_{0}^{\infty}=1 \\
A[0-(5 / 5)]
\end{array}\right)=1 \quad \begin{aligned}
4 & =1 \Rightarrow A=1 / 5 .
\end{aligned}
$$

$$
\text { (ie) } \quad \int_{0}^{0} A e^{-x / 5} d x=1
$$

Ex 3 Is the function defined as follows probability density function

$$
f(x)= \begin{cases}0, & \text { if } x<2 \\ 3+2 x \mid>8, & \text { if } 2 \leq x \leq 4 \\ 0, & \text { if } x>4\end{cases}
$$

If so find the $p(2 \leq x \leq 3)$.
Soln: In the interval $2 \leq x \leq 4 \quad f(x) \geqslant 0$

$$
\begin{aligned}
& \text { In the interval } 2 \leq x \leq 4 \\
& \text { Now } \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{2} f(x) d x+\int_{2}^{4} f(x) d x+\int_{4}^{\infty} f(x) d x \\
&=0+\int_{2}^{4} \frac{3+2 x}{18} d x+0 \\
&=\frac{1}{18}\left[\frac{13+2 x]^{2}}{4}\right]_{2}^{4} \\
&=1 / 42[121-49]=\frac{72}{72} \\
&=1
\end{aligned}
$$

$\therefore f(x)$ is a $p \cdot d$ if
Now

$$
\begin{aligned}
\text { is a ped if } & =\int_{2}^{3} f(x) d x \\
& =\int_{2}^{3} \frac{3+2 x}{18} \\
& =1 / 18\left[3 x+x^{2}\right]_{2}^{9} \\
& =1 / 18[18-10] \\
& =8 / 18
\end{aligned}
$$

Ex:4 If a random variable ' x ' has the p - d f

$$
f(x)= \begin{cases}1 / 2(x+1), & \text { if }-1<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

find the mean and variance of x.
Soln:

$$
\begin{aligned}
& \text { Mean }=\int_{-1}^{1} x f(x) d x \\
&=1 / 2 \int_{-1}^{1} x(x+1) d x \\
&=1 / 2\left[\int_{-1}^{1}\left(x^{2}+x\right) d x\right]^{2}\left[\frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{-1}^{1} \\
&=1 / 2\left[\frac{1}{3}+1 / 2+1 / 3-1 / 2\right] \\
&\left.=1 / 2\left[\int_{a}^{b}(x-\text { mean })^{2} f(x)\right) d x\right] \\
&=1 / 3 \\
& \text { Mean } \\
& \text { variance }=\int_{-1}^{1}(x-1 / 3)^{2}\left(\frac{x+1}{2}\right) d x \\
&=1 / 6 \int_{-1}^{1}(3 x-1)^{2}(x+1) d x \\
&=1 / 6 \int_{-1}^{1}\left(3 x^{2}+2 x-1\right) d x \\
&=\frac{1}{6}\left[\left(x^{3}+x^{2}-x\right)_{-1}^{1}\right] \\
&=\frac{1}{6}[1-1] \\
&=0 \\
&=0-
\end{aligned}
$$

Ex:5 For the Following density function, $f(x)=a e^{|x|},-\infty<x<\infty$, find (i) the value of a (ii) mean and variance.

Soln: Given $f(x)$ is pdf.

$$
\therefore \int_{-\infty}^{\infty} f(x) d x=1
$$

(ie) $\int_{-\infty}^{\infty} a e^{-|x|} d x=1$
(ic) $a \cdot 2 \int_{0}^{\infty} e^{-|x|} d x=1 \quad\left[e^{-|x|}\right.$ is a even $\left.f n\right]$

$$
\begin{aligned}
& 2 a \int_{0}^{\infty} e^{-x} d x=1 \quad\left[\operatorname{In}(0, \infty) e^{-|x|}=e^{-x}\right] \\
& 2 a\left[e^{-x}\right]_{0}^{\infty}=1 \\
& 2 a[0+1]=1
\end{aligned}
$$

$$
\text { (ai) } \quad a=1 / 2
$$

$$
\begin{aligned}
& \text { (ie) } a=1 / 2 \\
& \text { (ii) Mean }=\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} x \cdot 1 / 2 e^{-|x|} d x . \\
& \quad\left[\therefore x e^{-|x|}\right. \text { is an }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty} x f(x) d x \quad\left[\because x e^{-|x|} \text { is an odd }-(x] .\right. \\
& =\frac{1}{2} \int_{-\infty}^{\infty}\left(x e^{-1 x}\right) d x \equiv 0 \quad .
\end{aligned}
$$

$$
\text { variance } \mu_{2}=\int_{-\infty}^{-\infty}(x-0)^{2} \frac{1}{2} e^{-|x|} d x
$$

$$
=1 / 2 \int_{-\infty}^{-\infty} x^{2} e^{-|x|} d x
$$

$$
\begin{aligned}
& =2 \times 1 / 2 \int_{0}^{\infty} x^{2} e_{1}^{-x} d x\left[\because x^{2} e^{-(x)}\right. \text { is a even tn] } \\
& =\int_{0}^{\infty} x^{2} e^{-x} d x
\end{aligned}
$$

$$
=\int_{0}^{\infty} x^{2} e^{-x} d x
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[x^{3}\left(-e^{-x}\right)-3 x^{2}\left(e^{-x}\right)+6 x\left(-e^{-x}\right)-6\left(e^{-x}\right)\right]_{0}^{1} \\
& =3 \\
\text { Variance } H_{2} & =\int_{0}^{\infty}(x-3)^{2} f(x) d x . \\
& =\int_{0}^{\infty}(x-3)^{2} 1 / 2 x^{2} e^{-x} d x . \\
& =\frac{1}{2} \int_{0}^{\infty}\left[x^{2}-6 x+9\right) x^{2} e^{-x} d x . \\
& =1 / 2 \int_{0}^{\infty}\left(x^{4}-6 x^{3}+9\right) x^{2} e^{-x} d x \\
& \left.=\frac{1}{2}\left(x^{4}-6 x^{3}+9 x^{2}\right)\left(-e^{-x}\right)-14 x^{3}-18 x^{2}+18 x\right) \\
& +\left(12 x^{2}-36 x+18\right)\left(-e^{-x}\right)-(24 x-36)\left(e^{-x}\right) \\
& \left.+(24)\left(-e^{-x}\right)\right]_{0}^{\infty}
\end{aligned}
$$

