
Programming in C with Numerical Methods

Unit I
Chapter II

Constants, variables and data types

A programming language is designed to help process certain kinds of data

consisting of numbers, characters and strings and to provide useful output

known as information. The task of processing of data is accomplished by

executing a sequence of precise instructions called a program.

 These instructions are formed using certain symbols and words according

to some rigid rules known as syntax rules (or grammar).

Character set
The characters that can be used to form words, numbers and expressions
depend upon the Computer on which the program is run. However, a subset of
characters is available that can be used on most personal, micro, mini and
mainframe computers. The characters in C are grouped into the following
categories.
 1. Letters
 2. Digits
 3. Special characters
 4. White spaces
 The complete character set is given in table2.1 given below

Trigraph Characters
ANSI C introduced the concept of Trigraph sequences to provide a way to enter
certain characters that are not available on some key boards.Each Trigraph
sequence consist of three characters (two questions marks followed by
another character)

For example, if a key board does not support square bracket ,we can still use
them in a program using the Trigraph??(and??)

C TOKENS

In a passage of text, individual words and punctuation marks are called tokens.

Similarly, in a C program the smallest individual units are known as C tokens. C

has six types of tokens as shown in Fig. 2.1

KEYWORDS AND IDENTIFIERS

Every C word is classified "as either a keyword. or an identifier. All

keywords have fixed meanings and these meanings cannot be changed. Key

Words serve as basic building blocks for program statements. The list of all

keywords of ANSI C is listed in Table 2.3. All key words must be written in

lowercase. Some compilers may use additional keywords that must be identified

from the C manual.

Identifiers refer to the names of variables, functions and arrays. These are user-

defined names and consist of a sequence of letters and digits, with a letter as a

first character. Both upper case and lower case are permitted, although lower

case letters are commonly used. The underscore character is also permitted in

identifiers. It is used as a link between two words in long identifiers

CONSTANTS

Constants in C refer to fixed values that do not change during the execution of

the program. C supports several types of constants as illustrated in Fig 2.2.

INTEGER CONSTANTS.

An Integer constants refers to a sequence of digits. There are three types of

Integers, namely,decimal,octal,hexadecimal.

Decimal Integers consist of a set of digits,0 through 9,preceded by an optional -

or + sign.Valid examples of decimal integers constants are :

123 -321 0 654321 +78

Embeded spaces,commas,and non digit characters are not permitted between

digits.For example

15 750 20,000 $1000

are illegal numbers.

An octal integer constant consists of any combination of digits from the set 0

through 7,with a leading 0. Some examples of octal integer are:

037 0 0435 0551

A sequence of digits preceded by Ox or OX is considered as hexadecimal

integer. They may also include alphabets A through F or a through f. The letter

A through F represent the numbers 10 through 15. Following are the examples

of valid hex integers:

OX2 Ox9F 0Xbcd Ox

We rarely use octal and hexadecimal numbers in programming.

The largest integer value that can be stored is machine-dependent. It is 32767 on

16-bit machines and 2,147,483,647 on 32-bit machines; It is also possible to

store larger integer constants on these machines by appending qualifiers such as

U,L and UL to the constants.

For examples:

 56789U or 56789u (unsigned integer)

 987612347UL or 98761234ul (unsigned long integer)

 9876543L or 98765431 (long integer)

Real Constants

Integer numbers are inadequate to represent quantities that vary continuously,

such as distances, heights, temperatures, prices, and so on. These quantities are

represented by numbers containing fractional parts like 17.548. Such numbers

are called real (or floating Point) constants. Further examples of real constants

are:

0.0083 -0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number'

followed by a decimal point and the fractional part. It is possible to omit digits

before the decimal point, or digits after the decimal point that is

215. .95 -.71 +.5

 are all valid real numbers.

