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Image Processing

Unit 11T
Chapter 5 — Image Restoration and Reconstruction
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Noise Models:
* The principal source of noise in digital images arise during image acquision and/or

transmission.

* The performance of imaging sensors is affected by a variety of factors,  such as environmental conditions during image
acquistion and by the quality of the sensing elements themselves.

* For instance,in acquring images with a CCD camera,light levels and sensor temperature are major factors affecting the amount
of noise in the resulting image.

* Images are corrupted during transmission principally due to interference in the
channel used for transmission.

* For example., an image transmitted using a wireless network might be corrupted as a result of lighting or other atmospheric
disturbance.

» That define the spatial characteristics of noise, and whether the noise is correlated with
the image.
* Frequency properties refer to the frequency content of noise in the fourier sense.(i.e., as

opposed to frequencies of the electromagnetic spectrum)



for exmple, when the fourier spectrum of noise is constant, the noise usually is called

“white noise”.

This terminology is a carryover from the physical properties of white light,which contains nearly all frequencies in the visible
spectrum in equal properties.

With the exception of spatially periodic noise.That noise is independent of spatial coordinates and that it is uncorrelated with
respect to the image itself.  (i.e there is no correlation between pixel values and the values of noise component)

Although these assumptions are atleast partially invalid in some applications quantum_limited imaging,such as x-ray and
nuclear-medicine imageing is a good example.

PDF:Probability Density Functions

The most common PDF’s found in image processing applications:

GAUSSIAN NOISE

Because of its mathematical trackability in both the spatial and frequency domains.
Gaussian are also called normal noise model.
Noise model are used to frequently in practice.

In fact, this tractability is so convenient that it often results in gaussian models being used in situation which they are
marginally applicable at best.



NOISE MODELS: RAYLEIGH NOISE
« THE PDF OF RAYLEIGH NOISE IS GIVEN AS:

Pzl = %{:—uk” ** forzza
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Noise Models: Erlang (Gamma) Noise| [
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«“The PDF of Erlang noise is given as;
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Exponential noise

The PDF of exponential noise 5 given by
F" el forz =0
where a > (1. The mean snd vanance of this density funclion are
1
I= = {5.2-9)
and
1
o =— (5.2-10)
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Note that this PDF is a special case of the Erlang PDF with & = 1. Figure 5.2(d)
shows a plot of this density function.

Exponential

: UNIFORM NOISE

Uniform noise
The PDF of uniform noise is given by NOISE MODELS
. 1
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Figure 5.2{«¢) shows a plot of the unilorm density.
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* If b>a, intensity b will appear as a  light dot in the image.
* Conversely, level a will appear like a dark dot.
» If either is zero, the impulse noise is called unipolar.

» If neither probability is zero, and especially when they are approximately equal, impulse noise values will resemble salt-and-
pepper granules (black and white pixels) randomly distributed over the image.

» For this reason, bipolar impulse noise is also called salt-and-pepper or data-drop-out or spike noise.
* Noise impulses can be negative or positive.
* Scaling usually is part of the image digitizing process.
* Because impulse corruption usually is large compared with the strength.
*  Thus, the assumption usually is that a and b are
“saturated” values, in the sense that they are equal to the maximum and minimum allowed values in the digitized image.
* As aresult, negative impulses appears as black(pepper)points in an image.

* Positive impulses appears as white (salt)noise.

* “The PDF of Impulse noise 1s given as:
P forz=0
P2)={Pyy forz=255

(0 otherwise

The preceding PDF’s provide useful tools for modeling a broad range of noise corruption situation found in practice.



For example:

Gaussian noise arises in an image due to factors such as electronic circuit and sensor noise due to poor illumination and/or high
temperature. The rayleigh density is helpful in characterizing noise phenomena in range imaging.

The exponential &gamma densities find application in laser imaging.

Impulse noise is found in situations where quick transients, such as faulty switching, take place during imageing, as mentioned in the
previous paragraph.

The uniform density perhaps the least descriptive of

practical situation.however,the uniform density is quite useful as the basis of numerous random number generator that are used in

* Shows a test pattern well suited for illustrating the noise model is just discussed.

» This is suitable pattern to use because it is composed of simple, constant areas, that span the gray scale from black to near
white in only three increments.

» This facilities visual analysis of the characteristics of the various noise compound added to the image.
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Shows the test pattern after addition of the six types of noise discussed thus far in this

1 [T Ritha Larm Liimiil

section.
2. Shown below each image is the histogram computed directly from the image.
3. The parameters of the noise were chosen in each case so that the histogram corresponding
to the three intensity levels in the test pattern would start to merge.This made the noise quite visible.

4. Without obsuring the basis sructure of the underlying image.we see a close corresponding in comparing the histograms in
diagrams

5. The histogram for the salt-and-pepper example has an extra peak at the white end of the
intensity scale.
6. Because the noise components were pure black&white and the lightest component of the

test pattern(circle) is light gray.



7. With the exceptiin of slightly different overall intensity, it is difficult to differentiate visually between the first five images
even througth their histograms are significantly different.

8. The salt&pepper apperance of the images corrupted by impulse noise is the only one that is visually indicative of the type of
noise causing the degradation.

Periodic Noise:
» Periodic noise in an image arises typically from electrical or electromechanical interference during image acquistion.

» This is the type of spatially dependent noise that will be considered in this chapter

* Periodic noise can be reduced significantly via frequency domain filtering.




* Figa) This image is severely corrupted by(spatial) sinusoidal noise of various frequencies.

 The fourier transform of a pure-sinusoid is a pair of conjugate impulses” located at the conjugate frequencies of the sine
wave.(table4.3)

*  Thus,if the amplitude of a sine wave in the spatial domain is strong enough.
* Figb) This is indeed the case, with the impulses appearing in an approximate circle.
* Because the frequency values in this particular case are so arranged.

Estimation of Noise Parameters:
* The parameters of periodic noise typically are estimated by inspection of the fourier spectrum of the image.

* As noted the preview section, periodic noise tends to produce frequency spikes that often can be detected even by visual
analysis.

* Another approach is to attempt to infer the periodicity of noise components directly from the image.

* Automated analysis is possible in situation in which the noise spikes are either exceptionally pronouced (or) when
knowledge is available about the general location of the frequency components of the interference.

* The parameters of noise PDF’s may be known partially from sensor specification, but it is often necessary to estimate them
for a particular imageing arrangement.

« If the imageing system is available, one simple way to study the characteristics of system noise is to capture a set of images of
“flat” environment.

» For example., in case of an optical sensor, this is as simple as imageing a solid gray board that is illuminated uniformly.
* The resulting images typically are good indicates of system noise.
*  When only images already generated by a sensor are availabe.