[Using integration by parts]

$$
\begin{aligned}
& =\frac{1}{2}[18-36+24 J \\
& =\frac{6}{2} \\
& =3
\end{aligned}
$$

Ex:7 A random Variable ' x ' has the p.d.f

$$
f(x)=\left\{\begin{array}{cl}
2 x & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

find (i) $P(x<1 / 2)$
(ii) $P(1 / 4<x<1 / 2)$.
(iii) $P(x>3 / 4, \mid x>1 / 2)$

$$
=7 / 16
$$

$$
\begin{align*}
P(x>1 / 2) & =\int_{1 / 2}^{1} f(x) d x \\
& =\int_{1 / 2}^{1} 2 x d x \\
& =2\left(x^{2} / 2\right)^{1} / 2 \\
& =1-1 / 4 \\
& =3 / 4 \tag{3}
\end{align*}
$$

sub (2) and (3) in (1) we gel

$$
\begin{aligned}
P(x>3 / 4,1 x>1 / 2) & =\frac{p(x>3 / 4)}{p(x>1 / 2)} \\
& =\frac{7 / 16}{3 / 4} \\
& =7 / 12
\end{aligned}
$$

$E x: 8$ A continuous random variable ' x ' is distributed over the interval $[0,1]$ with $p-d . f$ $a x^{2}+b x$ where $a ; b$ are consants. If the $A \cdot M$ of ' x ' is 0.5 . Find the values of a and b

Soln: Let $f(x)=a x^{2}+b x$
Given $f(x)$ is a $p \cdot d f$ in $[0,1]$
(ie) $\int_{0}^{1} f(x) d x=$)

$$
\int\left(a x^{3}+b x\right) d x=1
$$

$$
\begin{align*}
& \left(\frac{a x^{3}}{3}+\frac{b x^{2}}{2}\right)_{b}^{1}=1 \\
& a\left(\frac{1}{3}\right)+b(1 / 2)=1 \tag{1}\\
& \text { Now mean }=\int_{0}^{1} x f(x) d x \\
& \text { [uscg mesh } \left.=\int_{0}^{b} x+(x) d x\right] \\
& =\int_{0}^{1} x\left(a x^{2}+b x\right) d x \\
& =\int_{0}^{1}\left(a x^{3}+b x^{2}\right) d x \\
& =\left[a x^{4} / 4+b^{3} / 3\right]_{0}^{1} \\
& =a / 4+b / 3 \\
& \text { Given mean } \begin{aligned}
\text { Gif } & =0 \cdot 5=1 / 2 \\
\therefore 1 / 2 & =9 / 4+b / 3
\end{aligned} \\
& \text { Given mean } \begin{aligned}
\text { Gif } & =0 \cdot 5=1 / 2 \\
\therefore 1 / 2 & =9 / 4+b / 3
\end{aligned} \\
& 1 / 2=\frac{3 a+4 b}{12} \\
& 3 a+4 b=6 \text { - } \\
& 2 a+3 b=6 \tag{3}\\
& =12+2+b x) d x \text {. }
\end{align*}
$$

Solving (2) $\&(3)$ we get.
Ex:9 Find the probability density function

$$
\begin{aligned}
f(x) & =\frac{2(b+x)}{b(a+b)}, r b \leq x<0 \\
& =\frac{2(a-x)}{a(a+b)}, \quad b \leq x \leq a . \text { Find the }
\end{aligned}
$$

mean

Soln:

$$
\begin{aligned}
\text { Mean } & =\int_{-b}^{a} x f(x) d x \\
& =\int_{-b}^{0} \frac{x 2(b+x)}{b(a+b)} d x+\int_{0}^{0} \frac{x(a(a-x)}{a(a+b)} d x \\
& =\frac{2}{b(a+b)} \int_{-b}^{0}\left(b x+x^{2}\right) d x+\frac{2}{a(a+b)} \int_{0}^{a}(a x-x) d x . \\
& =\frac{2}{b(a+b)}\left[\frac{b x^{2}}{2}+\frac{x^{3}}{3} \int_{-b}^{0}+\frac{2}{a(a+b)}\left[\frac{a x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{a}\right. \\
& =\frac{2}{b(a+b)}\left[\frac{-b^{3}+\frac{b^{3}}{3}}{3}\right]+\frac{2}{a(a+b)}\left[\frac{a^{3}}{2}-\frac{a^{3}}{3}\right] \\
& =\frac{2}{b(a+b)}\left[\frac{-3 b^{3}+2 b^{3}}{b}\right]+\frac{2}{a(a+b)}\left[\frac{3 a^{3}-x^{3}}{b}\right] \\
& =\frac{2}{3(a+b)}\left[-b^{3} / 0\right)+\frac{a^{2}}{3 b(a+b)} \\
& =\frac{a-b}{3 b}
\end{aligned}
$$

Ex:10 prove that the geometric mean G of the
distribution $d F=6(2-x)(x-1) d x, 1 \leqslant x \leqslant 2$ is
gwen by $b \log (16 G)=19$.
Sols: Given $d F=f(2-x)(x-1) d x$.

$$
\begin{aligned}
\therefore \text { PdF } f(x) & =b(2-x)(x-1) \\
\log G & =\int_{1}^{1} \log x f(x) d x \\
& =\left[\text { using } \log G=\int_{a}^{b} \log x \cdot f(x) d x .\right.
\end{aligned}
$$

$$
\begin{aligned}
& =6 \int \log x(2-x)(x-1) d x \\
& =-6 \int_{2}^{1}\left(x^{2}-3 x+2\right) \log x d x \ldots \\
& =-b\left[\int_{1}^{2} \log x d\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right)\right] \\
& =-6\left[\int_{1}^{1} \log x \cdot\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right)\right]_{1}^{2}-\int_{1}^{2}\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right] \\
& =-6\left[\log 2\left(\frac{8}{3}-3 \times 2+4\right)-\int_{1}^{2}\left(\frac{x^{3}}{3} \frac{3 x^{2}}{2}+2 x\right) \frac{1}{2} d x\right] \\
& =-6\left[\log 2(8 / 3-3 \times 2+4)-\int_{1}^{2}\left(\frac{x^{3}}{3}-\frac{3 x}{2}+2\right) d x\right] \\
& {[\therefore \log 1=0]} \\
& =-6\left[\log 2 \times 2 / 3-\left(\frac{x^{3}}{9}-\frac{3 x^{2}}{4}+2 x\right)_{1}^{2}\right] \\
& =-6\left[2 / 3 \log 2-\left(8 / 9-3+4-\frac{1}{9}+3 / 4-2\right)\right] \\
& =-4 \log 2+6(8 / 3-1+3+3 / 4) \\
& =-4 \log 2+6(19 / 36) \\
& \Rightarrow \log G=-4 \log a+17 / 6 \quad\left[\quad \cdot \log m^{n}=n \log m\right]
\end{aligned}
$$