A real number may also be expressed in exponential (or scientific)notation.For

example,the value 215.65 may be written as 2.1565e2 in exponential notation.

mantissa e exponent

The mantissa is either a real number expressed in decimal notation..or an

integer.This exponent is an integer number with an optional plus or minus sign,

The letter e separating the mantissa and the exponent can be written in either

lowercase or uppercase. Since the exponent causes the decimal point to

“float”,this notation is said to represent a real number in floating point

form,Examples of legal floating point constants are

0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very

large or very small in magnitude. For example 7500000000 may be written as

7.5E9 or 75E8.Similarly -0.000000368 is equivalent to -3.68E -7

SINGLE CHARACTER CONSTANTS

A single character contants (or simply character constants) contains a single

character enclosed within a pair of single quote marks.Examples of character

constants are

‘5’ ‘X’ ‘;’ ‘’

Note that the character constant ‘5’ is not same as the number 5.The last

constant is a blank space.

Character constants have integer values known as ASCII values.

 For example the statement

printf(“%d”, ‘a’);

would print the number 97,the ASCII value of the letter a.

Similarly the statement

printf(“%c”, ‘97’);

would output the letter ‘a’

STRING CONSTANTS

A string constant is a sequence of characters enclosed in double quotes.The

characters may be letters, numbers, special characters and blank space.

.Examples are

"Hello!" "1987" "WELL DONE" "?...!" "5+3" "X"

Remember that a character constant (e.g., 'X') is not equivalent to the single

character string constant (e.g., "X"). Further, a single character string constant

does not have an equivalent integer value while a character constant has an

integer value. Character strings are often used in programs to build meaningful

programs. Manipulation of character strings are considered in detail in chapter

8.

BACKLASH CHARACTER CONSTANTS

C supports some special backslash character constants that are used in output

functions. For example, the symbol '\n' stands for newline character. A list of

such backslash character constants is given in Table 2.5. Note that each one of

them represents one character although they consist of two characters. These

characters combinations are known as escape sequences.

VARIABLES

A variable is a data name that may be used to store a data value. Unlike

constants that remain unchanged during the execution of a program, a variable

may take different values at different times during execution. In chapter 1,we

used several variables. For instance, we used the variables amount in sample

program 3 to store the value of money at the end of each year after adding the

interest earned during that year.

A variable name can be chosen by the programmer in a meaningful way so as to

reflect its function or nature in the program. Some examples of such names are

Average height Total Counter_1 class_strength

As mentioned earlier, variable names may consist of letters, digits and the

underscore(_)character, subject to the following conditions.

1.They must begin with a letter. Some system permit underscore as the first

character.

2.ANSI standard recognizes a length of 31 character.

However, the length should not be normally more than eight character, since

only the first eight characters, since only the first eight characters are treated as

significant by many compilers.

3.Uppercase and lowercase are significant.That is,the variable Total is not the

same as total or TOTAL.

4.The variable name should not be key word.

5.While space is not allowed.

Some examples of valid variable names are

 John Value T_rise

 Delhi x1 ph_value

 Mark sum1 distance

Invalid examples include

 123 (area)

 % 25th

Further examples of variable names and their correctness are given in Table 2.6

If only the first eight characters are recognized by a compiler, than the two

names average_height

average_height

mean the same thing to the computer. Such names can be rewritten as

avg_height and avg_weight

or

ht_average and wt_average.

Without changing their meanings.

DAT

A

TYPE

S

INTEGER TYPES

Integers are whole numbers with a range of values supported by a particular

machine. Generally integers occupy one word of storage, and since the word

sizes of machines vary(typically,16 or32bits)the size of an integer that can be

stored depends on the computer. If we use a 16 bit word length the size of the

integer value is limited to the range -32768 to +32767 that is -215 to +215-1.A

signed integer uses one bit for sign and 15 bits for the magnitude of the number.

Similarly, a 32 bit word length can store an integer ranging from -2,147,483,648

to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C

has three classes of integer storage, namely short int, int, and long int, in both

signed and unsigned forms. For example short int represents fairly small

integer values and requires half the amount of storage as a regular int number

uses.Unlike signed integer,unsigned integers use all bits for the magnitude of

the number are always positive.Therefore,for a 16 bit machine, the range of

unsigned integer number will be from 0 to 65,535.