Frequently, it is possible to estimate the parameters of the PDF from small patches of reasonably constant background intensity.
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* For example., the vertical strips(150*20 pixels) in the figure were cropped from the gaussian,rayleigh and uniform images in
figure

» Figure The ones in the middle of the group of three in figure d,e&k. We see that the shapes of these histgrams correspond
quite closely to the shape of the histogram in figure

» Their heights are different due to scaling, but the shapes are unmistakably similar.
* The simplest use of the data from the image strips is for mean&varience
of intensity levels.

* Consider a strip(sub image) denoted by s

let ps(2,)./ = 0. 1,2,.... /

- =am e n - il i i W
* Denote the probability estimates(normalized histogram values) of the intensitives of the pixels in s

L |

*  Where,L is the number of possible intensities in the entire image.

We estimate the mean and varience of the pixels in s as follows:



= > upsi(z) (5.2-15)
i =Ll

o7 = rE!q:, — ¥ pslz) (5.2-16)
* The shape of the histogram identifies the closeset PDF match.
» If the shape is approximately gaussian, then the mean and varience are all we need.
* Because the gaussian PDF is completely specified by these two parameters.
* For the other,shaped discussed in fugure are use the mean & varience to solve for the parameters a and b.

» Impulse noise is handle differently because the estimate needed is of the actual probability of occurance of white&black pixels.

* Obtaining this estimate rquires that both black&white pixels be visible,so a midgray,relatively constant area is needed in the
image in order to be able to compute a histogram.

» The heights of the peaks corresponding to black&white pixels are the estimate of p, and py in

P forz=a
p(z) = P forz=#%
0 otherwise

PERIODIC NOISE REDUCTION BY FREQUENCY DOMAIN FILTERING:
P Periodic noise can be analyzed and filtered quite effectively using frequency domain techniques. The basic idea is that
periodic noise appears as concentrated bursts of energy in the Fourier transform, at locations corresponding to the frequencies
of the periodic interference.

Frequency Domain Filtering:
P Bandreject filters

» Bandpass filters



» Notch filters

Bandreject Filters:
The transfer functions of ideal, Butterworth, and Gaussian band reject filters, are summarized in example illustrates using a band

reject filter for reducing the effects of periodic noise.

ab

A bandpass filter performs the opposite operation of a
bandreject filter.

The transfer function pr{:r,r} of a bandpass filter is
obtained from a corresponding bandreject filter with
transfer function Hg (i, v) by

H.ﬁp (”’& U) =1- Hfu- (M, U) (5.



(a) Image corrupted by sinusoidal noise. (b) Spectrum of (a). (c) Butterworth band reject filter (white represents 1). (d) Result of
filtering. (Original image courtesy of NASA.)

Noise pattern of the image band pass filtering

Notch Filters:

A notch filter rejects (or passes) frequencies in predefined neighborhoods about a center frequency. The one exception to this rule is
if the notch filter is located at the origin, in which case it appears by itself. The shape of the notch areas also can be arbitrary (e.g.,
rectangular).

Hyp(u, v) = 1 — Hygpl(u, v)



Perspective plots of (a) ideal, (b) Butterworth (of order 2), and (c) Gaussian notch (reject) filters

Optimum Notch Filtering:

Then an adaptive optimum notch filter is proposed. In the proposed method, the regions of noise frequencies are determined by
analyzing the spectral of noisy image. ...

Finally, an output image with reduced periodic noise is restored.

(a) Satellite image of Florida and the Gulf of Mexico showing horizontal scan lines. (b) Spectrum. (c) Notch pass filter superimposed
on (b). (d) Spatial noise pattern. (¢) Result of notch reject filtering. (Original image courtesy of NAAO)



The tirst step is to extract the principal

frequency component of the interference

pattern

2 Dona by placing a notch pass filter, Hiu.w) at the
location of each spike.

2 The Fourier transform of the interferance noise
pattern is given by the expression

.-"'-'{.'.'. vi= m{aoe ) lned

Vo where Glu.v) denotes the Fourier transform of the
& ; corrupted image.

(a.) Image of the Martian terrain taken by Mariner 6. (b) Fourier spectrum showing periodic interference. (Courtesy of NASA)

(X, y) = | Hyp(u, 0)(r(u, v)

Because the corrupled image & sssumed 1o e formed by the addition of the
wneorrupled image fix, v) and the inlerlerence, il nls, y) were known com-
pletely, subtracting the pattern from gix, ¥) to obtain iy, v) would be 2 sim-
ple matter. The problem, of course, is that this filtering procedure wsually
yiells only an approximaticn of the troe patlern. The elfeel of components



f(x.y) = glx.y) = w(x. y)n(x, y) (5.4-5)

where, as before, f {x. y) is the estimate of f{x, ¥) and w(x, v) is 1o be deter-
mined. The function w(x, y) is called a weighting or modulation function, and
the objective of the procedure is 1o select this function so that the result is op-
timized in some meaningful way, One approach is to select w(x, ) so that the
vanance of the estimate f(x, y) 15 mimimized over a specified neighborhood
of every point (x, v).

Consider a neighborhood of size (20 + 1) by (2B + 1) about a point (x, ¥).
The “local” vanance of j’ {x. v) at coordinates (x, v) can be estimated from the
samples, as follows:

where FI.’L ¥) is the average value of f in the neighborhood: that is,

Tx.' = r+ay+i 5.4-7
fi = G 2, 2 b R
Points on or near the edge of the image can be treated by considering partial
neighborhoods or by padding the border with (s,

Substituting Eq. (5.4-3) into Eq. (5.4-6) vields

l i b
TN = BT @ T D)2 S ey )
—wlx + 5.y +Onplx + 5y +1)] (5.4-8)

- [B(x,y) - m]}:



Assuming that w(x, v) remains essentially constant over the neighborhood
gives the approximation

wix + 5,y + 1) = wx, ¥) (5.4-9)
for—a = 5 = aand —b = 1 = b. This assumption also results in the expression
wix, v, ¥) = wix, v)ilx. v) (5.4-10)

in the neighborhood. With these approximations, Eq. (5.4-8) becomes
1 ..

& {E-Il:l:.l.' + 5.v + 1)

(2a + )26 + 1) ;== ==

o :{_1.'_ ¥ =

wix, vigley + 5. v + 1)] (54-11)

= .:I.\_‘-LI.._\] = rrl:l.llll'ijh.}}‘:}:

To minimize a(x, y), we solve

|"ll"l[.l., ¥l
dw(r, y)
for wix, v). The result s

ghx, yin(x, ) = glx, yix, y)

i, y)

T(x, ) — Tz v)

Fourier spectrum (without shifting) of the image (Courtesy of NASA)



(a) Fourier spectrum of N(u, v), and (b) corresponding noise interference pattern (Courtesy of NASA.) h(x, y).
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Unit IV
Chapter 8 - Image Compression

The size of typical stillimage (1200x1600)
1200 x1600x3byte=57600005yte
=5,760Kbyte=5.76 Mbyte

The size of two hours standard television (720x480)

movies

3079Me (760 x 480)PXE!S 3 BYIES _ 31 104 000Bytes/sec

sec frame  pixel

31,104,000 25 (60 x60) 3¢ x 2hours=2.24x104 bytes
sec hour

=224 GByte.