(i) $\log G+\log 24=19 / 6 \quad[\therefore \log m n=\log m+\log n]$ b $\log (G \times 16)=19$
verify that tho following is dutribution $\frac{1}{y}$ n

$$
F(x)=\left\{\begin{array}{lc}
0, & x<a \\
1 b\left(\frac{\alpha}{a}+1\right) & ,-a \leq x \leq a \\
1 & x>1
\end{array}\right.
$$

solo: Clear ty it $0 \leqslant f(x) \leqslant 1 \quad[\therefore F(x)=0, x<-a$,
(ii) $F(-\infty)=0$
(iii) $F(\infty)=1$

$$
\begin{aligned}
& {[\therefore F(x)=0, x<-a,} \\
& \therefore F(-\infty)=0]
\end{aligned}
$$

$$
[\therefore F(x)=1, x>1
$$

$$
\therefore F(\infty)=1 \text {, or }>1]
$$

Hence $F(x)$ statisfas all the condition of a distribution function.

$$
\text { (iv) } f(x)=\frac{d f(x)}{d x}\left[\begin{array}{cl}
1 / 2 a, & -a \leq x \leq a \\
0, & \text { otherwise } \\
a & \\
1
\end{array}\right.
$$

$$
\text { Also } \int_{-a}^{0} f(x) d x=\int_{-a}^{a} 1 / 2 a d x=1 / 2 a[x]_{-a}^{a}=\frac{1}{2 a}(2 a)=1
$$

$\therefore f(x)$ is a $P \cdot d f$ and $F(x)$ is a distribution f_{n}.
Ex:2 suppose that the amount of money that a person has sowed is found is found to be a random variables with

$$
\begin{aligned}
& \text { aiables with } \\
& F(x)= \begin{cases}\frac{1}{2} e^{-(x / 50)^{2}} & x<0 \\
1-\frac{1}{2} e^{-(x / 50)^{2}} & x \geq 0\end{cases}
\end{aligned}
$$

(i) Is $F(\cdot)$ continuous? what is the pdF?
(ii) What is the probability that the amount of saving possessed by him will be (i) more than 50 (ii) equal to 50 rupees (iii) what is the conditional probability that the amount of savings will be less than Rs 100 . guin that it is more than 50?
soln: The guin distribution function is continuous site, the value $F(x)$ at $x=0$ is the Same.
probability density

$$
\text { function } \begin{aligned}
f(x) & =d / d x F(x) \\
f(x) & =\left\{\begin{array}{l}
\left.\left.\frac{1}{2} e^{-(1 / 5 x}\right)\right)^{2}(-2)\left(\frac{x}{50}\right)\left(\frac{1}{0}\right) \\
-1 / 2-(x / 50)^{2}\left(\frac{-3 x}{50}\right)\left(\frac{1}{50}\right)
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{-2 x}{2500} e^{-(2 / 50)^{2}}, x<0 \\
x / 2500 e^{-(x / 50)^{2}}, x \geq 2
\end{array}\right.
\end{aligned}
$$

(iv) let ' x ' be the random variable which represen the amount of savings.

$$
\begin{aligned}
P(x>50) & =1-P[x \leq 500] \\
& =1-F(50) \\
& =1-\left\{1-1 / 2 e^{-1}\right\} \\
& =1 / 20 \\
& =\frac{1}{2.718} \\
& =0.1839 . \\
P(x=50) & =0 .
\end{aligned}
$$

[\therefore The probability that a continuous variable takes a fixed value is zero.
(iii)

$$
\text { let } \begin{aligned}
P(A) & =P(x<100) \\
& =P(x \leq 100)-P(x=100) \\
& =F(100) \quad[\because P(x=100=0] \\
& =1-1 / 2 e^{-4} \\
& =1-\frac{1}{109.19} \\
& =0.99 \\
P(B) & =P(x>750)=0.3679[\text { From (ii) })] \\
P(A \cap B) & =P\{x \leq 100 n x>50\} \\
& =P[50<x<100] \\
& =F(100)-F(50) \\
& =0.99-0.817
\end{aligned}
$$

$$
=0.173
$$

EX :3 The probability distribution function of a random variable x is

$$
e x \text { is } f(x)=\left\{\begin{array}{cc}
x, & 0 \leq x \leq 1 \\
2-x, & 1 \leq x<2 \\
0, & x \geq 2
\end{array}\right.
$$

Find the cumulative distribution function of x.
Soln: we know that $C \cdot d \cdot F \quad F(x)=\int_{-\infty}^{x} f(x) d x$, when x lies in $0<x=1$.