We declare long and unsigned integer to increase the range of values. The use

of qualifier signed on integer is optional because the default declaration

assumes a signed number .Table 2.8 shows all the allowed combination of basic

types and qualifiers and their size and range on a 16 bit machine.

FLOATING POINT TYPES

Floating point (or real) numbers are stored in bits (on all 16 bit and 32 bit

machines),with 6 digits of precision.Floating point numbers are defined in C by

the keyword float.When the accuracy provided by the float number is not

sufficient ,the type double can be used to define the number.

CHARACTER TYPE

A single character can be defined as a character (char)type data.Characters are

usually stored in 8 bits(one byte) of internal storage.The qualifier signed or

unsigned may be explicitly applied to char.While unsigned chars have values

between 0 and 255,signed chars have values from -128 to 127.

DECLARATION OF VARIABLES

Declaration does two things

1.It tells the computer what the variable name is

2.It specifies what type of data the variable will hold.

The declaration of variables must done before they are used in the program.

PRIMARY TYPE DECLARATION

A variable can be used to store value of any data type. The syntax for declaring

a variable is as follows.

data-type v1,v2……vn ;

v1,v2….vn are the names of the variables. Variables are separated by commas.

A declaration statement must end with a semicolon. For example valid

decalrations are int count ;

int number ,total ;

double ratio ;

int and double are the key words to represent integer type and real type .

USER-DEFINED TYPE DECLARATION.

C supports a feature known as “type definition”that allows user to define an

identifier that would represent an existing data type

typedef type identifier

The existing data type may belong to any class of type, including the user

defined ones

.New type is ‘new’ only in name but not the data type.

typedef cannot create a new type. Some examples are

typedef int units;

typedef float marks;

Here,units symbolizes int and marks symbolizes the float. The can be later

used to declare variables as follows. They can be later used to declare variables

as follows units batch1,batch2 ;

marks name 1[50],name2[50]

batch1 and batch 2 are declared as int variable and name1[50] and name 2[50]

are declared as 50 element floating point array variables. The main advantage of

typedef is that we can create meaningful data type names for increasing the

readability of the program.

Another user –defined data type is enumerated data type provided by ANSI

standard. It is defined as follows,

enum identifier (value1,value2….valuen);

The “identifier” is a user -defined enumerated data type which can be used to

declare variables that can have one of the values enclosed within the

braces(known as enumerated constants)

enum identifier v1,v2,…..vn

The enumerated variables v1,v2…vn can only have one of the values

value1,value2….valuen. The assignments of the following types are valid.

Example enum day (Monday,Tuesday,……Sunday)

enum day week_st,week_end

week_st = Mon week_end = Fri if week_st = = Tue week_end = = Sat

The compiler automatically assigns integer digits beginning with 0 to all the

enumerated constants.That is the enumeration constant value1 is assigned

0,value 2 is assigned 1 and so on.

Here,the constant Monday is assigned the value of 1.The remaining constants

are assigned values that increase successively by 1.

The definition and declaration of enumerated variables can be combined in one

statement.

enum day (Monday,….Sunday)week_st,week_end

DECLARATION OF STORAGE CLASS

Variables in C can have not only data types but also storage class that provides

information about their location and visibility.The storage class decides the

portion of the program within which the variables are recognized.

/*Examples of storage classes*/

 int m ;

 main ()

 {

 int i ;

 float balance

 …..

 …...

 function 1 ()

 }

 Function 1 ()

 {

 int i ;

 float sum

 …..

 …..

 }

The variable m which has been declared before the main is called global

variable. A global variable is also known as an external variable

It can be used in all the functions in the program. It need not be declared in

other functions.

The variables i, balance and sum are called local variables, because they are

declared inside a function. Local variables are visible and meaningful only

inside the function in which they are declared. Note that the variable i been

declared in both the functions. Any change in the value of i in one function does

not affect its value in the other.