Data, Information, and Redundancy

is used to represent information

in data representation of an information provides no relevant information or repeats a stated
information

. Let nl, and n2 are data represents the same information. Then, the relative data redundancy R of the n1 is defined as
R=1-1/C where C =nl/n2

[Type text]



Redundancy in Digital Images

— Coding redundancy
usually appear as results of the uniform representation of each pixel

— Spatial/Temopral redundancy
because the adjacent pixels tend to have similarity in practical.

— Irrelevant Information
Image contain information which are ignored by the human visual system.



]

Coding Redundancy Spatial Redundancy Irrelevant Information



Coding Redundancy

®  Assume the discrete random variable for I in the interval [0,1] that represent the gray levels. Each I, occurs with

probability Py
®  If the number of bits used to represent each value of e by

l(rk) then Lavg L1

O : ’l(”k)]?(rk)
k[0

®  The average code bits assigned to the gray level values.
°

The length of the code should be inverse proportional to its probability (occurrence).



Examples of variable length encoding

Ty pAre) Code 1 (1) Code 2 2(rg)
rg7 = 87 0.25 01010111 8 01 2
rig — 128 0.47 10000000 8 1 1
Fize = 186 0.25 11000100 8 000 3
725 = 255 0.03 11111111 8 001 3
r, for k# 87,128 186,255 0 — 8 — 0




Spatial/Temopral Redundancy
. Internal Correlation between the pixel result from

Respective Autocorrelation

Structural Relationship

Geometric Relation ship
. The value of a pixel can be reasonablypredicted from the values of its neighbors.

. To reduce the inter-pixel redundancies in animage the 2D array is transformed (mapped) into more efficient format
(Frequency Domain etc.)



Irrelevant information and Psycho-Visual Redundancy

The brightness of a region depend on other factors that the light reflection
The perceived intensity of the eye is limited annon linear
Certain information has less relative importance that other information in normal visual processing

In general, observer searches for distinguishing features such as edges and textural regions.



Measuring Information

. A random even E that occurs with probability P(E) is said to contain I(E) information where I(E) is
defined as I(E) = log(1/P(E)) =-log(P(E))

. P(E) = 1 contain no information

. P(E) = V2 requires one bit of information.



Measuring Information

. For a source of events Ay 3158ys s A with

associated probability P(ao), P(al), P(az), . P(ak).

. The average information per source (entropy)is

H [ P(a. )log(P(a.
[fP(a; Nog(P(a;)
Jj o
For image, we use the normalized histogram to generate the source probability, which leas to the entropy

- Ll
R E : p, (r;)log(p (r;))
ic0



Fidelity Criteria
. Objective Fidelity Criteria
The information loss can be expressed as a function of the encoded and decoded images.

For image I (x,y) and its decoded approximation I’(X,y)

For any value of x and y, the error e(x,y) could be defined as

e(x, y)[l I'(x, 1(x,y)
y)
—  For the entire Image
M1 N1
I(x,y)
o T )1

x[0 y [0



Fidelity Criteria

o The mean-square-error, € 18
rms
M1 N1
2
Y T(x, DB
e [ aa
rms o0 - (.X,
x[0 y [0
The mean-square-error sigrifhl-to-noise ratio SNRmSis
M1 N1
SERLCIRON
x[0 y [0
SNR —
ms M N
2
)L I(x, y ) 0
0o LT'(x,

x[0 y [0



Value Rating Description

1 Excellent An image of extremely high quality, as good as you could
desire.

2 Finc An imagc of high quality, providing cnjoyablc vicwing.
Interference is not objectionable.

3 Passable An image of acceptable quality. Interference is not
objectionable.

4 Marginal An image of poor quality; you wish you could improve it.
Interference is somewhat objectionable.

3 Inferior A very poor imagc, but you could watch it. Objcctionablc
interference is definitely present.

6 Unusable An image so bad that you could not watch it.




Three approximations of the same image
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Image Compression
Standards, I'ormats, and Containers

Still Image Video
| DV
‘ H261
Binary Continuous Tone H262
CCITT Group 3 JPEG H.263
CCITT Group 4 JPEG-LS H?264
JBIG (or JBIG1) JPEG-2000 MPEG-1
JBIG2 o~ MPEG-2
Shls MPEG-4
TIFF GIF MPEG-4 AVC
PDF
PNG AVS
TIFF HDYV
M-JPEG

QuickTime
V-1 (or WMVO)



Huffman coding is an entropy encoding algorithm used for lossless
data compression. The term refers to the use of a variable- length code
table for encoding a source symbol (such as a character in a file)
where the variable-length code table has been derived in a particular
way based on the estimated probability of occurrence for each possible
value of the source symbol.

Chiginal source

Snurce reduction

Symbay Probability I pi 3 |
da 0.4 0.4 0.4 04«06
ap, 03 0.3 as 03— 0.4
i VA | 01 —-02 03—

4 {1 01— .l
e .06 =1

iy

|:|(_].;|J




Huffman coding
Assignment procedure

Original source Source reduction

Symbol Probability Codc 1 2 3 4
az 0.4 1 04 1 0.4 1 04 1 —0.6 0
s 0.3 00 0.3 00 0.3 00 0.3 0= 04 1
aj 0.1 011 0.1 011 0.2 010=——0.3 01 =
y 0.1 0100 0.1 DIOD::|7[I.1 011 <
a 0.06 01010 0.1 0101
as 0.04 01011




Arithmetic coding is a form of variable-length entropy encoding. A | Encoding scoucnee — =

string is converted to arithmetic encoding, usually characters are A & a1 e i |
stored with fewer bits | 02 0,08 0,072 no6 . v |
Arithmetic coding encodes the entire message into a single number, i / i# f ti / i /' :r-.
a fraction n where (0.0 n g = / = 06752 — —»
<n<1.0). i /
Source Symbaol Probability Imitial Subinterval

a2y 02 [00,02)

th (.2 [0.2,0.4)

(s 0.4 [U.4,0.8)

iy 02 [0.8, L.O)




Compression Algorithms



Symbol compression

This approaches determine a set of symbols that constitute
the image, and take advantage of their multiple appearance.
It convert each symbol into token, generate a token table and
represent the compressed image as a list of tokens.

This approach is good for document images.
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Symbol

Triplet

Token
0

= 1
abc 5
FIGURE B\ T
(a) A bi-level
document,
(b) symbol
dictionary, and

(¢) the lriplets
uszd to locate the
symbols in the
document.

(0,2, 0)

(3.10,1)
(3,18,2)
(3,26,1)
(3,34,2)
(3.42.1)
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FIGURE 8.2
Driserele-sosine
basis functions [Or
n — 4, The origin
of cach Block is at
its top left.
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FIGURE 8.24 Approximations of Fig. 8.9(a) using the (a) Fourier, (b} Walsh-Hadamard, and (c) cosine
transforms, together with the corresponding scaled error images in (d}-(f).