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(x) d x \\
& =\int_{-\infty}^{0} f(x) d x+\int_{0}^{x} f(x) d x \\
& =0+\int_{0}^{x} x d x . \\
& =\left(\frac{x^{2}}{2}\right)_{0}^{x} \\
& =x^{2} / 2 .
\end{aligned}
$$

When x lies in $1<x \leqslant 2$,

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(x) d x \\
& =\int_{-\infty}^{0} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{x} f(x) d x \\
& =0+\int_{0}^{1} x d x+\int_{1}^{1}(2-x) d x \\
& =\left(x^{2} / 2\right)!+\left(2 x-x^{2} / 2\right)^{x} \\
& =1 / 2+2 x-x^{2} / 2-3 / 2 \\
& =2 x-x^{2} / 2-1
\end{aligned}
$$

when x lies in $x \geq 2$,

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{\infty} f(x) d x \\
& =\int_{-\infty}^{\infty} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{\infty} f(x) d x \\
& =0+\int_{0}^{2} x d x+\int_{1}^{2}(2-x) d x+\int_{2} 0 d x .
\end{aligned}
$$

otherwise.
To find $F(x)$

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\infty}^{x} \frac{1}{1+x^{2}} d x . \\
& =\frac{1}{\pi}\left[\tan ^{-1} x\right]_{-\infty}^{x}=\frac{1}{\pi}\left[\tan ^{-1} x-\tan ^{-1}(-\infty)\right] \\
f(x) ? & =\frac{1}{\pi}\left[\tan ^{-1} x+\pi / 2\right]
\end{aligned}
$$

To find $p(x \geqslant 0)$

$$
\begin{aligned}
& \therefore P(x \geq 0)= 1-P(x \leq 0)=1-F(0)=1-1 / \pi[0+\pi / 2] \\
&=1-1 / 2 \\
&=1 / 2
\end{aligned}
$$

Ex:5 The length (in hours) x of a certain type of light bulb may be supposed to be a continuous random variable with polit.

$$
\begin{aligned}
f(x) & =a / x^{3}, \quad 1500<x<2500 \\
& =0, \text { elsewhere. }
\end{aligned}
$$

Determine the constant ' a ' the distribution function Of x and compute the probability of the event $1,7 \infty 0 \leq x \leq 1,900$.

Soln: Given $f(x)$ is a $p d y$

$$
\therefore \int_{-\infty}^{\infty} f(x) d x=1
$$

$$
\begin{aligned}
& \text { (ie) } a \int_{1500} 1 / x^{3} d x=1 \\
& a\left[-\frac{1}{2 x^{2}}\right]_{1500}^{2500}=1 \\
& \text { a }\left[-\frac{1}{2(2500)^{2}}+\frac{1}{2(1500)^{2}}\right]=1 \\
& a=90,31,250 .
\end{aligned}
$$

To find the $d \cdot f F(x)$.

$$
\begin{aligned}
& \text { Find the d•fF(x)is00 } \\
& \begin{aligned}
F(x) & =\int_{-\infty}^{x} f(x) d x=\int_{-\infty} f(x) d x+\int_{1500}^{x} f(x) d x \\
& =0+\int_{1500}^{x} a / x^{3} d x \\
& =\left[-1 / 2 x^{2}\right]_{1500}^{\pi} \\
& =a\left[\frac{1}{-2 x^{2}}+\frac{1}{2(1800)^{2}}\right] \\
& =a\left[\frac{1}{(1500)^{2}}-\frac{1}{x^{2}}\right]
\end{aligned}
\end{aligned}
$$

To find $P(1700 \leq x \leq 1900)$

$$
\begin{aligned}
P(1700 \leqslant x \leqslant 1900) & =F(1900)-F(17000) \\
& =\frac{a}{2}\left[\frac{1}{2890000}-\frac{1}{3610000}\right]
\end{aligned}
$$

Two dimensional Random Variables:
let s be the sample space. let $X=x /(s)$ and $Y=Y(s)$ be two functions each assigning a real number to each outcome $s \in S$. Then (x, y) is two dimensional dix random Variables.

Two dimensional discrete Random Variables:
If the possible values of (x, y) are finite then (x, y) is called a two dimensional discrete random variable and it can be represented by $($ ri oj) $i=1,2 \ldots n ; j=1,2 \cdots m$.
Note:
If (x, y) can take all the values in a region k in the $x y$-plane then (x, y) is called a twodimensional continuous random variable
Joint probability punction of the discrete random variables x and y.

For two discrete random variable x and y we wite The probability that x will fake the value x, and y will take the value y_{j} as $p=\left(x=x_{i}, y=y_{j}\right)$ consequently $p\left(x=x_{i} ;, y=y_{j}\right)$ is the probability of the intersection of the events $x=x_{i}$ and $y=y_{i}$ The function $f\left(x_{i}, y_{i}\right)=p\left(x=x_{i}, y=y_{j}\right)$ is called the joint probability function or joint probability mass function for discrete random variable X and y.
Note: $f\left(x_{i}, y_{j}\right)=P\left(x=x_{i}, y=y_{j}\right)=P i f$ and $1 i j$ Shouts satisfies the following conditions

Mong final probability Aunctish of Y.
If the joint proboubiz=y diflouthon of or varniom voulable x and y is giving, thin the many on function of y is o ion by

$$
f(y)=p,(y i)=p(v=4 i)=p \cdot j
$$

Here $P \cdot i=\sum_{1} P i j=P i j+P a j+\cdots$ [rear to abe "ale
Note: The set $\{y\}, p \cdot j\}$ is called the marginal dist bute of y.
conditional probability :-
The conditional probability function of $x g^{3}$ men $y=y j$ is quin by

$$
p[x=x i \mid y=y j]=\frac{P[x=x i, y=y i]}{P[y=y j]}=\frac{P j}{P i}
$$

The conditional probability function of y q un $x=x i$ is given by

$$
P\left[y=y j \mid x=x_{i}\right]=\frac{p_{i j}}{p_{i}} \text { (or) } f(y \mid x)=\frac{f(x \mid y)}{f(x)}
$$

The two random variables of x and y wu said to be independent if $p\left[x=x_{i} \mid y=y i\right]=p\left(x=x^{i}\right)$ $r u=4$

$$
P_{i j}=P_{i .} \times P_{i j}
$$

(ie) otheuirse dependent.

Note : 1) The two random variables x and y are independent if each entry in the given table is the product of corresponding row and odoumn entries using $p_{i j}=p_{i} \cdot x p \cdot j$.
2) The two random variables x and y with joint pdf $f(x, y)[$ or $f x y(x, y)]$ and marginal p.dif's $f(x)[$ or $f x(x)]$ and $g(y)[$ or gu $(y)]$ and said to be independent if $f(x, y)=f(x) \cdot g(y)$.
3. joint probability function of continuous random variables x and y.