C provides a variety of storage class specifiers that can be used to declare

explicitly the scope and lifetime of variables.The concept of scope and lifetime

are important only in multifunction and multiple file programs.

Four stages of Class specifiers are (auto,register,static,and extern)

ASSIGNING VALUES TO VARIABLES

Variables are created for use in program statements such as

value = amount + inrate * amount;

while (year <= PERIOD)

{

 ……

 ……

year = year + 1;

}

In the first statement, the numeric value stored in the variable inrate is

multiplied by the value stored in amount and the product is added to amount.

The result is stored in the variable value. This process is possible only if the

variables amount and inrate have already been given values. The variable

value is called the target variable.

ASSIGNMENT STATEMENT

Values can be assigned to variables using the assignment operator = as follows

variable_name = constant;

We have already used such statements in Chapter 1.Further examples are:

initial_value = 0;

final_value = 100;

balance = 75.84;

yes = x;

An assignment statement implies that the value of the variable on the left of the

'equal sign' set equal to the value of the quantity (or the expression) on the

right.The statement

 year = year + 1;

means that the 'new value' of year is equal to the 'old value' of year plus 1.

It is also possible to assign a value to a variable at the time the variable is

declared. This take the following form:

data-type variable_name = constant;

Some examples are

 int final_value = 100;

char yes = 'x';

double balance = 75.84;

The process of giving initial values to variables is called initialization. C permits

the initialization of more than one variables in one statement using multiple

Assignment operators.

For example the statements

P = 9 = S = 0;

X = y = Z = MAX;

are valid. The first stajement initializes the variables p, q, and s to zero while

the second inittaeizes

x. y. andz with MAX.

DECLARING A VARIABLE AS CONSTANT

We may like the value of certain variables to remain constant during the

execution of a program.We can achieve this by declaring the variable with the

qualifier const at the time of initialization.

Example:

const int class_size = 40;

const is a new data type qualifier defined by ANSl standard. This tells the

compiler that the value of the int variable class_size must not be modified by

the program. However, it can be used on the right_hand side of an assignment

statement like any other variable.

DECLARING A VARIABLE AS VOLATILE

ANSI standard defines another qualifier volatile that could be used to tell

explicitly the compiler that a variable's value may be changed at any time by

some external sources (from outside the program).

For example:

volatile int date;

The value of date may be altered by some external factors even if it does not

appear on the left hand side of an assignment statement. When we declare a

variable as volatile, the compiler will exmaine the value of the variable each

time it is encountered to see whether any external alteration has changed the

value.

Remember that the value of a variable declared as volatile can be modified by

the program as well. If we wish that the value must not be modified by the

program while it may be altered by some other process, then we may declare the

variable as both const and volatile as shown below:

volatile const int location = 100;

Overflow and Underflow of Data

 Problem of data overflow occurs when the value of the variable is either

too big or too small for the data type to hold.The largest value that a variable

can hold depends on the machine.Since the floating point values are rounded off

to the number of significant digits allowed (or specified) an overflow normally

results in the largest possible real value ,whereas an underflow results in zero.

Reading Data from Keyboard

Giving values to variables is to input data through key board using the scanf

function, It is a general input function available in C and is very similar in

concept to the printf function.It works much like an INPUT statement in

BASIC.The general format of scanf is as follows

scanf (“control string”, &variable2,…..);

The control string contains the format of data being received.The ampersand

symbol & before each variable name is an operator that specifies the variable

name address.We must always use this operator ,otherwise unexpected results

may occur.

Example scanf (“%d”, &number)

When this statement is encountered by the computer,the execution stops and

wait for the value of variable number to be typed in.

DEFINING SYMBOLIC CONSTANTS

We often use certain unique constants in a program .These constants may

appear repeatedly in a number of places in the program. One example of such a

constant is 3.142, representing the value of the mathematical constant "pi".

Another example is the total number of students whose mark sheets are

analyzed by a "test analysis program'. The number of students, say 50, may be

used for calculating the class total, class average, standard deviation, etc.

We face two problems in the subsequent use of such programs.