DFT and DCT

The periodicity implicit in the 1-D DFT and DCT. The DCT
provide better continuity that the general DFT.

CHswuilioul




Bock Size vs. Reconstruction Error

6.5 T | | |
The DCT provide the least error at almost . O I
. : 2 53
any sub-image size. 8
. . . 8 3
The error takes its minimum at sub-images - T
of sizes between 16 and 32. g 4
H 55
'_':I. 5
= a
[~
2.5

Subimage size
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FIGURE 8.27 Aporoxmations of Tip. 8.27(a) using 25% of the DCT coefficients and (k) 2 ¥ 2 subimages. (c)
4 % dsubhimages, and (d) & % 3 subimages. The original image in (a) 35 a zoomed seetion of Tig 5 9(a)
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of Fg. 8.9(a} using
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FIGURE 8.31 Approximutions of Tig, 8.%a ) using |he DCT and normalization array of Fig, 8.30(by: (a) Z,
(h) 27, (c) 47, (d) &7 (e) 167, and () 327.
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FIGURE 2.32 Two JPEG approximations of Fig, 8.9 a). Cach row contains o result after sompression and
recanatrmietion, the sealed differonee Porween the result and rhe neiginal imaee. and 2 Foomed pnﬂinn cif the
Teconsirucled image.
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Lossless Predictive coding

The encoder expects a discrete sampl of a signal f(n).

€S

1 . A predictor is applied and its output is rounded to

the nearest

integer. f(n)
2. The error is estimated as The decoder uses the predictor and the

e(m) - f(m) L f () error stream to reconstructs the

3 . The compressed stream consist of original signal f(n).

first sample and the errors, encoded using 1 . The predictor is initialized using the first sample.

iable length codi .
varlable fength coting 2 The received error is added to predictor result.

fm) O F ) e(n)



Lossless Predictive coding

Linear predictors usually have the form:

. o™ O
f(n) O round | a if(’lDi)
1il0 O
Original Image (view of the earth). The prediction error and its
histogram.
1 . The error is small in uniform regions

2. Large close to edges and sharp changes in pixel
intensities
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Lossy Predictive coding The encoder expects a
discrete samples of a signal f(n).

1.

A predictor is applied andits
output is rounded to the nearest

£ (n)

The error is mapped into limited

integer,
2.

rage of values (quantized) el /(n)

the mapped errors, encoded using variable length
coding

The compressed stream consist of first sample and
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Lossy Predictive coding

The decoder uses error stream to reconstructs an approximatic  Input o ™ eln) | Quantizer |, .| Symbol | . Compressed
the sEueEnc fim) _ 5 / | encode | s L e
L
original signal, fD (n) ' Y il
—o Predictor |- -II -|-I‘!~l ]
. T . . fm) | b
1. The predictor is initialized using first sample. - Jlalsr
2. The received error is added to predictor result.
the
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Prediction Error

The following images show the prediction error of

the predictor f (x, y) [10.97 f(x, y [1)
Fny) 005 F(x,y (1) 105 F(x 01, y)

A

fx,y) 1075 f(x,y (1) 00.75 f(x [, y) 0.5 f(x 1, y[l)
11097 f(x, y (1) Uh OO

&0'97 f(x 1, y) otherwise
DR fGeOL, y) 0 f(x[1, y I
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Optimal Predictors

What are the parameters of a linear predictor that minimize error
2

E{eXm)} 0 E f(n)0 f(n)°

While taking into account

£y 0 ey o e fmo f)

Using the definition of linear predictor

2

E{em)} =E{| f(m)-> o, f(n-1)
e
We assume that f(n) has a mean zero and variance o>

=Ry



And R_1 is the mxn autocorrelation matrix
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Levels
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Filter Taps
Wavelel (Scaling + Wavelel) Zeroed Coellicenis
Haar (see Ex.7.10) 242 33.8%
Thaubkechies (see Fig. 7.8) g1 8 40,95,
Svmlet (see Fia. 7.26) N+ 8 41.2%
Biorthogomal {sec Fig. 7.39) 177011 42.1%

TABLE 2.13
Waveler transform
filter taps and
Feroad coefficients
when Lrwnealing
the transtorms in
Fig. 5.46 below 1.5,



Decompasition Level
{=eziles or Filter
Bank Iicrnilons)
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Cocllicient Image
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32 % 32
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TABLE 8.14
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Filter Tup

Highpuss Wuyelet
Cocfficient

Lowpuass Scaling
Coefficient

0
1
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FIGURE 8.49 Tou: JPLG-2000 approximalions of Tig. 8.9(a). Cech row contains a resull aller compression
and recomstruction. the scaled difference barweer the rezult 2nd the original image, and a zoomed pottion of
the reconsricted image. (Comparc the results in rows 1 and 2 with the JPEG results in Fig, 8.52.)
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A typical image
watermarking
system:

{2} encoder;

(b} decoder.,
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FIGURE 8.53 (=) and (¢} Iwo walermatked versions of Fle 8 %a) (5] and (J) the dillerenoes (scaled in
inlensily ) between Lhe watermarkcd vorsions and the unmarked image These Dwo maves show Lhe incensity
contribution {nithoughsealed dramaticallv) of the pseudo-random watermarks on the origmal image,
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FIGURE 8.54 Aftacks on the watermarked image in Fig. 8.53(a) (a) lossy JPEG compression and
decompression wilh an rms error of 7 intensity levels; (b} lossy JPEG compression and decompression with
an rms error of 10 intensity levels (note the blocking artifact); (c) smoothing by spatial filtering: (d) the
addition of Gaussian noise; () histogram equalization: and (f) rotation. Each image is a modified version of
the watermarked image in Fig. 8.53(a). After modification, they retain their watermarks to varving deprees,
a5 indicated by the correlation coefficients below ench image.
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UNIT -V
CHAPTER-9
Morphological Image Processing
Morphology “ — a branch in biology that deals with the form and structure of animals and plants.

“Mathematical Morphology” — as a tool for extracting image components, that are useful in the representation and description of region
shape.

The language of mathematical morphology is — Set theory.

Unified and powerful approach to numerous image processing problems.



v In binary images , the set elements are members of the 2-D integer space — Z2. where each element (X,y) is a coordinate of a black (or white)
pixel in the image.

Preliminaries:
Relfection:
v" In a corresponding output image reflection is mainly used as an aid to image visualization, but may be used as a preprocessing operator in
much the same way as rotation. Reflection is a special case of affine transformation.
v Translation is used to improve visualization of an image, but also has a role as a preprocessor in applications where registration of two or
more images is required.
v Translation is a special case of affine transformation.