If x and y are continuous random variables, then we shall refer to $f(x, y)$ as the joint probability density function of these two random variables $\% y$ the probability the $a_{1} \leq x_{1} \leq b_{1} ; a_{2} \leq \alpha_{2} \leq b_{2}$ is given by the multiple integral $\int_{a_{1}}^{b_{1}} \int_{s}^{b_{2}} f(x, y) d y d x$.
(ii) $p\left[a_{1} \leq x \leq b_{1}, a_{2} \leq y \leq b_{2}\right]=\int_{a_{1}}^{a_{1}} \int_{a_{2}} f(x, y) d y d x$ provided (i) $f(x, y) \geq 0$; (ii) $\iint_{-\infty}^{\infty} f(x, y) d y d x=1$.

Note: Table -I
To calculate marginal distribution when the random variable x takes horizontal values and y takes vertical values.

Table -II.
To calculate marginal attributions when the random variable x takes vertically and y takes horizontally

x	y_{1}	y_{2}	y_{3}	$P \times(x)=f(x)$
x_{1}	P_{11}	P_{12}	P_{13}	$P_{11}+P_{12}+P_{13}=$
x_{2}	P_{21}		P_{23}	$P\left(x=x_{1}\right)$
x_{3}	P_{31}	P_{22}	P_{32}	P_{33}

Fx:4 From the following table for bivariate distribution of (x, y) find.
(i) $p(x \leq 1)$
(ii) $p(y<3)$
(iii) $P(x \leq 1, y \leq 3)$
(iv) $P(x \leq 1 / y \leq 3)$
(v) $p(y \leq 3 / x \leq 1)$ (vi) $p(x+y \leq 4)$

y	1	2	3	4	5	6	
0	0	$1 / 160$	$1 / 32$	$2 / 32$	$2 / 32$	$3 / 32$	
1	$1 / 6$	$1 / 8$	$1 / 16$	$1 / 8$	$\frac{1}{8}$	$1 / 8$	$1 / 8$
2	$1 / 32$	$1 / 60$	$1 / 3$	$1 / 64$	$1 / 69$	0	$2 / 64$

soln:

(i)

$$
\begin{aligned}
P(x \leq 1) & =p(x=0)+p(x=1) \\
& =8 / 32+10 / 16 \\
& =28 / 32 \\
& =7 / 8
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& =7 / 8 \\
p(y \leqslant 3) & =p(y=1)+p(y=2)+p(y=3) \\
& =3 / 32+3 / 32+11 / 64 \\
& =23 / 64
\end{aligned}
$$

(iii)

$$
\begin{aligned}
&=23 / 64 \\
& P(x \leq 1, y \leq 3)=f(0,1)+f(0,2)+f(0,3)+f(1,1)+f(1,2)+f(1,3) \\
&=0+0-11 / 32+1 / 16+1 / 16+1 / 8 \\
&=9 / 32 .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
P(x \leq 1 / y \leq 3) & =\frac{p(x \leq 1, y \leq 3)}{p(y \leq 3)} \\
& =\frac{9 / 32}{23 / 64} \\
& =9 / 28
\end{aligned}
$$

(v)

$$
\begin{aligned}
P(y \leq 3 / x \leq 1) & =\frac{p(x \leq 1, y \leq 3)}{p(x \leq 1)} \\
& =\frac{9 / 3^{2}}{7 / 8} \\
& =9 / 28
\end{aligned}
$$

(vi)

$$
\begin{aligned}
P(x+y \leq 4) & =f(0,1)+f(0,2)+f(0,3)+f(0,4) \\
& =0+0+1 / 3+2 / 32+1 / 16+1 / 16+1 / 8+\frac{1}{32}+1 / 32 \\
& =93 / 32 .
\end{aligned}
$$

Ex:5 From the following joint distribution of x and \hat{y}.find the marginal distribution.

y^{x}	0	1	2
0	$3 / 28$	$9 / 28$	$3 / 28$
1	$3 / 14$	$3 / 4$	0
2	$1 / 28$	0	0

Soln: The marginal distributions are given on the below sable.

y	0	1	2	$p y(y)$
0	$3 / 28$	$9 / 28$	$3 / 28$	$15 / 28$
1	$3 / 14$	$3 / 14$	0	$6 / 24$
2	$1 / 28$	0	0	$1 / 28$
$p(x)$	$10 / 28$	$15 / 28$	$3 / 28$	$\sum p(x)=1$
$\sum p(y)=1$				

The marginal distribution of x

$$
P(x-0)=10 / 08 ; \quad P(x=1)=15 / 28 ; \quad P(x=2)=3 / 28
$$

The roaginal distribution of Y.

$$
p(y=0)=\frac{15}{28}, p(y=1)=6 / 14, p(y=2)=1 / 38
$$

Ex:b let x and y have the following joint probability distribution.

x	2	4
1	0.10	0.15
1	0.20	0.30
5	0.10	0.15

show that x and y are independent.
Sols:-

x	2	4	P_{i}
1	0.10	0.15	0.25
3	0.20	0.30	0.50
5	0.10	0.15	0.25
P_{1}	0.40	0.60	1

$$
P_{i j}=P_{i}, \times P_{j}
$$

For example

$$
\begin{align*}
P_{1} & =0.25 \\
P_{0} 2 & =0.60 \tag{1}\\
\therefore P_{1} \times P_{0} 2 & =0.25 \times 0.60 \\
& =0.15
\end{align*}
$$

From (1) and (2) we get

$$
P_{12}=P_{1} \cdot \times P=2
$$

\therefore The random variables x and y are independent
Ex:7 The joint distribution of x and y is given by $f(x, y)=\frac{x+y}{21}, x=1,2,3 . y=1,2$, find the marginal of istributions.
Soln: Given $f(x, y)=\frac{x+y}{21}, x=1,2,3 \ldots, y=1,2$
The marginal distribution are given in the table.

$f(x, y)$	x			
	1	2	3	$p y(y)=f(y)$
y	$2 / 21$	$3 / 21$	$4 / 21$	$9 / 21$
2	$3 / 21$	$4 / 21$	$5 / 21$	$12 / 21$

The marginal distribution of x :

$$
P(x=1)=5 / 21 ; \quad P(x=2)=\frac{7}{21} ; \quad P(x=3)=\frac{9}{21} \text {. }
$$

The marginal distribution of y :

$$
p(y=1)=9 / 21 ; p(y=12)=12 / 21
$$

Ex:8 The two dimensional random variable (x, y) has the joint density function $f(x, y)=\frac{x+2 y}{27}$, $x=0,1,2 ; y=0,1,2 \ldots$ Find the conditional distribution of y for $x=x$. Also find the conditional distribution of x guin $y=1$
Sols: We know that the conditional probability distribution of y for $x=x$ is

$$
\begin{equation*}
f(y / x)=\frac{f(x, y)}{f(x)} \tag{1}
\end{equation*}
$$

where $f(x, y)$ is the joint probability distribution x and y.
function for continuous random Variable x and y.