1. Problem in modification of the program.

2 Problem in understanding the program.

Modifiability

We may like to change the value of "pi" from 3.142 to 3.14159 to improve the

accuracy of the calculation or the number 50 to 100 to process the test results of

another class. In both the cases we will have to search throughout the program

and explicitly change the value of the constant wherever it has been used. If any

value is left unchanged, the program may produce disastrous outputs.

Understandability

When a numeric value appears in a program, its use is not always clear,

especially when the same value means different things in different places.

For example, the number 50 may mean the number of students at one place and

the ‘pass marks’ at another place of the same program. We may forget what a

certain number meant ,when we read the program some days later.

Assignment of such constants to symbolic name frees us from this

problem. For example we may use the name STRENGHT to define the number

of students and PASS_MARK to define the pass mark required in a subject.

Constant values are assigned to these names at the beginning of the program.

Subsequent use of the names STRENGTH and PASS_MARK in the program

has the effect of causing their defined values to be automatically substituted at

the appropriate points.

A constant is defined as follows:

#define symbolic-name value of constant

Valid examples of constant definitions are:

#define STRENGTH 100

#define PASS_MARK 50

#deflne MAX 200

 #define PI 3.14159

Symbolic names are sometimes called constant identifiers. Since the symbolic

names are constants (not variables), they do not appear in declarations. The

following rules apply to a #define statement which define a symbolic constant.

1. Symbolic names have the same form as variable names. (Symbolic names

are written in CAPITALS to visually distinguish them from the normal

variable names which are written in lowercase letters. This is only a

convention, not a rule.)

2. No blank space between the pound sign ‘#’ and the word define is

permitted.

3. ‘#’ must be the first character in the line.

4. A blank space is required between #define and symbolic name and

between the symbolic name and the constant.

5. #define statements must not end with a semicolon.

6. After definition, the symbolic name should not be assigned any other

value within the program by using an assignment statement. For

example, STRENGTH = 200: is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends

on the type of constant

8. #define statements may appear anywhere in the program but before it is

referenced in the program (the usual practice is to place them in the

beginning of the program).

Operators and ErpressOns

Chaptu:3

An operator S a Symbol that telis3 Ikz ComputuLo

Peadorm Cestaun mathemartical 0s loglcqh manipulartionu, Opestors

dae wstd n preglam to manipulali data ad ouiabllu. Ih

usually m a pant the mothe mrtical ogiu expremaons

C opesatovs can he clanud into a numbeu eageruo'.

Jhy includa
01. Arithmete opeuatorS

Ralational opelater8
3. Log ca pealoy

4 ABignman peoovs
5Incament and decu mantt operatoz
6CondWthonal opexatorf

Bitwe opexoto

Spetial opeuatoTt

AsHhrmetc openatoTs
C paovides all the basle anvthmetie opeiators. The operalos

t ,and /all wosk Ihi Same ay as lay do in ohi languag

Ai Thmetie opexa lô

OpeAato eanin
AddHon 00 unay Dus

Subtsattion or dnauy nu

Mutiplication

vision
Hodudo division

Jmege olvision uncalu a acluonal paut Th modulo

ddvi lon produun I Aomunde 9 an inleguu cdvslen.

a-b,atb, as b, a/6 a b, -a tb HuL aL6

Vaua Vawa blen and ave knoon as optuanol.The moclulo dluiion

Opeato / Canmot be used on loahing pent data

Tnicces Anithmetic
Lohan both Iki opea nds ih a viglu auimete eyprenion

Suoh au a+b Cere itegers, tka expres3ton is salled an

neg eYPresion and lhi operation is called inlzgu ai Emeti

Tnteq authmetic alusnys WelodA cu iheg vallu.