Examples of Reflection and Translation

abe

‘ FIGURE 9.1

| (o) Aset, () s
reflection, and
() its transkation

'.," # by 7.
\ |lI P, ,

LA,

Structuring Element
v A structuring element is a matrix that identifies the pixel in the image being processed and defines the neighborhood used in

the processing of each pixel.

v Choose a structuring element the same size and shape as the objects you want to process in the input image.

v’ astructuring element is a shape, used to probe or interact with a given image, with the purpose of drawing conclusions on how this shape
fits or misses the shapes in the image.

v' It is typically used in morphological operations, such as dilation, erosion, opening, and closing, as well as the hit-or-miss transform.




Used to extract image components that are useful in the representation and description of region shape, such as

Boundaries extraction
skeletons

convex hull
morphological filtering
thinning

pruning

Erosion:

v

AN N NERN

Erosion (usually represented by ©) is one of two fundamental operations (the other being dilation) in morphological image processing from

which all other morphological operations are based.

. The erosion operation usually uses a structuring element for probing and reducing the shapes contained in the input image.
Erosion is used for shrinking of element A by using element B

Erosion for Sets A and B in ZZ, is defined by the

following equation:

40B={z[B)zc4) (02-3)

This equation indicates that the erosion of A by B is the set of all points z such that B, translated by z, is combined in A.

Dialation:

v

ANEANERN

Dilation (usually represented by @) is one of the basic operations in mathematical morphology. Originally developed for binary images,

The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.
Dilation is used for expanding an element A by using structuring element B
Dilation of A by B and is defined by the following equation:

A®B=1{z|(®B)znA # 0} (9.2—1)

This equation is based On obtaining the reflection Of B

about its origin and shifting this reflection by z.
The dilation of A by B is the set of all displacements z,

such that  and A overlap by at least one element. Based

On this interpretation the equation of (9.2-1) can be



A®B={z[(B)zn4]c4) 92-2)
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Duality between dilation and erosion:
e Dilation and erosion are duals of each other with respect to set complementation and reflection. That is,

(AOB)=A @B
® One of the simplest uses of erosion is for eliminating irrelevant details (in terms of size) from a binary image.

Opening And Closing
® Opening — smoothes contours , eliminates protrusions

® C(Closing — smoothes sections of contours, fuses narrow breaks and long thin gulfs, eliminates small holes and fills gaps in contours
® These operations are dual to each other
® These operations are can be applied few times, but has effect only once
e Opening —:
® First —erode A by B, and then dilate the result by B

® In other words, opening is the unification of all B objects Entirely Contained in A

A°B=(AOB)®B



e Closing:
e First —dilate A by B, and then erode the result by B
® In other words, closing is the group of points, which the intersection of object B around them with object A — is not empty

A-B=(A®B) OB

Use of opening and closing for morphological filtering

original image erosion opening of A

The Hit-or-Miss Transformation:

® A basic morphological tool for shape detection.




® [Let the origin of each shape be located at its center of gravity.
e If we want to find the location of a shape , say — X,

at (larger) image, say — A :
® Let X be enclosed by a small window, say — W.

® The local background of X with respect to W is defined as the ser difference(W - X).

® Apply erosion operator of A by X, will get us the set of locations of the origin of X, such that X is completely contained in A.
® [t may be also view geometrically as the set of all locations of the origin of X at which X found a match (hit) in A.

® Apply erosion operator on the complement of A by the local background set (W — X).

e Notice, that the set of locations for which X exactly fits inside A is the intersection of these two last operators above.

This intersection is precisely the location sought.

e Formally:
e [f B denotes the set composed of X and it’s background —

e B=(B1,B2);Bl=X,B2=(W-X).
A{E}Eisﬂiﬂﬂ=(ﬂ S B) N (A°EB,)

® The match (or set of matches) of B in A, denoted

[3) SeTa (R A (e} Eroswon of A
weim e, B, e 1 B [ WS AT
Lheez Teiw=nl CF} Todeesazed dnarn ol
. e backgrouod of A0 {a) and (e},

L ATl o B LA willls thomprieel to B mbeneangy dhe
CEE — AT Tasuasbiven sl Llac
Co ¥ oavs el e dEla of & a5
e AL Cal] Forcowaicsrs alereire

S [0 e =

o The reason for using these kind of structuring element — B = (B1,B2) is based on an assumed definition that,
two or more objects are distinct only if they are disjoint (disconnected) sets.



¢ In some applications , we may interested in detecting certain patterns (combinations) of 1’s and 0  and not for detecting

individual objects and not for detecting individual objects.

* In this case a background is not required, and the hit-or-miss transform reduces to  simple erosion.
This simplified pattern detection scheme is used in some of the algorithms for — identifying characters within a text

Other application

Pattern detection. By definition, the hit-or-miss transform indicates the positions where a certain pattern (characterized by the composite

structuring element B) occurs in the input image.

Pruning. The hit-or-miss transform can be used to identify the end-points of a line to allow this line to be shrunk from each end to remove

unwanted branches
Some basic Morphological Algorithm:

Boundary Extraction:

First, erode A by B, then make set difference between A and the erosion
® The thickness of the contour depends on the size of constructing object — B

p(4) =A-(A O B)
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Hole Filling:
® This algorithm is based on a set of dilations, complementation and intersections
® pis the point inside the boundary, with the value of 1

o X(k) = (X(k-1) xor B) conjunction with complemented A
® The process stops when X(k) = X(k-1)
® The result that given by union of A and X(k), is a set contains the filled set and the boundary

Xp = (X1 @ B)NA®




Hole Filling

B

Xo= (X1 ®@B)NA  k=123,... (95-3)

7

%

i

:

2

:

H

:

_ ahbhle

* FIGURE .16 (a} Binary image (the white dot inside one of the regions is the starting
2 point lor the bale-filling algerithm). (8) Result of filling that regiom. (o) Resaltof Glling

all hales.

Extraction of conneceted Components:
This algorithm extracts a component by selecting a point on a binary object A
Works similar to region filling, but this time we use in the conjunction the object A, instead of it’s complement.

Xk = (Xk—'l @ B)ﬂ.n‘l



Extraction of Connected Components
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Convex Hull:\

A 1s said to be convex if a straight line segment joining any two points in A lies entirely within A
The convex hull H of set S is the smallest convex set containing S

Convex deficiency is the set difference H-S

Useful for object description

This algorithm iteratively applying the hit-or-miss transform to A with the first of B element, unions it with A, and repeated with second element of
B

Xt = (X1 ®BHU A




X =(X/®B)uAd i=1234 andk=123,...
5 i Lonvex hull

A set A 'S IS I'.. . e |"|| :.\J |LJ_|I

sad tobe T R W i
convex if i = =d Ir i

the straight i7" |
line segment ©.i! =5 a
Joining ogy — T
two points RSP [
in A lies ' : =

4 " T e
entirely . _ " CEE SRR
withina,  C(d)=LD" i

47

Thinning:
® The thinning of a set A by a structuring element B, can be defined by terms of the hit-and-miss transform:

ARQB=A-(A®B)=An(A®B)°

® A more useful expression for thinning A symmetrically is based on a sequence of structuring elements:

{B}=(B',B* B’, ..., B"} ‘
e Where B'is a rotated version of B™. Using this concept we define thinning by a sequence of structuring elements:

A®{B}=((..((A®B") ® B?)...) ® B

e The process is to thin by one pass with B' , then thin the result with one pass with B, and so on until A is thinned with one pass with B".
® The entire process is repeated until no further changes occur.