The joint probability distribution function of a two dimensional random variables (x, y) is denoted by Fry (x, y) and is given by.

$$
\begin{aligned}
I_{x y}(x, y) & =p[-\infty<x \leqslant x ;-\infty<y \leqslant y] \\
& =\int_{-\infty}^{x}\left\{\int_{-\infty}^{y} f_{x y}(x, y) d x\right]^{2} d y
\end{aligned}
$$

Where $f_{x y}(x, y) \geq 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x y}(x, y) d x d y=1$
simply we can write as follows

$$
\begin{aligned}
& \left.F(x, y)=p[x \leq x, y \leq y]=\int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) d x\right\} d y, ~ d i o i n t \text { distribution } \\
& \text { of in }
\end{aligned}
$$

properties of joint distribution function:

$$
\begin{aligned}
& \text { 1. } F(-\infty, y)=0=F(x, \infty) \text { and } F(-\infty, \infty)=1 \\
& \text { 2. } P\left(a_{1}<x \leq b_{1} ; a_{2}<y<b_{2}\right) . \\
&=F\left(b_{1}, b_{2}\right)+F\left(a_{1}, a_{2}\right)-F\left(a_{1}, b_{2}\right)-F\left(b_{1}, \infty_{2}\right)
\end{aligned}
$$

Marginal distribution functions :
If the joint distribution friction of the random variable (x, y) is $F_{x y}(x, y)$, then the marginal distribution function of x is denoted by $F x(x)$ is quinn by $F x(x)=\sum_{4} P(x \leq x, y=y)$ (for dierthe random voaiohid) $=\int_{-\infty}^{x}\left\{\int_{-\infty}^{\infty} f x y(x, y) d y^{2}\right\} d x$ (For continuous noundan 111 the tharg incl ditiffoution furuturn My be denetad by Fy (4) and is goons by

$$
F y(y)=\sum_{y} P(x=x, y \leqslant y) \text { (For discrete random taine }
$$

$$
=\int_{-\infty}^{y^{x}}\left\{\int_{-\infty}^{\infty} f_{x y}(x, y) d x\right\} d y \text { (For continuous randan) }
$$ Voaiphin

Joint probability density function :-
let $F_{x y}(x, y)$ be the joint probability distributing function. Then the joint probability density function of x and y is give by

$$
f_{x y}(x, y)=\frac{\partial^{2} f(x, y)}{\partial x \partial y}
$$

Marginal probability function :-
The marginal probability function of the two random variables x and y are defined as follow r $f(x)=f x(x)=\int_{-\infty}^{\infty} f(x, y) d y$ (for continuous random vasialle
$=\sum_{y} P_{x y}(x, y)$ (for discrete random variable $f(y)=f y(y)=\int_{-\infty}^{\infty} f x y(x, y) d x$ (for continuous random vaiebles
$=\sum_{x} p_{x y}(x, y)$ (for discrete random variathr
Vaginal density Functions :-
If we know the marginal probability fundion of x and y as $F x(x)$ and $F y(y)$ then margin density function of x and y can be obtained as follows.

The marginal density function of x and y are

$$
\begin{aligned}
& =\int_{x}^{1} 2 d y \\
& =2(y) \frac{1}{x} \\
& =2(1-x), 0<x<1
\end{aligned}
$$

Marginal density function of 4 is given by

$$
\begin{aligned}
f_{y}(y)=f(y) & =\int_{-\infty} f(x \mid y) d x \\
& =\int_{0}^{y} f(x, y) d x \quad[0<x<y] \\
& =\int_{0}^{y} 2 d x \\
& =2 y, 0<y<1
\end{aligned}
$$

Then conditional density function of y given $x=\pi$ is

$$
f(y / x)=\frac{f(x+y)}{f(x)}=\frac{2}{2(1-x)}=\frac{1}{1-x} .
$$

Ex:2 Find the marginal density function of x and y if $f(x, y)=2 / 5(2 x+5 y) \quad 0 \leq x \leq 1,0 \leq y \leq 1$.
Soln: Marginal density function of x is gur by

$$
\begin{aligned}
f x(x)=f(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{1} f(x+y) d y \quad[0 \leq y \leq 1] \\
& =\int_{0}^{1} 2 / 5(2 x+3) d y=4 x+3
\end{aligned}
$$

Marginal density function of y is

$$
\begin{aligned}
f y(y)=f(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{1} f(x, y) d x \\
& =\int_{0}^{1} \frac{2}{5}(2 x+3 y) d x \\
& =\frac{2+6 y}{5} .
\end{aligned}
$$

Ex: 3 The joint probability density function of the two dimensional random variable is

$$
f(x, y)=\left\{\begin{array}{cc}
\delta / 6 x y, & 1 \leqslant x \leqslant y \leqslant 2 \\
0, & \text { otherwise }
\end{array} .\right.
$$

(i) Find the marginal density function of x and y. (ii) Find the conditional density function of y given $x=x$. soln: Marginal density function of x is given by

$$
\begin{aligned}
f \times(x)=f(x) & =\int_{-\infty}^{\infty} \delta / 9 x y d y \quad \therefore[x \leq y \leq 2] \\
& =8 / 9^{x}\left[y^{2} / 2\right]^{2} x . \\
& =\frac{4 x}{9}\left[4-x^{2}\right], 1 \leq x \leq 2 .
\end{aligned}
$$

111 ly

$$
\begin{array}{rlrl}
f_{y}(y)=f(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{1}^{y} \delta / 9 x y d x \quad[1 \leq x \leq y] \\
& =\frac{8 y}{9}\left[\frac{x^{2}}{2}\right]_{1}^{y} & \\
& =4 y / 9\left[y^{2}-1\right], \quad 1 \leq y \leq 2 .
\end{array}
$$