Tn Ta alave e, aaud b au integes, H�n or a=4,b
we haue Ie sollowing9 rosull

a-b =lo, ath= 1s ab = S6 a/6 = 3 (oleumol put
uncatred

a. b = A (Aamaindu q division
Dwng ihBetgen obuision, H ho!h lke opeta ands aus lks amnc

HanI 7okuH is hunated towauds zeao 7/ one ldy d
hegati ve, the dinlction y un tation 1s inpla montation
lpe ndem tu b/T =o'and -6-7 =o ut-6/7 mauy be 0or

u'y dua uodulo divi sien , Iki Sigo y lhi sesu aluay
I gn k irs opetand (It oliviclnd)

1473 - -l4 -3 = -A 4%-3 * * *

Raa AsthmeHe

An ailh metic opeuaHon ihvol ving only eal opera nds

called al ai hmetc A real operanel may aume ValuLS

lhA n deumal oo exponatia /hotationSince looting
Polnt valu ne voarclsd to ka numhen q Syufkcant

diit pelmI4si hle le final value i an appl- q Cora
Valluw

tny dndz me toats, /tis we Aawa
X 6 0/7.d = o 857143
Y -co/3.0 o 2333
z -2-o/3 0 = - o 666b67.

Tha operato /, Conno be wed wilk Kal qpeaan do.
Hixad-ods brithmetic

hen ona q the Openard 1S Yeal aind lhi olhiu 1s Inheges,
expre 3sion is callec a mbuud-mocle aithmetic exprioh

T ei ku operand ls q lh aual ype, lkan only lau yeal

Operaton performed ancd Ihi reuh is alaays a Real no/
Thus s/to.0= /5 whau as 15/10 = /.

Kelatonal operato72
we ten Compau wo uanHittes and dapencing On liun

Yelatión, take 'cetauh deeision. Fov eg we maytoNpcu

he age qtuo percsons or hi price q tbo items al soon

These 'compauison can be done lolh hi holp9 alatkona
OpeuatoY. An expvmsion Sueh as aLb or ILAo

Containing a ne lattonal operator i's mud a a kelationa

epr slo. The valu q kala tion pressio ehir 2euo

on one. tt is one hi Speciecl selatHon s u Cud

eo li Aolation is alse" For eg: loz &o h hua Zeno

Relatonal oponators but A oL10 1qalh

pera ton eanin
leds ka
is less th4n or equad to

is peate kan o equal to

70ala kq
7

A Sim ple elattonal evprssion Corlaunt Only one elationa!

oper ato and tares ls fbllouwi n9 fom

ae-I e larttonal opetato7 ae-2

ae and ae- ae ar'thmetle expremion 8, tich may be

Simple Conslant9, Vawables or Combinatton g tham.

Soma examplis: 454= lo

4s - lo False
3s o Fale

7+5 7ua

a th= C+d Tuu

OnyThe Sam q valuss gaa nd b equa to hi Sum

Valuu y C ound d

when aulkme tic expresio aru used on eihi 3icd a

Yelattonal opualo», hi autmetic exprmOns uail ba

eyalluatd d and hio Wsult tom/pruiud
Logdcal opurlor

c has lhi folloaing k loglcal epeators

9maaning logical AND

logcal OR

Calol NoT
ii meawng

hodauing
The logical opeLa tes 92 ond au d when we

wat to test mone kan one
Condiion and mak

deel'son

sq a>b &x = = /0. Those expreso S Called

ogl cal expn eriOn Or a COmpound elational expreMon.

These erpresston yield a Valuu y one 2eD

aceord'ng to i tkult tabla

Th aboe s lR Y a>b K IRu and x==lo u

P

T elhi q lh+no ane alse, Ike e ypruion al

Tulk Ta bl

Valua Ihi eyprulon.
op-1 90 op-2

op- op- 2

op-I oP-2
Non ze Non2uo

Nonzeuo

Nonzeuw 0

Some eas: T (agu > 5s & Saluy lood)

A gnment opeua toa
is wwwd to asign lhi rescult y an ezpon to a

Vaia he Ausua aigment operato
*Cha a8et Shorhand asignmant Openatos h

oom V op = enp; s a vauiable, eyp i an exprtseo

ud Op is a binauy ailt metic epeuate7

Tha operdtos opa is knowa as lorthand ashman

Vop eP é eauielent to V»Voplep);