® Each pass is preformed using the equation:
A®B=A-(A®B)=ANn(A®B)*

Thickining:



Thickening is a morphological dual of thinning.

Definition of thickening AOB=AU (4 ® B}

As in thinning, thickening can be defined as a sequential operation:
AQO B} =((. ((A ©BYOE?)..)OB™

The structuring elements used for thickening have the same form as in thinning, but with all 1’s and 0’s interchanged.

A separate algorithm for thickening is often used in practice, Instead the usual procedure is to thin the background of the set in question and then
complement the result.

In other words, to thicken a set A, we form C=A°, thin C and than form C°.

Depending on the nature of A, this procedure may result in some disconnected points. Therefore thickening by this procedure usually require a
simple post-processing step to remove disconnected points.

LL- - -
A®B = AL_J(A@B)
| R

A i) Thickeesd szc ohealpsd ba g u|||-.u|-|| ||.. whide I Ir l.l with no ddcom
nectadl pianks

Skeletons:

skeletonization is a transformation of a component of a digital image into a subset of the original component.

The notion of a skeleton S(A) of a set A is intuitively defined, we deduce from this figure that:

If z is a point of S(A) and (D)z is the largest disk centered in z and contained in A (one cannot find a larger disk that fulfils this terms) — this disk is
called “maximum disk”.

The disk (D)z touches the boundary of A at two or more different places.



The skeleton of A is defined by terms of erosions and openings:
K

S5(Aa) — S (A)

S,(A)=(A0kB)-—(AQ@kB)°B

With

Where B is the structuring element and (A e RH) indicates k successive erosions of A:
(AQKkB)=(..(AOB)OB)O..)OB

k times, and K is the last iterative step before A erodes to an empty set, in other words

K = max {k|(A © kB) # 0}

in conclusion S(A) can be obtained as the union of skeleton subsets Sk(A).
A can be also reconstructed from subsets Sk(A) by using the equation

K
a=Jow o
k=0

Where (Sk (AJ @ kB) denotes k successive dilations of Sk(A) that is:

(Sk(A) @ kB) = ((..((5x(A) ®B)DB)® ..) DB
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Pruning:

v The pruning algorithm is a technique used in digital image processing based on mathematical morphology.
v’ Ttis used as a complement to the skeleton and thinning algorithms to remove unwanted parasitic components (spurs

Pruning %’
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Morphological Reconstruction Skeleton:\

Morphological reconstruction can be thought of conceptually as repeated dilations of an image, called the marker image, until the contour of the
marker image fits under a second image, called the mask image.

In morphological reconstruction, the peaks in the marker image “spread out,” or dilate.Reconsctruction can be done by geodesic dialation and by
erosion.

Sample Applications: Opening by reconstruction
Filling Holes
Border Clearning

Gray Scale Morphology:

In gray scale images on the contrary to binary images we deal with digital image functions of the form f(x,y) as an input image and b(x,y) as a
structuring element.



(x,y) are integers from Z*Z that represent a coordinates in the image.
f(x,y) and b(x,y) are functions that assign gray level value to each distinct pair of coordinates.
For example the domain of gray values can be 0-255, whereas 0 — is black, 255- is white

Erosion and Dialation in Gray scale :
The grayscale dilation of an image involves assigning to each pixel, the maximum value found over the neighborhood of the structuring element.
Equation for gray-scale dilation is:

(f@b)(s,t)=

max {f(s —x,t —=y) + b(x,y)|(s —x),(t —y) € Df, (x,y) € Dp}

Df and Db are domains of f and b.

The condition that (s-x),(t-y) need to be in the domain of f and X,y in the domain of b, is analogous to the condition in the binary definition of
dilation, where the two sets need to overlap by at least one element.

We will illustrate the previous equation in terms of
1-D. and we will receive an equation for 1 variable:

(f @ b)(s) = max {f(s — x) + b(x)|(s — x) € Dy and x € D}

The requirements the (s-x) is in the domain of f and x is in the domain of b imply that f and b overlap by at least one element.
Unlike the binary case, f, rather than the structuring element b is shifted.
Conceptually f sliding by b is really not different than b sliding by f.

(f © b)(s,t) =min{f (s + x,t +y) — b(x,¥)|(s +x), (t +¥) € Dy, (x,y) € Dp}

The condition that (s+x),(t+y) have to be in the domain of f, and x,y have to be in the domain of b, is completely analogous to the condition in the
binary definition of erosion, where the structuring element has to be completely combined by the set being eroded.

Gray-scale erosion is defined as:

The same as in erosion we illustrate with 1-D function
(f © b)(s) = min{f (s +x) — b(x)|(s + x) € Dy and x € D}

General effect of performing an erosion in grayscale images:
If all elements of the structuring element are positive, the output image tends to be darker than the input image.

The effect of bright details in the input image that are smaller in area than the structuring element is reduced, with the degree of reduction being
determined by

the grayscale values surrounding by the bright detail and by shape and amplitude values of the structuring element itself.



Similar to binary image grayscale erosion and dilation are duals with respect to function complementation and reflection
Opening and Closing in Grayscale:

Similar to the binary algorithm

Opening —

feb=(fOb)®b.
feb= (f®b)Ob.

In the opening of a gray-scale image, we remove small light details, while relatively undisturbed overall gray levels and larger bright features
In the closing of a gray-scale image, we remove small dark details, while relatively undisturbed overall gray levels and larger dark features
Some Basic gray scale Morphological algorithms:

Morphological smoothing

Perform opening followed by a closing
The net result of these two operations is to remove or attenuate both bright and dark artifacts or noise.
Morphological gradient

Dilation and erosion are use to compute the morphological gradient of an image, denoted g:

It uses to highlights sharp gray-level transitions in the input image.
Obtained using symmetrical structuring elements tend to depend less on edge directionality.
Top-hat transformation

h=f—(f °b)

Cylindrical or parallelepiped structuring element function with a flat top.

Denoted h, is defined as:

Useful for enhancing detail in the presence of shading.
Granulometry

Granulometry is a field that deals principally with
determining the size distribution of particles in an image.
Because the particles are lighter than the background, we can use a morphological approach to determine size distribution. To construct at the end a




histogram of it.
Based on the idea that opening operations of particular size have the most effect on regions of the input image that contain particles of similar size.