Now $f(x)=f(y)=e^{-x} \cdot e^{-y}$

$$
=e^{-(x+y)}
$$

But

$$
\begin{aligned}
f(x, y) & =e^{-x} \cdot e^{-y} \\
& =e^{-(x+y)} \\
\therefore f(x, y) & =f(x) \cdot f(y)
\end{aligned}
$$

$\therefore x$ and y are independent.
$E x: 2$ The bivariate random variable x and y has the p.d.f

$$
f(x \mid y)=\left\{\begin{array}{ll}
k x^{2}(8-y), & x<y<2 \\
& 0 \leqslant x \leqslant 2
\end{array} .\right.
$$

Find k.
Sold: we know that if f(x,y) is a ped f then

$$
\begin{aligned}
& =\int_{-0}^{\infty} f(x, y) d y d x=1 \quad \text { [condn for a p.dy] } \\
& \therefore \int_{0}^{2} \int_{-\infty}^{2 x} k x^{2}(8-y) d y d x=1 . \\
& 1 k \int_{0}^{2} x^{2}\left(8 y-y^{2} / 2\right)^{2 x} x^{2} d x=1 \\
& k \int_{0}^{2} x^{2}\left(16 x-\frac{4 x^{2}}{2}-8 x+x^{2} / 2\right) d x=1 \\
& k \int_{0}^{2}\left(8 x^{3}-3 / 2 x^{4}\right) d x=1 \\
& k\left[\frac{8 x^{4}}{4}-\frac{3 x^{5}}{2} \frac{5}{5}\right]_{0}^{2}=1 \\
& k[32-48 / 10]=1 \\
& k=5 / 110
\end{aligned}
$$

Ex:3 If the join p.df x and y is given by

$$
f(x, y)= \begin{cases}1 / 8(6-x-y) & , 0<x<2,2<y<y \\ 0 & \text { othowise }\end{cases}
$$

find (i) $p(x<1 \cap y<3)$
(ii) $P(x<1 / y<3)$

Soln: We know that

$$
\begin{align*}
& \text { We know that } \\
& \qquad \begin{aligned}
P(x<\ln y<3) & =\int_{0}^{1} \int_{2}^{3} f(x, y) d x d y \\
\text { [using } P[(l a \mid<x & \left.\left.\leq b_{1}\right) n(a z<y<b y)\right) \\
& \left.=\int_{9}^{b_{2}} \int_{1}^{b_{2}} f(x, y) d x d y\right] \\
& =\int_{0}^{3} \int_{2}^{3} 1 / 8(6-x-y) d y d x \\
& =\frac{1}{8} \int_{0}^{1}\left(6 y-x y-\frac{y^{2}}{2}\right)=3 d x \\
& =\frac{1}{8} \int_{1}^{0}\left[\left(18-3 x-\frac{9}{2}\right)-\left(12-2 x-\frac{4}{2}\right]^{5}\right. \\
& =\frac{1}{8} \int_{0}^{1}\left(6-x-\frac{5}{2}\right) d x \\
& =\frac{1}{8}\left[6 x-\frac{x^{2}}{2}-\frac{5 x}{2}\right]_{0}^{1} \\
& =3 / 8
\end{aligned}
\end{align*}
$$

(ii) $P(x<1 / y<3)=\frac{P(x<1 \cap y<3)}{P(y<3)}$ - (2)

$$
\begin{align*}
P(y<3) & =\int_{0}^{2} \int_{3}^{2} \frac{1}{8}(6-x-y) d y d x \\
& =\frac{1}{8} \int_{0}^{2}\left[6 y-x y-\frac{y^{0}}{2}\right]_{0}^{3} d x \\
& =\frac{1}{8} \int_{0}^{2}\left[\left(18-3 x-\frac{9}{2}\right)-(12-2 x-2)\right] d x \\
& =\frac{1}{8}\left[\int_{0}^{2} \frac{7}{2}-x\right] d x \\
& =\frac{1}{8}\left[\frac{7}{2} x-\frac{x^{2}}{2}\right]_{0}^{2} \\
& =\frac{1}{8}[7-2] \\
& =5 / 8 \tag{3}\\
\therefore P(y<3) & =5 / 8
\end{align*}
$$

sub (1) and (3) in (2) we get

$$
\begin{aligned}
P(x<1 / y<3) & =\frac{3 / 8}{5 / 8} \\
& =3 / 5
\end{aligned}
$$

Ex: 4 the g.d.f of the random variables x and Y is given by

$$
f(x, y)=\left\{\begin{array}{cl}
8 x y & 0 \leq x \leq 1, \quad 0 \leq y \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

find (i) $f x(x)$,
(iii) $f x(y)$,
(iii) $f(y / x)$.
son: We know that

$$
\text { (i) } f_{x}(x)=\int_{-\infty}^{\infty} t(x, y) d x
$$

[By detn of marginal probability tn]

Given $f(x \mid y)=\left[\begin{array}{cc}2 / 5(x x+3 y) & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$
(i) $f(x, y) \geq 0$ in the guin instesual $0 \leq(x, y) \leq 1$
(ii) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{2} / 5(2 x+3 y) d x d y$.

$$
\begin{aligned}
& =2 / 5 \int_{0}^{1}\left[x^{2}+3 x y\right]_{0}^{1} d y \\
& =2 / 5 \int_{0}^{1}(1-3 y) d y \\
& =2 / 5\left[y+\frac{3 y^{2}}{2}\right]_{0}^{1} \\
& =2 / 5[1+7 / 2] \\
& =2 / 5(5 / 2)
\end{aligned}
$$

since $f(r, y)$ statiffis the given two conditions, it is a j.d.f.
fx:6 If the joint distribution function x and y is given by

$$
\begin{aligned}
F(x, y) & =\left(I-e^{-x}\right)\left(1-e^{-y}\right) \text { for } x>0, y>0 . \\
& =0, \text { otherwise. }
\end{aligned}
$$

(i) Find the marginal densities of x and y
(ii) Are x and y independent.
(iii) $P(1<x<3), 1<y<2)$
soln.1, Given $F(x, y)=\left(1-e^{-x}\right)\left(1-e^{-y}\right)$

$$
\begin{aligned}
& \left.=\left(1-e^{-x}\right)(1-e x)+e^{-y}+1-e^{-x}\right) \\
& =1+y)
\end{aligned}
$$