Xt = Y+l
Thus is hi Same as li 9faleman

Shosthand Astanmant Opealods
Sialemant will

Smple aslghment

OpuatooU

Stalamen olE
Shosthomd oputn

a a+H

a = a a-

a- a*ln +H) a-n
a a/(hH) al htH

a a Tob ab

* Tha adwntag1 shosthand Asslgnmini Opesato

what 4ppeasa on hi lq hand Side nand not be Tapety

The sHI is mor0 toncu lo 0ad

3. Tha SH- mo4e#dend.

Tntkement and Denement Opeuateu

The inAemam ane denemt nt Opeketos:++ --
-SchrccI.

.

Tha opuato s ++adcls I 6 Ar opuand
stile-SRC+I,

++m or m+t
m O m

*wew th or and wule toops
* eg m5,

++m Th ttus case, /i valu yoind m oulcl E

A Pre opeetes s adcdhI t h opetand and

Ii Aeult gnee t6 vaugbl.

4)
Concditonql opuator

Condlitional Onpreion q Iki forTm
exp ep: exp3

oue p, ep2, enp-3 ue

The Opeato woks as ollow

enprevnwn

epls e valuatid ir1. T i# non zuw (nu

A exp.2 s evalualid aud becomen lhe
Valu q ha enprasion .

eapl u alse, ep3 evalalid and be comes he

Valus tha etpre&os

a= lo

b = Is

X (a>L) ?a: b)

R Tha can be aelwured uy Y elm Statenum

a talous

(ayb
els

x6,
Bitwi opeualos

Supports a Speeial opeafor nown as bitwse

openato 9 fos maniplatio q clata at bit lovef.

Thes operato73 ae wmd Jor festing Iki bto
O Ailting tham Kught Da t.

bit

BiHWs Opeuato0S

Operafo a Loani ny

bi4 w AND

bitwls oR

bitwise ezclusive oR

>>

,D
Onas ompkEmand -

Speeial operators
Speal openatoss Sueh as (ommo opeialo1, ÅLay

peuator, pornten opeacto s (ge amd *)

The Comma Opealog3

The openctos can be uud to link ha Salaz

prestiono geki
Tha ezprekion are evialalzd fb gut and h

Valu qigutmost pl- li lhi val g he

Lombinel enp

Foo. *
Val -(x= l0,y =6, X*Y)

irst assigns Ike Valuu lo *, /ka aigns5y

Ouel inally asigtus Is (à lo t5) to Valus.

5
Tha Si2zea 0peiatoa

The iaeg is a Compile ime operator and, wlun Ukd

Ouk an opeuand, it netarns us number bytes ha operan

OcCupis

Faampl m Mzey (Sum)
n Si2e eg (lg nt),
kizeq{235L),

The EOpetaton i normaly un d to cleden mna (li

eTh aneus aud sliuali tn u Si2 as ho
Kncton +e lhu plon amnn

Athmae preon
*Ari k mate pronion IS a Combhgion uablea

Constouut9, aud speao

Evaluaian eeprAMons
Expresions au ejalualed usmy au qgnnun1

Stataman tha som

Uaúable = expermon)

Pe Crdan Aumatic epualos
An auitrutte exp. oi/toutr pauan hen will he

evaluatud JLom yt o Agtut uiny las Alis q

V re cdins 9 Opusto.
PA oit

Lo iom

Type Convetsions enpremons

Automie lpe Conveon.

f lhr operamdh CL clfeunt lupu, hi lowet

ype s cuutomatiCally
conurtd t h: *higlui Caype

beore li openalon proceuas

in4

flout
doable d
Jonq int

float
ong

long floa

+loa
L

Woub
int

Tha ollowing Chougen au irdrodud duwy 1ks

nas Staenut

loat to ht ractionct aut

olouble to tloet.Cauns Raundiy q dgtH
3lon int to it diopping kT ex un hislu

Ovdn bit

vunation.

its