This type of processing is useful for describing regions with a predominant particle-like character

Key features of the application include:

use of mathematical morphology functions such as closing or opening

computation of granulometric curves, obtained when the size of the structuring element varies

application to grey scale images, avoiding image segmentation

batch processing: all the images in a directory are processes the same way, making it possible to apply groupwise analyses
the different processing steps were embedded within a graphical user interface.

Textural Segmentation:

Textural segmentation

The objective is to find the boundary between different image regions based on their textural content.

Close the input image by using successively largerstructuring elements.

Then, single opening is preformed ,and finally a simple threshold that yields the boundary between the textural regions.

Texture segmentation is the process of partitioning an image into regions with different textures containing similar group of pixels.
Gray scale Morphological Reconstruction:

Gray-Scale Morph. Reconstruction
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Image segmentation:

in digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple segments

(sets of pixels, also known as image objects). The goal of segmentation is to simplify and/or change the representation of an image into something
that is more meaningful and easier to analyze. 2 Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in
images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share
certain characteristics.

The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image (see edge
detection). Each of the pixels in a region are similar with respect to some characteristic or computed property, such as color, intensity, or texture.
Adjacent regions are significantly different with respect to the same characteristic(s)."! When applied to a stack of images, typical in medical
imaging, the resulting contours after image segmentation can be used to create 3D reconstructions with the help of interpolation algorithms

like marching cubes.™!

Image Processing :

Image processing is a method to convert an image into digital form and perform some operations on it, in order to get an enhanced image or to extract
some useful information from it.

It is a type of signal dispensation in which input is an image, like video frame or photograph and output may be image or characteristics associated
with that image.

Usually Image Processing system includes treating images as two dimensional signals while applying already set signal processing methods to them.
Purpose of Image processing

The purpose of image processing is divided into 5 groups. They are :

Visualization - Observe the objects that are not visible.

Image sharpening and restoration - To create a better image.

Image retrieval - Seek for the image of interest.

Measurement of pattern — Measures various objects in an image.

Image Recognition — Distinguish the objects in an image.

Fundamental steps in Digital Image Processing :



1. Image Acquisition

This is the first step or process of the fundamental steps of digital image processing. Image acquisition could be as simple as being given an image
that is already in digital form. Generally, the image acquisition stage involves preprocessing, such as scaling etc.

2. Image Enhancement

Image enhancement is among the simplest and most appealing areas of digital image processing. Basically, the idea behind enhancement techniques
is to bring out detail that is obscured, or simply to highlight certain features of interest in an image. Such as, changing brightness & contrast etc.

3. Image Restoration

Image restoration is an area that also deals with improving the appearance of an image. However, unlike enhancement, which is subjective, image
restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabilistic models of image degradation.

Clutputs of these steps are generally images
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Color Image Processing



Color image processing is an area that has been gaining its importance because of the significant increase in the use of digital images over the
Internet. This may include color modeling and processing in a digital domain etc.

5. Wavelets and Multiresolution Processing

Wavelets are the foundation for representing images in various degrees of resolution. Images subdivision successively into smaller regions for data
compression and for pyramidal representation.

6. Compression

Compression deals with techniques for reducing the storage required to save an image or the bandwidth to transmit it. Particularly in the uses of
internet it is very much necessary to compress data.

7. Morphological Processing

Morphological processing deals with tools for extracting image components that are useful in the representation and description of shape.

8. Segmentation

Segmentation procedures partition an image into its constituent parts or objects. In general, autonomous segmentation is one of the most difficult
tasks in digital image processing. A rugged segmentation procedure brings the process a long way toward successful solution of imaging problems
that require objects to be identified individually.

9. Representation and Description

Representation and description almost always follow the output of a segmentation stage, which usually is raw pixel data, constituting either the
boundary of a region or all the points in the region itself. Choosing a representation is only part of the solution for transforming raw data into a form
suitable for subsequent computer processing. Description deals with extracting attributes that result in some quantitative information of interest or are
basic for differentiating one class of objects from another.

10. Object recognition

Recognition is the process that assigns a label, such as, “vehicle” to an object based on its descriptors.

11. Knowledge Base:



Knowledge may be as simple as detailing regions of an image where the information of interest is known to be located, thus limiting the search that
has to be conducted in seeking that information. The knowledge base also can be quite complex, such as an interrelated list of all major possible
defects in a materials inspection problem or an image database containing high-resolution satellite images of a region in connection with change-
detection applications.

Point line edge detection:

n image processing, line detection is an algorithm that takes a collection of n edge points and finds all the lines on which these edge points lie.! The
most popular line detectors are the Hough transform and convolution-based techniques.2!

Hough transform

The Hough transform[3] can be used to detect lines and the output is a parametric description of the lines in an image, for example p =r cos(0) + ¢
sin(0).[1] If there is a line in a row and column based image space, it can be defined p, the distance from the origin to the line along a perpendicular
to the line, and 0, the angle of the perpendicular projection from the origin to the line measured in degrees clockwise from the positive row axis.
Therefore, a line in the image corresponds to a point in the Hough space.[4] The Hough space for lines has therefore these two dimensions 6 and p,
and a line is represented by a single point corresponding to a unique set of these parameters. The Hough transform can then be implemented by
choosing a set of values of p and 0 to use. For each pixel (r, ¢) in the image, compute r cos(0) + ¢ sin(0) for each values of 6, and place the result in
the appropriate position in the (p, 0) array. At the end, the values of (p, 0) with the highest values in the array will correspond to strongest lines in the
image

Convolution-based technique

In a convolution-based technique, the line detector operator consists of a convolution masks tuned to detect the presence of lines of a particular width
n and a 0 orientation. Here are the four convolution masks to detect horizontal, vertical, oblique (+45 degrees), and oblique (—45 degrees) lines in an
image.

a) Horizontal mask(R1)

-1|-1]-1

-1|-1]|-1

(b) Vertical (R3)



-112|-1

-112|-1

-1(2|-1
(C) Oblique (+45 degrees)(R2)

-1|-1|2

2 |-1|-1
(d) Oblique (—45 degrees)(R4)

2 |-1|-1

(3]

In practice, masks are run over the image and the responses are combined given by the following equation:
R(x, y) = max(|R1 (x, y)|, |R2 (x, y)|, [R3 (x, y)|, [R4 (x, y)])
If R(x, y) > T, then discontinuity



As can be seen below, if mask is overlay on the image (horizontal line), multiply the coincident values, and sum all these results, the output will be
the (convolved image). For example, (—1)(0)+(—1)(0)+(—1)(0) + (2)(1) +2)(1)+(2)(1) + (—1)(0)*+(—=1)(0)+(—1)(0) = 6 pixels on the second row,
second column in the (convolved image) starting from the upper left corner of the horizontal lines.

Detection of isolated points:

Segmentation algorithms generally are based on one of 2 basis properties of intensity values: 8 discontinuity : to partition an image based on sharp
changes in intensity 6 similarity : to partition an image into regions that are similar according to a set of predefined criteria.