The joint p.d.f is given by

$$
\begin{aligned}
& =\frac{\partial^{2}}{\partial x \partial y}\left[1-e^{-x}-e^{-y}-e^{-(x+y)}\right] \\
& =\frac{\partial}{\partial x}\left[e^{-y}-e^{-(x+y)}\right] \\
f(x, y) & = \begin{cases}e^{-(x+y)}, & x \geq 0, y \geq 0 \\
0 & \text { othowise }\end{cases} \\
f(x, y) & =e^{-(x+y)}
\end{aligned}
$$

The marginal probability function of $x \overline{s^{\prime}}$

$$
\begin{aligned}
f(x) & =f_{\infty} x(x) \\
& =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{\infty} e^{-(x+y)} d y \\
& =\left[-e^{-(x+y)}\right]_{0}^{\infty} \\
& =e^{-x}
\end{aligned}
$$

The marginal probability function of y is

$$
\begin{align*}
f(y) & =f y(y) \\
& =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{\infty} e^{-(x+y)} d x \\
& =\left[-e^{-(x+y)}\right]_{0}^{\infty} \tag{2}\\
& =e^{-y}
\end{align*}
$$

From (1) and (2) we get

$$
\begin{aligned}
f(x)-f(y) & =e^{-x} e^{-y}=e^{-(x+y)} \\
& =f(x, y)
\end{aligned}
$$

$\therefore x$ and y are independent
3. $P(1<x<3,1<y<2)=P(1<x<3)-p(1<y<2)$
[since x and ψ are independent]

$$
\begin{aligned}
& =\int_{1}^{3} f(x) d x \times \int_{1}^{1} f(y) d y \\
& =\int_{1}^{3} e^{-x} d x \cdot \int_{1}^{2} e^{-y} d y \quad[u \operatorname{sing}(1) \text { and }(0] \\
& =\left(-e^{-x}\right)^{3} 1 x\left(-e^{-y}\right)_{1}^{2} \\
& =\left(-e^{-3}+e^{-1}\right)\left(-e^{-2}+e^{-1}\right) \\
& =e^{-5}-e^{-4}-e^{-3}+e^{-2}
\end{aligned}
$$

Ex:7 The joint density function of two random variables x and y is

$$
f(x, y)=\left\{\begin{array}{cc}
1 / 3\left(3 x^{2}+x y\right) & 0 \leq x \leq 1,0 \leq y \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $P[x+y \geq 1]$.
Soln: $P[x+y \geq 1]=1-p[x+y<1]$
Now $P[x+y<1]=\int_{0}^{1} \int_{0}^{1-y} f(x, y) d x d y$

$$
\begin{aligned}
x & =\int_{0}^{1} \int_{0}^{0} \frac{1}{3}\left(3 x^{2}+x y\right) d x d y \text { [from fig] } \\
& =\frac{1}{3} \int_{0}^{1-y}\left(x^{3}+\frac{x^{2} y}{2}\right)_{0}^{1-y} d y \\
& =\frac{1}{3} \int_{0}^{1}\left[(1-y)^{3}+\frac{\left.(1-y)^{2} y\right] d y}{2} y\right. \\
& =\frac{1}{3} \int_{0}^{1}\left[\frac{-y^{3}}{2}+2 y^{2}-\frac{5 y}{2}+1\right] d y \\
& =\frac{1}{3}\left[\frac{-y^{2}}{8}+\frac{2 y^{3}}{3}-\frac{5 y^{2}}{2}+y\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3}\left[-\frac{1}{8}+\frac{2}{3}-\frac{5}{4}+1\right] \\
& =19 / 144 \\
\therefore P[x+y \geq 1] & =1-P[x+y<1] \\
& =1-\frac{19}{144} \\
& =65 / 72 .
\end{aligned}
$$

Ex:8 Examine whether the variables x and y are independent, whose joint denisty is $f(x, y)=$

$$
x e^{-x(y+1)} 0,<x, y<\infty
$$

Sols: The marginal probability function of x is

$$
\begin{aligned}
f x(x)=f(x) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{\infty} x \cdot e^{-x(y+1)} d y \\
& =x\left[\frac{e^{-x}(y+1)}{-x}\right]_{0}^{\infty} \\
& =-\left[0-e^{-x}\right] \\
& =e^{-x} \\
\text { sly) } f y(y)=f(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{\infty} x e^{-x(y+1)} d x
\end{aligned}
$$

sirsilogly $f y(y) \geq 1$

$$
\begin{aligned}
& \text { dy } f y^{\prime}(y)=1 \\
& \left.=\operatorname{s}^{s} x\left[\frac{e^{-x}(y+1)}{-(y+1)}\right]-\left[\frac{e^{-x(y+1)}}{(y+1)^{2}}\right]\right]_{0}^{2}
\end{aligned}
$$

$=\frac{1}{(y+1)^{2}} \quad$ [Integration by parts]

Here $f(x) f(y)=e^{-x} \times \frac{1}{(y+1)^{2}}$
.. \& y are not independent.
Ex:9 The joint probability distribution of x and y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{b-x-y}{8} & , 0<x<2,2<y<4 \\
0, & \text { otherwise }
\end{array}\right.
$$

$$
f(x, y)=\left[\begin{array}{ll}
\frac{8}{8} & \text { otherwise } \\
0, &
\end{array}\right.
$$ find $P(x<y<4 / r=2)$.

sols:-
we know that the conditional density function of y given $x \quad f(y / x)=\frac{f(x, y)}{f(x)}$

$$
\begin{aligned}
& \text { Now } f(x)=f x(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
&=\int_{2}^{4} \frac{6-x-y}{8} d y \\
&=\frac{1}{8}\left[6 y-x y-\frac{y^{2}}{2}\right]_{2}^{4} \\
&=\frac{1}{8}[(24-4 x-8)-(12-2 x-2)] \\
& \therefore f(y \mid x)=\frac{f(x, y)}{f(x)} \\
&=\frac{1}{8}(6-x-y) \\
& \frac{6-2 x}{}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{6-x-y}{6-2 x} \\
f\left(y(x=2)=\frac{4-y}{2}\right.
\end{gathered}
$$