A more formal definition — Let R represent the entire image. Segmentation is a process that divides R into n subregions R1, R2. ..., Rn such that: 1.
Rini=1=R. 2. Riis aconnected set foreachi=1.2,... ,n.3. RilKj=0foralliandj,j#i 4. Q Ri=TRUE foreachi=1.2, ... , n.5.Q Ri U
Rj = FALSE for any adjacent regions Ri and . Here ) Rk is a predicate that indicates some property over the region.

First derivative:

First derivative generally produce thicker edges in an image v Second derivative has a very strong response to fine details and noise v Second
derivative sign can be used to determine transition direction.

v Based on the fact that a second order derivative is very sensitive to sudden changes we will use it to detect an isolated point. v We will use a
Laplacian which is the second order derivative over a two dimensional function.

V2 fx.y=02f(x.y)0x2+32f(x,)dy282 flx,y)ox2=fx+ 1l y-2f x,y+fx-1Ly)02 flx. V)dy2=Ffx.y+1-2fx. y+ flx. ¥
-DV2fx.y=fx+l.y+fx—-ly+fxy+l1+frx.y-1-4fxy

Line detection:

The Laplacian is isotropic, i.e. independent of direction. v If we would like to detect lines on a certain direction only we might want to use masks that
would emphasize a certain direction and be less sensitive to other directions. 3 differentt edge types are observed: v Step edge — Transition of
intensity level over 1 pixel only in ideal, or few pixels on a more practical use v Ramp edge — A slow and graduate transition v Roof edge — A
transition to a different intensity and back. Some kind of spread line.

Chapter 12
Object Recognition
Pattern: An arrangement of descriptors (or features).
Pattern class: a family of patterns sharing some common properties. —
They are denoted by o1, 2,...,0W, W being the number of classes. patterns to their classes with as little human interaction as possible.
» Patterns and features

» Pattern classes: a pattern class is a family of patterns that share some common properties
* Pattern recognition: to assign patterns to their respective classes

* Three common pattern arrangements used in practices are



— Vectors
— Strings
—  Trees

* Patterns and Pattern Classes Vector Example
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Patterns and Pattern Classes Another Vector Example
* Here is another example of pattern vector generation.

» In this case, we are interested in different types of
noisy shapes.
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FIGURE 12.2 A noisy object and ils corresponding signature.



Patterns and Pattern Classes String Example
« String descriptions adequately generate patterns of objects and other entities whose structure is based on relatively simple connectivity of

primitives, usually associated with boundary shape.

i i
NP p—— —_— Y

i c

ab

FIGURE 12.3 (a) Staircase structure. (b) Structure coded in terms of the primitives a and
b 1o vield the string description ... ababab ... .

Patterns and Pattern Classes Tree Example
* Tree descriptions is more powerful than string ones.

*  Most hierarchical ordering schemes lead to tree structure
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Recognition Based on Decision-Theoretic Methods

» Decision-theoretic approaches to recognition are based on the use decision functions.

X =Xy Xy s X ) A, O, ... 0k

represent an n-dimensional pattern vector. For W pattern classes , We

).

want to find W decision functions with the property that, if a pattern x belongs to class ', then

e Let

d(x)>d (x) j=12,. . W.j#i

* The decision boundary separating class  and d,@®)givén(ky or d,(x)—d;(x)=0



Recognition Based on Decision-Theoretic MethodsMatching

*  Minimum distance classifier
r, FIGURE 12.4
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Recognition Based on Decision-Theoretic MethodsMatching by Correlation

* The correlation between f(x,y) and w(x,y) is

c(x,y) = Z Z f(s,t)w(x+ s,y +1)

Recognition Bésed on-DEcisidn-Th¥oretic Methods Optimum Statistical Classifiers:
*  Bayes classifjerfqy Gaussiap\pattgrn classes
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Recognition Based on Decision-Theoretic Methods Optimum Statistical Classifiers
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Recognition Based on Decision-Theoretic Methods Optimum Statistical Classifiers
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» C(Classification of multi-spectral data using the Bayes classifier



FIGURE 12.12
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Recognition Based on Decision-Theoretic Methods Neural Networks
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Recognition Based on Decision-Theoretic Methods Multilayer Feedforward Neural Networks
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Recognition Based on Decision-Theoretic Methods Multilayer Feedforward Neural Networks
* The activation function: a sigmoid function
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Recognition Based on Decision-Theoretic Methods Multilayer Feedforward Neural Networks
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Recognition Based on Decision-Theoretic Methods Multilayer Feedforward Neural Networks
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* Complexity of decision surface

— Two input, tow-layer, feedforward neural networks
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Structural Methods Matching Shape Number

FIGURE 12.23
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* Let a andb denote shape numbers of closed boundaries represented by 4-directional chain codes. There two shapes have a degree of
similarity k if

)b s.(b), for j=4,63,....k
wheres indicates shape nhm er and the subscrlpt indicates order

«  The distance betWwééd two@apes s aétned-as

1
D(a,b) =—
(a,D) .



Lheoree
R L P o . o

FlGURE ]2-24 e [!hl"ﬁ‘[lr
(a) Shapes. ) |

——————— (;("u heilef
(b) Hypothetical /[\
similarity tree. 10 -~ 0

(c) Sitmilarity

a . 2-----~-- Qa Ca .;LrJ ' -!' re
matrix. (Bribiesca L A
and Guzman.) T I ¢ & -

H &
O O &

Structural Methods String Matching
* Suppose that two region boundaries, a and b, are coded into strings denotedal, a2, ..., a, and b1, b2, ....b,,, respectively.

Similarity tree

Shape no. order

* Let represent the number of matches between the two strings, where a match occurs in the kth position if a; = by .

Le ratio

max a

* A simple measure of similarity between a

R =

a_
B
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» Strings were formed from the polygons by computing the interior angle, , between segments as each polygon was traversed clockwise.

« Angles were coded into one of eight possible symbols, corresponding to 45° increments.

» Figure 12.25(e) Shows@?%@i@?ﬁg%@%ﬁ?@ R for six samples of object 1 against themselves.

The notation 1.c refers to the third string from object class 1.

R la Lb le 1d le LI R| 2a 2b 2c¢ 2d 2e 2f
1.a 2a

L.h| 140D - Zbl 335

Lig 96 262 = 2c 45 AN

d| 51 &1 103 = 2d| 36 42 193

el 47 72 103 142 = 28l 28 33 92 183

1L.E 47 72 103 B4 237 == 2. 26 3.0 1.7 135 270




Figure 12.25(g) shows a tabulation of R values obtained by comparing strings of one class against the other.

Note that all R values are considerable smaller than any entry in the two preceding tabulations.

R| la 1b 1c 1d 1le 1f

2a|l 124 150 132 147 155 148
2b| LIS 143 132 147 155 148
2¢| 102 118 119 132 139 148
24| 102 118 119 132 129 140
2e| 093 107 108 119 124 1.25
21| 089 1.02 102 124 122 1.18

Figure 12.25 (g)



